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Abstract: Insulin pumps have transformed the way diabetes is managed by providing a more accurate
and individualized method of delivering insulin, in contrast to conventional injection routines. This
research explores the progression of insulin pumps, following their advancement from initial ideas to
advanced contemporary systems. The report proceeds to categorize insulin pumps according to their
delivery systems, specifically differentiating between conventional, patch, and implantable pumps.
Every category is thoroughly examined, emphasizing its unique characteristics and capabilities. A
comparative examination of commercially available pumps is provided to enhance informed decision
making. This section provides a thorough analysis of important specifications among various brands
and models. Considered factors include basal rate and bolus dosage capabilities, reservoir size, user
interface, and compatibility with other diabetes care tools, such as continuous glucose monitoring
(CGM) devices and so on. This review seeks to empower healthcare professionals and patients
with the essential information to improve diabetes treatment via individualized pump therapy
options. It provides a complete assessment of the development, categorization, and full specification
comparisons of insulin pumps.

Keywords: Type 1 diabetics (T1D); Type 2 diabetics (T2D); insulin; insulin pump; patch pump;
continuous glucose monitoring; micropump

1. Introduction

The landscape of diabetes on a global scale is rapidly evolving, with predictions show-
ing a significant rise in the future. Increasing from the estimated 366 million individuals
affected in 2011 to a forecasted 552 million by 2030 highlights the magnitude of this epi-
demic, emphasizing the urgent need for significant attention and innovative solutions [1].
Type 2 diabetes mellitus (T2DM) comprises most cases, accounting for 85% to 95% globally;
type 1 diabetes mellitus (T1DM) cases are increasing alarmingly in selected regions of
Europe and the USA, with rates increasing by 2–3% [2]. Consequently, diabetes has become
one of the most widespread noncommunicable diseases worldwide. The discovery of
insulin stands as one of modern medicine’s greatest achievements, revolutionizing the man-
agement of both T1DM and long-standing T2DM [3–5]. However, early insulins derived
from animal pancreases, such as bovine and porcine, possessed noteworthy challenges,
including immunological reactions, erratic absorption, and lipodystrophy [2]. As a result,
extensive studies were conducted to overcome the obstacles that slowed down the develop-
ment of insulin formulations and improve the methods used for insulin purification [4].
During the last couple of decades, fast-acting and long-acting insulin analogs were intro-
duced, indicating a radical turning point of insulin development [2,4]. The Diabetes Control
and Complication Trial (DCCT) highlighted the critical role of intensive insulin therapy (IIT)
in reducing both microvascular and macrovascular complications among people with type
1 diabetes mellitus (T1DM) [5]. However, the increased risk of hypoglycemia resulting from
IIT has lowered the objective of strict glycemic control [6,7]. As a result, the focus has been
shifted towards creating insulin formulations that mimic the pancreas’ natural production,
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with the aim of decreasing the frequency of low blood sugar incidents. Despite subcu-
taneous injection remaining the preferred method of insulin administration, it has some
disadvantages, such as discomfort at the injection site and patients not following through
with the treatment [2,4]. Against this backdrop, the landscape of T1DM management has
undergone a seismic transformation in recent years. The inception of the first insulin pump
in the 1970s introduced a new era of continuous subcutaneous insulin infusion (CSII),
laying the groundwork for the pursuit of an artificial pancreatic system (APS) [8–10]. This
APS, designed to automatically adjust insulin doses based on real-time glucose levels,
has been a long-sought goal for scientists and T1DM patients. The evolution of APS has
been characterized by successive milestones, from early closed-loop systems which are
capable of nocturnal regulation to advanced hybrid closed-loop (HCL) systems facilitating
both daytime and nighttime insulin modulation [11,12]. Furthermore, dual hormone HCL
systems, integrating glucagon or amylin alongside insulin, have been explored, albeit with
varying degrees of success [13]. Recent advancements have culminated in the development
of advanced hybrid closed-loop systems (AHCLs), which combine automated basal rate ad-
justments with correction boluses, yielding superior glycemic outcomes [14–16]. Moreover,
the emergence of do-it-yourself (DIY) APS systems underscores the community’s proactive
engagement in devising innovative solutions, even without clear regulations [17].

While the quest for a fully closed-loop system remains ongoing, contemporary tech-
nologies integrating insulin infusion with continuous glucose monitoring (CGM) have
garnered widespread adoption among T1DM patients, promising enhanced glycemic con-
trol [18–20]. Over the decades, researchers and efforts have been made to explore various
routes and methods to deliver insulin into the human body. Efforts have also been made
to improve the insulin delivery system, including changes and modifications related to
design, comfort, automation, and enhanced health monitoring. Insulin pump therapy has
emerged as a cornerstone of diabetes management, offering a continuous supply of insulin
through subcutaneous infusion with greater flexibility and precision when compared to
standard insulin injections. However, the landscape of insulin pump technology is dynamic,
with numerous models offering diverse features, delivery methods, and user interfaces.
Consequently, conducting a comprehensive comparison of insulin pumps is essential in
assisting doctors, healthcare professionals, and patients with diabetes when selecting the
most suitable equipment for their specific needs. Additionally, providing an overview of
the existing insulin devices on the market, including their clinical and design parameters
such as size, weight, basal rate, bolus rate, etc., is necessary. An overview table has been
included to present the studies conducted in this regard.

From Table 1, it is evident that some have focused on exploring various routes and
challenges associated with insulin delivery, while others have been limited to specific
geographical areas. Although a few studies have compared the different insulin pumps
available on the market, they have only addressed a limited selection of pumps. There is
a need for a more comprehensive study that provides an overview of all insulin pumps,
covering their design and clinical parameters on a global scale, which has not been achieved
thus far.

Hence, this study aims to fill this gap by not only evaluating insulin pump delivery
through various routes, but also providing a comprehensive overview of available insulin
pumps worldwide. This overview encompasses their design parameters, clinical conditions,
manufacturing details, and more. The study offers a thorough comparative analysis
of modern insulin pump technologies, tracking their evolution and classification while
assessing their efficacy, characteristics, and user-friendliness. Table 2 represents a guide
for the subsequent tables where the comparison is explained. Moreover, this study seeks
to identify emerging trends, technological advancements, and potential areas for further
research and innovation in the field of insulin pump therapy. By providing evidence-based
insights, it aims to empower healthcare professionals and individuals with diabetes to
make informed decisions regarding their treatment options.
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Table 1. Previous work on insulin pump.

Year Author Research Objectives Ref.

2008 Tabakha et al. Discussed various routes and very few conventional delivery systems. [21]

2010 Jean-Louis Selam

• Assessed insulin pen benefits, such asaccuracy, ease of use, patient satisfaction,
quality of life, adherence.

• Analyzed cost savings potential with insulin pen adherence versus vial/syringe.
• Evaluated CSII cost-effectiveness versus MDI for type 1 diabetes.
• Investigated limitations of current insulin delivery devices on blood glucose control.
• Explored advancements in insulin administration, such as physiologic routes,

artificial pancreas, and transplantation.
• Identified barriers to U.S. insulin pen adoption, proposed awareness strategies.

[22]

2011 Hovorka et al. Discussed the artificial pancreas design, its components, clinical outcomes, pros and cons
of automated closed-loop systems, and compared with conventional pump therapy. [23]

2016 Shah et al. Discussed different routes of insulin delivery. [2]

2018 Easa et al. Discussed and compared the available oral and non-evasive insulin delivery. [24]

2019 Sora et al. Discussed the pros and cons of CSII therapy, along with technical and clinical
considerations for initiating patients on this treatment. [25]

2019 Berget et al.

• Provided an overview of insulin pump technologies, covering simple disposable
pumps for type 2 diabetes to advanced automated systems.

• Discussed the clinical implications of these insulin pump technologies.
[26]

2021 Aiello et al. Explored recent advancements (5 years), challenges, and opportunities in AID systems,
particularly tailored for specific age groups and metabolic conditions. [27]

2022 Sherr et al. Highlighted AID system limitations, especially focusing on safety concerns.

2022 Sabbagh et al. Conducted a review on polymeric non-invasive insulin delivery and emphasized the uses
of hydrogel as a promising insulin delivery system. [28]

2022 Nallicheri et al. Compared to a few AID systems only in US. [29]

2022 Sugumar et al. Explored non-invasive and patient-friendly insulin delivery routes, including chemical
and physical enhancers. [30]

2023 Bassi et al. Discussed available AID systems in Europe for T1D patients, focusing on their
effectiveness across different age groups. [31]

Table 2. Roadmap for the specification comparison of the available insulin pump.

Table No Description of the Table

Table 3 Manufacturer and release year of the available insulin pumps
Table 4 FDA approval of available insulin pumps and country of origin
Table 5 Insulin pumps and their powered technology with types
Table 6 Size and weight comparison of available insulin pumps

Table 7 Basal, bolus, and reservoir capacity comparison of available
insulin pumps

Table 8 User’s age and type of diabetics for available insulin pumps

Table 9 CGM integration, types of insulin, and insertion devices for
available pumps

Table 10 Portability, disposable item, and connection type of available
insulin pump

Table 11 Wearing time and price of available insulin pump
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2. Insulin Pump

Diabetes is an increase in blood glucose levels above normal values. Diabetes occurs
because of deficiency of insulin production from the pancreas, the cells cannot use insulin
(insulin resistance), or combination of these. Since cells cannot take in the glucose, it builds
up in blood resulting in hyperglycemia. The main cause of diabetes varies by type. But
no matter what type of diabetes, it can lead to excess sugar in the blood. Too much sugar
in the blood can lead to serious health problems. In Figure 1 diabetics risk factors are
mentioned. In recent decades, substantial progress in diabetes technologies has resulted in
improved glycemic control and reduced complications associated with the microvascular
and macrovascular systems [32]. Intensive insulin therapy has evolved from multiple daily
injections (MDI) to more advanced technological improvements that have been shown to
decrease the chances of hypoglycemia and hyperglycemia, lessen fluctuations in blood
sugar levels, and enhance the quality of life for patients [33].
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In diagnosing diabetic therapy, commonly used insulins are compared in Figure 2.
Short-acting insulin has a delayed onset, peaking 2–3 h post-injection, and can cause
hypoglycemia due to prolonged action. It forms hexamers post-injection that dissociate
into dimers and monomers, thus should be taken 30 min before meals. Rapid-acting
insulin, modified to reduce hexamer formation, achieves faster dissolution and absorption,
necessitating dose reduction when switching from regular insulin. Examples include
insulin lispro, aspart, and glulisine. Intermediate-acting insulin, such as NPH, dissolves
slowly due to added protamine or zinc, peaking in 6–14 h with a 10–16 h duration, and can
serve as basal insulin when combined with regular or rapid-acting insulins. Zinc insulins,
forming crystals, have delayed absorption and prolonged action based on crystal size,
and cannot mix with soluble insulin due to excess zinc. Long-acting insulin, like insulin
glargine and detemir, provides a steady insulin level with no pronounced peak, making
it suitable for maintaining baseline glucose control throughout the day and night. These
insulins are designed to be taken once or twice daily to mimic the body’s natural basal
insulin secretion.



Pharmaceutics 2024, 16, 944 5 of 52
Pharmaceutics 2024, 16, x FOR PEER REVIEW 6 of 53 
 

 

 
Figure 2. Comparison between insulins type. 

Additional considerations include price and insurance coverage. Patients without 
health insurance may face expenses ranging from $4500 to $6500 for an insulin pump and 
its associated consumables, depending on the brand. Pump treatment was determined to 
be less cost-effective than multiple dosage injection (MDI) treatment in an economic anal-
ysis for individuals with type 1 diabetes [39]. 

2.1. Evolution of Insulin Pump 
The development of diabetes technology has been remarkable, starting with the sy-

ringe for administering insulin and continuing through insulin pumps, insulin pens, and 
sensor-augmented pumps The development of these devices has been further accelerated 
by the introduction of hybrid closed-loop systems, the integration with consumer elec-
tronics, and the utilization of cloud-based data systems [40,41]. Insulin pumps have seen 
tremendous development since their inception over 40 years ago, leading to improve-
ments in size, accuracy, and reliability [42–44]. Figure 3 illustrates the chronological de-
velopment of insulin pumps, progressing from large sizes to smaller micropumps. Dr. 
Arnold Kadish developed the first portable insulin pump in 1963; nevertheless, its size 
and technological problems caused it to have limitations [45]. The “Biostator,” an insulin 
pump including closed-loop intravenous insulin infusion and intravenous continuous 
glucose monitoring, was created by Dr. Ernst Friedrich Pfeiffer in 1974 at the Miles Labor-
atory (Elkhart, IN, USA). The system demonstrated the viability of closed-loop glucose 
management and allowed for subsequent technological advancements, despite its enor-
mous size and complicated operation [46]. In 1978, Dean Kamen brought the first wearable 
insulin pump—originally called the “blue brick” and then the “autosyringe”—into the 
world, which marked the beginning of insulin-pump therapy [47]. Only patients waiting 
for pancreatic transplants were offered these due to their complexity and size. Seoul Na-
tional University Hospital conducted the initial clinical evaluation of the SOOIL insulin 
pump in 1979 [48]. The first insulin device available for purchase in the United States ap-
peared in 1979 [49]. MiniMed Technologies founded in 1980, originally known as 
Pacesstter System, launched their inaugural insulin pump, the MiniMed 502, in 1983. In 

Figure 2. Comparison between insulins type.

Insulin pumps, or continuous subcutaneous insulin infusion systems, were the first
major step in diabetes technology advancement. These pumps utilized self-monitoring
capillary glucose testing to regulate glycemic control and enhance patient satisfaction,
surpassing the results obtained with MDI [34].

Over the past 40 years, insulin pump therapy has achieved significant advancements
and is now widely used in the contemporary treatment of diabetic patients. Insulin pumps
are compact, automated devices that replicate the body’s insulin release more exactly by
constantly delivering rapid-acting insulin over the course of 24 h. The system comprises a
disposable container for insulin and a disposable set for infusion, which includes a cannula
for insertion under the skin and a tubing system that links the insulin container to the
cannula. One benefit provided by the pump is the ability to administer a basal infusion
of insulin in a quantitative manner. Although basal rates can be established on an hourly
basis, they tend to exhibit superior performance for periods of 3–4 h, as insulin takes effect
for that duration. Pumps also allow for individualized boluses with meals, preferably
depending on the carbohydrate amount of the food, as well as personalized corrective
boluses for high glucose corrections. Built-in calculators that propose insulin dosages for
meals and corrections while also considering any leftover insulin from earlier boluses and
the patient’s insulin action time provide optimal dosing accuracy [35,36].

To keep blood sugar levels stable and avoid ketosis, a gradual and steady injection
of insulin, known as basal insulin, is necessary. Although it may differ, the first basal rate
is often set at 50% of the total daily insulin demand. This is typically 20–30% lower than
when the patient was on MDI treatment. For adult patients, one method to determine the
total daily insulin demand is to multiply the body weight in kilograms by 0.5 [37].

The pre-meal bolus insulin maintains euglycemia after meals or corrects above-target
glucose levels. The insulin–carbohydrate ratio and carbohydrate intake determine the
bolus insulin dosage. Each unit of (100 IU strength) insulin covers a certain quantity of
carbohydrate (in grams). The equation for determining the first insulin–carbohydrate ratio
is obtained by dividing 450 by the entire daily insulin dosage [37].
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Insulin pumps can help patients with a history of hypoglycemia by reducing the
frequency of episodes and raising HbA1c levels, which is helpful. Furthermore, for the
correct patient group, insulin pump therapy can improve quality of life, provide greater
freedom of movement, and reduce hospitalizations and diabetic ketoacidosis (DKA) [38].

Additional considerations include price and insurance coverage. Patients without
health insurance may face expenses ranging from $4500 to $6500 for an insulin pump and
its associated consumables, depending on the brand. Pump treatment was determined
to be less cost-effective than multiple dosage injection (MDI) treatment in an economic
analysis for individuals with type 1 diabetes [39].

2.1. Evolution of Insulin Pump

The development of diabetes technology has been remarkable, starting with the sy-
ringe for administering insulin and continuing through insulin pumps, insulin pens, and
sensor-augmented pumps The development of these devices has been further accelerated
by the introduction of hybrid closed-loop systems, the integration with consumer elec-
tronics, and the utilization of cloud-based data systems [40,41]. Insulin pumps have seen
tremendous development since their inception over 40 years ago, leading to improvements
in size, accuracy, and reliability [42–44]. Figure 3 illustrates the chronological development
of insulin pumps, progressing from large sizes to smaller micropumps. Dr. Arnold Kadish
developed the first portable insulin pump in 1963; nevertheless, its size and technological
problems caused it to have limitations [45]. The “Biostator,” an insulin pump including
closed-loop intravenous insulin infusion and intravenous continuous glucose monitoring,
was created by Dr. Ernst Friedrich Pfeiffer in 1974 at the Miles Laboratory (Elkhart, IN, USA).
The system demonstrated the viability of closed-loop glucose management and allowed
for subsequent technological advancements, despite its enormous size and complicated
operation [46]. In 1978, Dean Kamen brought the first wearable insulin pump—originally
called the “blue brick” and then the “autosyringe”—into the world, which marked the
beginning of insulin-pump therapy [47]. Only patients waiting for pancreatic transplants
were offered these due to their complexity and size. Seoul National University Hospital
conducted the initial clinical evaluation of the SOOIL insulin pump in 1979 [48]. The first
insulin device available for purchase in the United States appeared in 1979 [49]. MiniMed
Technologies founded in 1980, originally known as Pacesstter System, launched their inau-
gural insulin pump, the MiniMed 502, in 1983. In 1986, MiniMed created the implanted
insulin pump for intraperitoneal insulin delivery [50]. During the 1990s, smaller, more
compact, portable, and efficient external pumps of the new generation were introduced.
These pumps integrate features like bolus calculators, portable diabetics manager, and
alerts [51]. In 1992, MiniMed introduced the MiniMed 506, a device equipped with bolus
insulin memory. In subsequent years, they enhanced the programmable basal rate and
introduced the 507, 507C, and 508 series [52]. In the 2000s, there were notable improvements
in the battery life and memory capacity of pumps. Medtronic bought MiniMed in 2001 and
then released the MiniMed Paradigm series in subsequent years. In the following years, the
paradigm series (511, 512, and 515) experienced enhancements in algorithmic performance
and the implementation of a wired continuous glucose monitoring system [52]. In 2002,
Smith’s Medical launched Deltec Cozmo, but stopped its production in 2009 for financial
issues [52]. In 2003, Medtronic introduced an advanced insulin pump. The system consists
of a MiniMed Paradigm 512 insulin pump and a Paradigm Link blood glucose monitor. In
modern times, blood glucose (BG) values obtained from the glucometer are communicated
electronically and automatically to the insulin pump [53]. In 2006, Accu-Chek Spirit was
introduced by Roche Diabetics Care [52]. In the era of the infusion set, the discontinuation
of implanted insulin pump devices was announced by Medtronic later in 2007 [54]. The t:
slim insulin delivery device from Tandem Diabetics Care and the Accu Chek Combo from
Roche were both released in 2012. The introduction of the tubeless insulin pump, Omnipod,
was in 2015. After four years, Omnipod Dash was released to consumers [52]. Meditron
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MiniMed, Omnipod, Tandem, DANA R, Cellnovo, Roche’s Accu-Chek Solo Micropump,
and Ypsomed are the insulin pump devices that have received worldwide approval [55].
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2.2. Candidates for Insulin Pump Therapy

Insulin pumps do not eliminate the need for human interaction or control while deal-
ing with diabetes. It is important for patients to understand that insulin pumps are complex
medical devices that still need programming and patient autonomy in managing their con-
dition and insulin dosage. An intelligent, technically competent, and self-motivated patient
with a good grasp of the fundamentals of diabetes self-care would be the best candidate to
begin insulin pump therapy [56]. Figure 4 illustrates the fundamental prerequisites for a
patient who is eligible to utilize the insulin pump. Every patient has to be evaluated by their
healthcare professional to see if insulin pump treatment is suitable for them. Healthcare
practitioners have a responsibility to inform their patients about the possible advantages
and disadvantages, as well as the steps needed to start and keep pace with this type of
insulin therapy. The typical age range for individuals prescribed insulin pump treatment is
10 years and above [57].

A patient who shows signs of discomfort or resistance to learning how to utilize the
device may not be a good fit. Some patients may benefit more from MDI than pump
manipulation due to physical disabilities. When it comes to managing their diabetes and
insulin needs, a patient’s intellectual capacity is a key factor. A table outlining the standard
procedures for patient selection is provided below.

2.3. Insulin Pump Classification

Smart insulin pens, automated insulin administration systems, simpler patch pumps,
advanced pen needle technology, and continuous glucose monitoring systems are just a
few of the current gadgets that have enhanced care delivery and patient outcomes.

An artificial pancreas that incorporates both past and future achievements has been
developed by the Juvenile Diabetes Research Foundation, which has been dedicated to
the cause for three generations. The original generation of an insulin pump was sensor-
augmented pump (Figure 5); the pumps had an insulin shutoff feature that activated when
the user did not react to a hypoglycemia warning. The creation of the hybrid closed loop,
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which regulates the basal insulin rate and needs human input for prandial manual-assist
boluses, is a feature of the modern second generation. With the introduction of completely
automated multihormone closed loops, the third generation should complete the artificial
pancreas principle [58,59]. Figure 6 demonstrates the classification of the three primary
types of insulin pumps.
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2.3.1. Delivery Mechanism

Insulin pumps had a revolutionary impact on diabetes care through constantly admin-
istering insulin using a variety of delivery modes. The three primary ways in which these
pumps are categorized are by their delivery mechanism, namely conventional, patch, and
implantable. People managing diabetes have a broad variety of options when it comes to
insulin administration, with each kind offering unique advantages and considerations.

Conventional Pump

An insulin pump is a small, digital device that continuously delivers rapid-acting
insulin through a small catheter inserted into the subcutaneous tissue and secured in place
on the skin with adhesive (referred to as an “infusion set” or “infusion cannula”) [60].
In most insulin pumps, the infusion set connects to the pump by plastic tubing, and
insulin infuses from the pump through the tubing to the infusion set cannula and into the
subcutaneous tissue. The pump itself, which usually features controls, is free to be tucked
into pockets or carried in pump pouches, which can be worn under or outside of clothing.
With conventional insulin pumps, the user programs individualized rates for continuous
basal insulin delivery to cover all 24 h of the day in increments as small as 0.01 units of
insulin/hour. Commonly available examples of tethered pumps are Medtronic 630G, 670G,
and Tandem t: slim X2. Tandem Mobi, a representation of contemporary advancement in
conventional insulin pump, is illustrated in Figure 7.

Patch Pump

To overcome the problems with infusion sets, the so-called patch pumps were devel-
oped accordingly. These are insulin pumps devoid of a cannula and are attached directly
to the skin by an adhesive [58]. It has several additional advantages, for example, smaller,
more discrete, easier to use, and cheaper than conventional insulin pumps. But the down-
sides are not insignificant. It has to be replaced every 2–3 days; there is also a considerable
risk of clogging (mainly by insulin inside the tubing), air bubbles impairing pumping, kink-
ing of the tubing or the Teflon catheter in the subcutaneous tissue, cumbersome handling,
and the need for priming [61].

The development of flexible insulin reservoirs of different shapes enables the construc-
tion of patch pumps that look different from conventional insulin pumps. Pumping insulin
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requires energy. Thus, appropriate batteries become more of a problem with the smaller
electrically driven patch pumps. Most patch pumps require the filling of insulin reservoirs
to be completed by the patients themselves; only a few have the option of using prefilled
cartridges. Patch pumps come in a variety of shapes, sizes, and technologies. This is also a
reflection of varying patient requirements, especially depending on the type of diabetes.
There are two tasks in insulin delivery, namely basal rate and bolus [62]. The external and
interior schematics of the EOpatch insulin patch pump are shown in Figure 8.
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Generally, the different patch pumps can be divided into three categories. The simple
forms of PPs are intended for insulin therapy for people with T2D and mainly aim to be
easy to handle, easy to carry, small, and disposable. An example of a simple PP is the V-GO
(Zealand Pharma; Zealand, Denmark), which delivers a fixed amount of basal insulin over
24 h and has a bolus button that permits up to 36 units of prandial insulin to be delivered
in 2-unit increments per day. The V-GO is replaced daily. The Simplicity (CeQur; Luzern,
Switzerland) PP holds up to 200 units of bolus insulin that are administered in 2-unit
increments, while the CeQur’s PaQ (later PaQ Total) has a reservoir of 330 units for 3 days
of use and also allows for different basal rates [63].

Fully equipped pumps can deliver as standard at least variable basal rate(s) and indi-
vidually controllable amounts of bolus insulin. The first commercially available patch pump
termed Omnipod is composed of an integrated infusion set and inserter that communicates
wirelessly with an integrated blood glucose meter [64]. The Accu-Chek Solo micropump
(Roche Diabetes Care; Mannheim, Germany) is composed of a 90-day reusable pump, a
disposable 200-unit insulin reservoir, a disposable pump holder including the cannula,
and a remote control. Also, the A6 TouchCare System PP (A6) (Medtrum Technologies,
Shanghai, China) has a reusable pump base and a disposable insulin reservoir, including
the cannula, in addition to a remote control. The development of the PP Panda (SFC
Fluidics, Fayetteville, AR, USA) was supported by the 2017 “Open-Protocol Automated
Insulin Delivery Systems Initiative” of the Juvenile Diabetes Research Foundation (JDRF),
which aimed to establish an “open-protocol” AID ecosystem. The Sigi PP (AMF Medical;
Ecublens, Switzerland) works with readily available prefilled insulin cartridges and is con-
trolled directly from a personal smartphone. The Equil PP (MicroTech Medical; Hangzhou
Zhejiang China) has a wireless portable diabetes assistant (PDA). With the GlucoRx Equil
(GlucoRx, Guildford, UK), the user can bolus directly from the PP or via a PDA-Bluetooth
controller. Medisafe WIT is a removable PP (Terumo; Shibuya, Japan) that, like most other
PPs, allows the basal rate and bolus to be adjusted via remote control. The JewelPUMP
(Debiotech; Lausanne, Switzerland) also has a separate controller to deliver bolus insulin
doses and a reservoir with 450 units of insulin.

For automated insulin delivery patch pumps, according to the FDA, the pump needs
to interact with the CGM system and algorithm. An example is the Omnipod 5 system [65].
Via the controlling algorithm, the PP can communicate directly with a Dexcom CGM system
and also with a handheld device with the Omnipod 5 App implemented. With this device,
the user can start and stop the automated mode, deliver boluses, change settings, and view
glucose data and glucose profiles. SFC Fluidics designed its PP Panda to be interoperable
with an open protocol that allows a wireless, secure connection to other devices such as the
CGM systems or AID algorithms [63].

V-Go (Valeritas) and PAQ (CeQur) are specific simplified patch pump models that are
available on the market [66]. In 2013, the second-generation Omnipod, which is smaller
and more compact than its predecessor, was launched. This version of the patch pump has
advanced features such as “human factor screens” and improvements in both correction
and meal boluses for insulin dose calculation [67].

Implantable Pump

An implanted insulin pump is a pump which remains at all times into the peritoneal
cavity, which has a rich supply of blood vessels and can therefore absorb insulin very
efficiently. The use of implanted insulin pumps began enthusiastically a little over 20 years
ago. The use of the IP route for type 1 diabetes treatment was made possible by the
development of programmable implantable pumps that deliver insulin through an IP
catheter. Pilot trials conducted in the 1980s demonstrated the feasibility, efficacy, and
safety of this therapeutic approach. Insulin therapy via an implanted pump began in
1989, with its primary development in France. The current implant, the MIP 2007 model
(Medtronic-MiniMed, Northridge, CA, USA), underwent improvements to the electronic
and battery components of the previous model, has been illustrated in Figure 9 It has
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been in use since 2000 and has a 7- to 10-year battery life. Insulin delivery options are
similar to those of the most up-to-date external pumps and are programmable through a
personal pump communicator (PPC). The catheter is inserted into the peritoneal cavity,
while the pump itself is implanted in the abdominal wall. In 2007, the MIP 2007 device and
Insuplant® 400 IU/mL (Aventis Pharma, Frankfurt, Germany), a semi-synthetic insulin
used in implanted pumps, received marketing approval from the French regulatory agency.
However, currently, Insuplant 400 IU/mL has been replaced by Insuman Implantable
400 IU/mL (Aventis Pharma), an ordinary recombinant insulin. As with Insuplant, this
new insulin has been stabilized to prevent denaturation and precipitation in the implanted
pump reservoir [68].
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2.3.2. Continuous Glucose Monitoring Integration

Insulin pumps are additionally categorized according to their capacity to integrate with
continuous glucose monitoring (CGM) systems, thereby facilitating the more comprehen-
sive monitoring and regulation of blood glucose levels. This classification predominantly
comprises two groups, namely automated insulin delivery systems, which incorporate
hybrid close-loop pumps, and sensor-augmented pumps.

Sensor-Augmented Pump (SAP)

The latest generations of continuous glucose monitors (CGMs) have seen improve-
ments in accuracy and size, benefiting individuals with type 1 diabetes (T1DM) by enhanc-
ing glycemic control [70]. When CGM data guide insulin delivery via an insulin pump, it is
termed sensor-augmented pump (SAP) therapy or open-loop technology. The SAP platform
integrates two independent technologies into a single system. The functioning mechanism
of the sensor-augmented pump is illustrated in Figure 10. Utilizing a glucose sensor for
continuous, frequent glucose measurements (CGM) has shown significant advantages,
particularly in comparison to other treatment methods. This sensor-based approach not
only provides a crucial element for the potential transition from open-loop to closed-loop
systems, but also transforms continuous subcutaneous insulin infusion (CSII) into a distinct
therapy [58,71].
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There are currently two generations of SAPs on the market as follows: in the first, the
insulin-dosing software operates independently of the CGM values so that the user has
to make basal rate adjustments manually; in the second, the insulin-dosing software and
the CGM values are coupled, which allows for the automated suspension of basal insulin
delivery in response to a predicted or detected low glucose level [71].

Medtronic pioneered integrated diabetes management with the MiniMed Paradigm
REAL-Time system in 2006, blending an insulin pump with continuous glucose monitoring
(CGM) [64]. In 2009, Medtronic launched the MiniMed Veo System, with a Low Glucose
Suspend feature that automatically halts insulin delivery when sensor glucose levels hit
a preset low threshold. Insulin delivery resumes automatically after 120 min irrespective
of the glucose level, but can be restarted beforehand by the user [71]. The 2015 Medtronic
MiniMed 640G further advanced this feature by automatically pausing insulin based on
predicted and current glucose readings within 70 mg/dL that were above the lower limit
and predicted to be approaching the low limit threshold in 30 min [58,71].

Automated Insulin Delivery (AID)

The goal of modern diabetes technology is the development of an automated insulin
delivery system that attempts to replace the lack of insulin in diabetic patients in a manner
that mimics endogenous insulin secretion. The AID system does not require any input
from users. The development of AID, sometimes called the artificial pancreas, began
with clinical experiments in the 1960s. Progress in hardware and artificial intelligence
empowered further development, leading to the first hybrid closed-loop AID in 2018 [72].

AIDs have three main components as follows: sensors, decision-making algorithms
(controllers), and insulin infusion pumps. Three different control algorithms with signif-
icantly different approaches are used for AIDs, namely proportional-integral-derivative
(PID) control, model predictive control (MPC), and fuzzy-logic knowledge-based systems,
which integrate sensor data and automate insulin delivery [73]. Ideally, automated insulin
delivery algorithms take into consideration the current glucose value and should predict
glucose values over a given period [74]. Figure 11 illustrates the operational mechanism of
the AID pump.
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Hybrid Closed-Loop (HCL)

Hybrid closed loops, which require limited user input in the form of carbohydrate
counting to calculate and deliver prandial boluses, are a more feasible option [75].

In 2017, the first hybrid closed-loop system, the MiniMed 670G insulin pump with
a Guardian 3 sensor, was approved by the FDA [54]. When in auto mode, it functions
as a hybrid closed-loop system that automatically controls basal insulin delivery every
5 min based on the CGM values to maintain BG levels close to the specific target [76]. The
functioning diagram of the hybrid closed-loop pump system appears in Figure 12.
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Advanced Hybrid Closed-Loop (AHCL)

Recently, advanced hybrid closed-loop systems have been introduced, with the de-
velopment of more sophisticated algorithms that deliver and modulate basal insulin and
allow automatic corrective boluses to be delivered in case of hyperglycemia [77]. Advanced
hybrid closed-loop systems offer improved glucose control and represent the most ad-
vanced form of insulin delivery currently available for diabetic patients; however, the
extensive manual input required by the user in the form of carbohydrate counting and
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bolus delivery, alarm fatigue, fear of hypoglycemia, and diabetes-related psychological
distress has highlighted the need for further research into newer technologies [58]. The FDA
approved the advanced hybrid close-loop Medtronic MiniMed 780G system for people
with type 1 diabetes aged 7 years and older.

Fully Closed-Loop

Over time, these systems evolved and incorporated continuous insulin secretion sys-
tems with a real-time CGM, controlled by complex mathematical algorithms that determine
the amount of insulin delivered subcutaneously based on the glucose value recorded by
CGM, termed closed-loop systems [78]. A schematic for a fully closed-loop pump has been
shown in Figure 13. Nonetheless, “fully closed-loop” automated insulin delivery system
development remains an arduous goal and is hindered by the non-linear relationship be-
tween subcutaneous insulin administration and postprandial glucose due to unforeseeable
trends in glucose absorption following meals characterized by post-prandial hyperglycemic
excursions and tardive post-prandial hypoglycemia due to the delay in the insulin action
of currently available rapid-acting insulin analogues [58]. Currently, the only commercially
available fully closed-loop system is the STG-55 (Nikkiso, Tokyo, Japan) and its predecessor,
the STG-22 [79].
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3. Comparative Study of Insulin Pump
3.1. Criteria to Meet

Insulin pumps undergo evaluation based on many essential factors that are vital
for efficient diabetes treatment. This evaluation ensures that the pumps fulfill users’
requirements and effectively tackle significant challenges, all while maintaining a user-
friendly interface.

3.1.1. Energy Efficiency and Varied Requirements

Insulin pumps are becoming smaller in size due to the requirement for patients to
always carry them. Nevertheless, the quality of being small presents difficulties, and one of
them is the duration of the battery. The pump must dispense insulin from the reservoir, and
the actuation system of the pump must be energy-efficient. The minimum efficiency rate
is 35 units per hour, with an accuracy of 0.05 units [80]. Most insulin pumps available for
purchase are powered by either batteries or mechanical mechanisms. Nevertheless, other
conceptual models have been presented that utilize piezoelectric, electromagnetic, and
saline solution technologies. An implanted micropump based on a conducting polymer
called polypyrrole (PPy) has been suggested. This micropump uses a power of less than
2 mW and operates at a voltage below 1.5 V [81].



Pharmaceutics 2024, 16, 944 16 of 52

3.1.2. Innovative Technological Solutions

The continuous glucose monitoring system and insulin pumps are advancing via the
integration of cutting-edge technology and the prioritization of patient adaptability. The
Dexcom G7 is the most recent iteration of the Dexcom G6, boasting improved accuracy
compared to its previous model. The all-in-one sensor and transmitter have a warm-up
time of 30 min, which is shorter than the G6’s need of two hours. The G7 incorporates
a Quiet Mode and Delayed 1st Alert functionality, in addition to the Urgent Low Alert
feature, which is also included in the G6. The Libre 3 is a device designed for those aged
4 years and older, which continuously monitors blood sugar levels without the need for
finger sticks. It provides alerts for both high and low levels of glucose. The Eversense
3 system consists of an implanted sensor with a longer lifespan of 180 days compared to
the prior two models [82].

The Control-IQ technology utilized in the t: slim X2 insulin pump accurately forecasts
glucose levels with a 30 min lead time and automatically modifies basal rates to mitigate
the risk of hyper and hypoglycemia. The MiniMed 780G is a hybrid closed-loop device
that administers insulin at five-minute intervals. The device is equipped with Medtronic
SmartGuard technology and Guardian Sensor 4. The Omnipod is the initial tubeless pump
that has received approval from the FDA. The gadget utilizes the Dexcom G6 Continuous
Glucose Monitoring (CGM) system and may be operated via either a smartphone or a
separate controller device. The Beta Bionics iLet entirely automates the administration
of insulin dosages. The selection includes three types of insulin as follows: Novolog,
Humalog, and Fiasp Pumpcart [82].

3.1.3. Addressing Practical Challenges

Practical challenges that must be resolved to ensure the highest level of user experience
and safety are in addition to the primary criteria that insulin pumps must fulfill. Insulin
pumps must not only fulfill essential requirements, but also effectively tackle practical
obstacles to provide an ideal user experience and assure safety. Some users may experience
a little discomfort during insertion, emphasizing the importance of enhancing insertion
procedures and providing better user assistance. To avoid issues, it is necessary to carefully
prepare and regularly examine the places where medical devices are inserted in order
to prevent skin problems, including irritation and infections [83]. The management of
low blood sugar (hypoglycemia) and high blood sugar (hyperglycemia) is still a concern.
This requires the application of advanced algorithms and educating users to reduce the
dangers associated with these conditions. Diabetic ketoacidosis, a serious consequence,
highlights the significance of diligent glucose monitoring and prompt management [83].
Some pumps could have mechanical errors, for instance, tunneling or the blockage of the
infusion pipe. Insulin leaking from the tubing or reservoir might result in elevated blood
glucose levels [84]. If there is a suspicion of a clog, leak, or issue linked to infusion, it is
necessary to replace or fix the complete infusion set. Insulin pumps can provide users with
a safer and more comfortable alternative for managing diabetes through effectively tackling
these practical issues.

3.2. Specification Comparison

Insulin pump specifications include a variety of characteristics such as different infu-
sion set options, methods of delivering insulin, calculators for determining bolus doses,
capabilities for connecting to other devices, and designs for the user interface. These pa-
rameters across different insulin pump models provide valuable information to the patients
about the features of each pump and make an informed decision about which one suits
their lifestyle and treatment objectives.
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3.2.1. Manufacturer and Releasing Year

Insulin pump manufacturers provide a wide variety of pump types, each with unique
characteristics and specifications designed to fulfill the different requirements of individual
diabetics. Medtronic, Tandem Diabetes Care, Insulet Corporation, and Roche Diabetes
Care are some of the renowned manufacturers. Over time, some pump models have been
terminated as companies modify their product offers. In 2017, Animas Corporation, a
subsidiary of Johnson & Johnson Diabetes Care Companies, declared the termination of its
Animas Vibe and OneTouch Ping insulin pumps, signifying its departure from the insulin
pump industry [85]. In addition, corporations frequently discontinue outdated models
in order to promote newer, enhanced variants. For example, the Omnipod system has
undergone modifications and developments over time, with newer versions, Omnipod 5,
replacing older ones, Omnipod, to improve user experience and functionality [86]. Table 3
contains a comprehensive list of the manufacturers of both patchable and non-patchable
pumps, as well as the year of their release.

Table 3. Manufacturer and release year of the available insulin pumps.

Pump Type Pump Name Manufacturer Launching Year Reference

Patchable

Omnipod 5 Insulet Corporation 2022 [87]

Omnipod Dash Insulet Corporation 2019 [88]

EOPatch EOFlow Inc, Now Medtronic 2022 [89]

V-Go
Valeritas; acquired by

Zeeland Pharma; acquired by
Mankind Corporation

2011 [90,91]

Cellnovo (Discont.) Cellnovo 2014 [92]

Accu Chek Solo Roche Initially made by Medingo and
purchased by Roche in 2010 [93]

SFC Fluidics SFC Fluidics Article published in 2019 [94]

Niia essential Pharmasens After FDA approval; probably
in 2024 [95]

Equil Patch Pump Microtech Medical 2017 [96]

CeQur Simplicity (Previously
One touch Via)

CeQur (Previously owned by
J&J)

Commercialized by CeQur in
2021 [97]

PAQ CeQur 2012 [98]

EasyPatch Pump Medtrum 2016 [99]

Touchcare Nano Medtrum 2021 [100]

Medisafe with Terumo Corporation 2018 [101]

Imperium Patch Pump Unilife 2015 [102]

Jewel Pump Debiotech 2012 [66]

Sigi AMF Medical 2023 [103]

Dibkit Insulin pump IA Collaborative - [104]

MODD1 Modular Medical 2023 [105]

Osmotic WBI Subcuject [106]

Kaleido ViCentra 2023 [107]
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Table 3. Cont.

Pump Type Pump Name Manufacturer Launching Year Reference

Non-
Patchable

Accu-Chek Spirit Roche 2006 [108]

T: Slim X2 with Basal IQ Tandem Diabetes 2018 [109]

T: Slim X2 with Control IQ Tandem Diabetes 2018 [110]

Tandem Mobi Tandem Diabetes 2024 [111]

Medtronic Paradigm Medtronic Paradigm 523: 2006;
Paradigm 723: 2010 [112]

MiniMed 630G Medtronic 2016 [113]

MiniMed 670G Medtronic 2017 [114]

MiniMed 770G Medtronic 2020 [115]

MiniMed 780G Medtronic 2023 [116]

iLet Bionic Pancreas Beta Bionics 2023 [117]

OneTouch Ping Animas Corp. 2008 [118]

Animas Vibe Animas Corp. 2011 [119]

IR-1250 Animas Corp. 2005 [120]

Dana II Sooli 2000 [121]

Nipro Amigo Nipro 2001 [122,123]

Deltec Cozmo Smith’s Medical 2002 [124]

Mylife Ypso Pump Ypsomed AG 2016 [125]

Truecare Apex Medical - [126]

YST-IVC Insulin Pump Shanghai Umitai Medical
Technology Co., Ltd. - [127]

Insul Agva - [128]

Deka ACE Pump DEKA Research &
Development Corp 2023 [129]

Twiist Sequel Med Tech 2024 [130]

3.2.2. FDA Approval and Origin

The Food and Drug Administration (FDA) in the United States is responsible for
regulating and granting permission for medical equipment, such as insulin pumps. Manu-
facturers are required to establish the safety, efficacy, and quality of their pumps through
conducting clinical trials and thorough testing in order to receive clearance from the FDA.

Insulin pumps are produced by enterprises from various countries worldwide. Several
leading manufacturers, like Medtronic, Tandem Diabetes Care, Insulet Corporation, and
Roche Diabetes Care, have headquarters or production facilities located in several countries,
such as the United States, Ireland, Switzerland, and other nations. Table 4 provides a
comprehensive list of FDA-approved or certified patchable and non-patchable pumps,
together with information on their availability in different regions.
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Table 4. FDA approval of available insulin pumps and country of origin.

Pump Type Pump Name FDA Approval Available Countries Reference

Patchable

Omnipod 5 FDA USA, UK, and Germany [131]

Omnipod Dash FDA
Sweden, Finland, Norway, Denmark, France, Belgium,
Germany, Austria, Switzerland, Israel, USA, UK, The

Netherlands, and Italy.
[132]

EOPatch CE South Korea [133]

V-Go

FDA-2010-Humalog
FDA-2011-Novolog
FDA-2012-Type 2

CE

USA, EU, and Australia [134,135]

Cellnovo (Discontinued) CE Mark France, UK, The Netherlands, Italy, Spain, Australia, New
Zealand, Israel, Greece, and Cyprus [136,137]

Accu Chek Solo FDA US, UK, Australia, Poland, Switzerland [138,139]

Niia essential ISO 13,485 Switzerland [95]

Equil Patch Pump CE Asia Pacific, Europe, Middle East, Africa, and Latin
America [96]

CeQur Simplicity
(Previously One touch Via) FDA, CE Mark Europe, USA [140]

PAQ CE Mark Europe [141]

EasyPatch Pump CE Limited usage in Europe [142]

Touchcare Nano CE Mark The Netherlands, UK, France, Germany, Denmark,
Finland, and Sweden [143,144]

Medisafe with CE Mark Japan [145]

MODD1 - Europe [146]

Kaleido - The Netherlands France, Germany [147,148]

Non-
Patchable

Accu-Chek Spirit FDA Selected countries in the Middle East and Africa region [149,150]

T: Slim X2 with Basal IQ FDA USA, Canada [109,151]

T: Slim X2 with Control IQ FDA USA, Canada [110,152]

Tandem Mobi FDA USA [111]

Medtronic Paradigm FDA USA [112]

MiniMed 630G FDA USA [113]

MiniMed 670G FDA USA, Europe [114]

MiniMed 770G FDA USA [115]

MiniMed 780G FDA, CE USA, Europe [153,154]

iLet Bionic Pancreas FDA USA, UK [155,156]

OneTouch Ping FDA USA, Europe, Australia, New Zealand, and Canada [157]

Animas Vibe FDA USA, Europe, Australia, New Zealand, and Canada [158]

IR-1250 FDA USA [159]

Dana II FDA USA [121]

Nipro Amigo FDA USA [160]

Deltec Cozmo FDA Worldwide [161,162]

Mylife Ypso Pump CE Australia, Canada, and Europe [163,164]

Truecare CE Europe, India, China [126]

YST-IVC Insulin Pump - China [127]

Insul - India [128]

Deka ACE Pump Yes USA [129]

Twiist FDA - [130]
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Apart from the pumps mentioned above, several are still under development or have
requested FDA clearance. For example, SFC Fluidics Inc., located in the United States,
has been in the patch pump industry since 2003, and, in 2020, SFC Fluidics Inc. acquired
FDA breakthrough device classification [165]. Unilife, a firm located in the United States,
has claimed to possess the world’s first instant patch pump. However, it has not yet
obtained any certification [166]. The Sigi patch pump, which was initially developed by
AMF Medical SA in Switzerland, is currently being developed by Tandem, USA [167].
Another Swiss company, Debiotech, demonstrated JewelPump in 2010, but has not received
FDA or EU clearance [66]. The Dibkit insulin pump, developed by the IA Collaborative
and the Osmotic WBI and created by Subcuject, has not yet obtained FDA certification.

3.2.3. Pumping Mechanism

A traditional insulin pump uses a stepper motor to actuate a plunger which delivers
insulin to the user. The device is powered by a battery and controlled with a simple PCB
and microcontroller. Users are able to enter simple commands via buttons to control the
insulin their pump delivers. V-Go has been available on the market for several years, and it
was created mainly for individuals with type 2 diabetes. As shown in Figure 14, the drive
mechanism consists of a lead screw (1), a plunger attached to a lead-screw follower (2), and
a compression spring (3). If the rotation of the follower is restricted, the restoring force
from the compressed spring will drive the plunger forwards, causing the lead screw to
rotate. The insulin dosage can be controlled by limiting the rotation of the lead screw using
a clockwork escapement mechanism (5), so that the periodic release of an escapement gear
delivers a set dose of insulin.
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The escapement is connected to the lead screw through a 50:1 gearbox (4), so that
one ‘tick’ of the escapement delivers a 0.1-unit (0.001 mL) increment of U-100 insulin. A
solenoid will be used to actuate the escapement so that the dosage can be controlled via
Bluetooth [168]. This tiny insulin-filled device weighs less than 2 ounces and is inches in
size. It is designed for single-day use. It offers 20, 30, or 40 units/day as its three different
basal rate models. The patient only needs to press a delivery button and a lock release to
release two units of insulin during an insulin bolus. Prior to every delivery of two units, the
lock release must be pressed. With 18 of these 2-unit dosages permitted daily by the device,
a maximum daily dose of 76 units (40 basal + 36 boluses) is possible. V-Go is compatible
with U100 Aspart and U100 Lispro insulins; however, it appears that V-Go is not approved
for U200 Lispro, which has a 152-unit daily dose total. Notably, V-Go is only offered as a
pen form and does not support this more concentrated type of insulin. The V-Go device is
covered by several insurance policies, including several Medicare Part D plans.
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The Solo Micropump Insulin Delivery System (Medingo US, Inc., Tampa, FL, USA),
which was later acquired by Roche Diagnostics, consists of a basal bolus micropump,
wireless remote controller, and cradle with a built-in cannula. The 2 mL insulin reservoir,
which attaches to the pump, must be replaced at least every 2 days when insulin Lispro or
insulin Glulisine is used, and at least every 3 days when insulin Aspart is used. The pump
itself should be replaced every 90 days [169].

The CE-certified PAQ is available in Europe and consists of a small, reusable electronic
portion and a disposable insulin-filled component (Figure 15). This novel device can hold
up to 330 units of U100 insulin and runs for three days. There are multiple types available,
with varying basal rates spanning from 16 to 60 units every 24 h cycle. Users can click
a button meant to avoid unintentional activation to administer a bolus, which delivers
two units of insulin. The PAQ has a dose count card and alerts to remind users to change
their units even if it does not have an insulin meter. The device, which is about 3 inches
wide, works by stretching a balloon that is the device’s power source with insulin being
introduced through a port on the underside. There is a flow restrictor system in place to
control the basal rate.
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Figure 15. The PAQ by CeQur.

CeQur simplicity by CeQur is another patchable insulin pump for type 1 diabetic
patients. This device, initially developed by Calibra, has FDA clearance, but has never been
marketed (Figure 16). It is designed as an insulin pen replacement, providing boluses but
no basal insulin. The 3-day device can hold up to 200 units of U100 insulin. Pressing the
buttons on both sides of the device delivers 1 or 2 units of insulin, depending on the model.
There is no insulin delivery counter. The device will lock up if clogged. After the insertion
needle quickly retracts, it leaves a small, flexible cannula in your subcutaneous tissue (body
fat) that will deliver your insulin. To actually deliver a dose of insulin when you are eating
or correcting high blood sugar, you simply squeeze the buttons on both sides of the patch.

The Cellnovo system, available in Europe, includes a compact patch pump measuring
about 2 × 1.5 × 0.6 inches, which is adhered to the skin via a short tubing leading to a
cannula (Figure 17). This pump employs a 150-unit disposable cartridge, granting some
users a 3-day supply, although many can use it for only 2 days. The pump itself is reusable
and detachable for activities like showering or swimming, controlled via a “smartphone-
like” device.
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Figure 17. Cellnovo patch pump.

The system offers a range of basal rates from 0.05 to 5 units per hour and boluses from
0.05 to 30 units. It utilizes a unique “Wax Engine” for insulin delivery, which is slower
(1 unit per minute) compared to other pumps, necessitating a longer interval between
bolusing and eating. Immediate, extended, dual, and multi-phase bolus patterns are
available. To detect occlusions, approximately 1 unit of insulin is required, equivalent
to about 60–90 min at a basal rate of 0.8 units per hour. The “Wax Engine” functions by
heating a wax block, causing it to expand and push a plunger, ultimately delivering insulin
(Figure 18). When the wax cools, it contracts, retracting the plunger and changing the valve
configuration for insulin delivery.
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Debiotech showcased the JewelPump at the 2010 American Diabetes Association
Scientific Sessions. Although it is still promoted on its website and currently undergoing
clinical trials, JewelPump lacks FDA and EU clearance. Despite this, its unique features
are worth discussing (refer to Figure 19). Utilizing a piezoelectric crystal, the pump,
measuring 2.6 × 1.6 × 0.6 inches, can hold 500 units of insulin. The disposable section
(depicted on the left in Figure) comprises a pump with a reservoir and a detachable needle.
Piezoelectric crystals, commonly used in electronics as speakers, bend when a current
passes through them. Debiotech’s innovative pump employs this bending motion to propel
insulin. Unlike early piezoelectric pumps, which suffered from inconsistent pumping
volumes, Debiotech’s design appears accurate enough to eliminate the need for additional
fluid measuring devices.
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Figure 19. The JewelPump by Debiotech.

In Figure 20, a negative current causes the piezo to bend downward (A), displacing
fluid in the pumping chamber. When the current stops, the piezo flattens (B), drawing
insulin into the chamber. With a positive current, the piezo bends upward (C), drawing
more insulin in. When the current ceases again, the piezo returns flat (D), expelling
insulin through the outlet valve while the inlet valve closes. Reapplying a negative current
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discharge the remaining insulin. The lower image displays the full size of the crystal and
valves.
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Recently, the tubeless Accu-Chek® Solo micropump system (Roche Diabetes Care
GmbH, Vienna, Austria) was CE-marked and is currently marketed in selected European
countries (Figure 21). This is a compact patch pump measuring about 63 × 39 × 14 mm.
The pump holder features an adhesive patch and, apart from carrying the micropump, it
also fixes the soft cannula in place. This pump employs a 200-unit disposable cartridge,
granting some users a 3-day supply, although many can use it for only 2 days. The
weight of the pump is less than 29 g, and it is compatible with insulin like Humalog,
NovoLog, NovoRapid, Fiasp, Apidra, and Insuman Infusa. The bolus amount is 0.2–50 U.
The micropump comprises three key components as follows: a reusable pump base, a
disposable insulin reservoir, and a pump holder with an adhesive patch. The pump base
houses all electronic components, including the drive, buzzer, and quick bolus buttons.
The pump holder attaches the micropump to the body, securing both the pump and the
soft cannula. Users can initiate insulin bolus deliveries through the diabetes manager or
the pump’s quick bolus buttons, providing flexibility in administration methods.
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Figure 21. Accu Check by Roche Diabetes Care GmbH.

The innovative MEDISAFE WITH™ (MW) insulin patch pump, developed by Terumo
Corporation in Tokyo, Japan, comprises separate pump and controller units. The controller
and display features are integrated into a wireless remote control, equipped with an LCD
touch panel for users to adjust insulin delivery settings and input operational commands,
allowing the wireless control of the pump.
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All pump components, including the pump body, tubing, cannula, and cartridge, are
combined into a single unit which is designed to adhere directly to the user’s skin. The
MW utilizes a small stepping motor called Icuradrive™ for its operation, as demonstrated
in Figure 22. In a simplified example, the motor consists of a rotor with two magnetic
poles and four electromagnets arranged around it. Pulsed currents, initiated by the remote
control, interact with these electromagnets, generating attractive and repulsive forces that
drive the rotation of the motor. In this instance, a single pulse current corresponds to a
quarter of a revolution. The motor’s rotation is then transferred to gears, which propel a
piston inside the cartridge to initiate insulin delivery. The pulse drive method ensures that
the motor does not rotate independently, even in the event of hardware failures, such as an
electric circuit malfunction. Furthermore, a rotation sensor, directly connected to the motor
axis, continuously monitors the motor’s rotation status for added safety.
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There is limited information available regarding the remaining pumps. The SFC
Fluidics pump utilizes electrically induced changes in osmolality to drive water osmotically,
pushing on a pumping chamber to deliver insulin. An electrical current in a chamber
transforms large molecules into smaller, more osmotic molecules, creating an osmotic
solvent flow from the left chamber through a semipermeable inter-chamber membrane
to the right chamber. This action causes the chamber to expand its impermeable flexible
membrane into the pumping chamber facilitating insulin delivery. A second pumping
chamber can be added on the left for a different hormone. Becton Dickinson has previewed
a new wearable autoinjector capable of delivering various medications, including insulin.
While specific details are limited, the pump will come with its own cartridge, support
both basal and bolus dosing, and is expected to become available in 2019. EOFlow has
introduced its EOPatch, a patch pump similar in appearance to the Omnipod (Figure 23)
but slightly smaller. Other pumps, such as NIA Essentials and the P6 Easy Patch Disposable
Pump, are currently in their trial phases and are available in the market. As technology
continues to advance, the future of patch pumps holds the promise of even smaller, more
efficient, and user-friendly devices. With ongoing research and development, these pumps
are likely to become increasingly sophisticated, addressing not only the physiological
aspects of insulin delivery, but also the practical concerns of patients, ultimately improving
diabetes management and quality of life.
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3.2.4. Technological Advancement

Shao et al. have developed a novel self-powered insulin patch pump utilizing sodium
polyacrylate which is a superabsorbent polymer (SAP, as an innovative battery alterna-
tive [170]. This proposed patch pump (depicted in Figure 24) comprises a channel reservoir,
an expansion chamber, and a water reservoir. The channel reservoir, constructed from
laser-cut acrylic sheet and lined with conductive polylactic acid filament, holds 350 mL
of infusate, featuring a hydrophobic coating. The cylindrical expansion chamber contains
SAP (ID = 4 mm, OD = 8 mm, length = 35 mm), connected to the 800 mL water reservoir
via a wick and silicone tubing, incorporating an air-permeable membrane.
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Operation commences by opening the valve, enabling deionized water to hydrate
the SAP, and creating pressure that initiates infusion from the outlet. Time-lapsed images
display superabsorbent polymer expansion at 0, 10, and 20 min. The patch pump consis-
tently infuses over 250 mL of 0.1 M phosphate-buffered saline within 20 min using 50 mg
of polymer. By adjusting the valve, infusion rates of up to 15.8 mL min−1 and 6.1 mL
min−1 were achieved during rapid and controlled infusion phases. Fully opening the valve
increased the rates to 49.1 mL min−1 and 9.3 mL min−1, allowing for the basal and bolus
infusion rates of approximately 10 mL h−1 (1 U h−1) and 100 mL (10 U) in around 11 min
for effective glycemic control. The generated pressure of around 0.7 psi exceeds the adult’s
maximum peripheral venous pressure of 0.6 psi, ensuring adequate infusion.

This innovative approach not only provides an eco-friendly solution, but also prevents
over 100,000 used button cell batteries from entering medical waste streams and landfills
daily, contributing significantly to environmental sustainability.

3.2.5. Pumping Power

Insulin devices conventionally depend on batteries for their operational energy. De-
pending on the pump model, these batteries might be disposable or rechargeable. The
compact and lightweight nature of lithium-ion batteries enhances the portability and incon-
spicuousness of insulin pumps [171]. While the majority of pumps include a wall adapter
for charging, some may also provide USB charging for added convenience [172]. Low
battery alerts are frequently present on pumps to prompt users to recharge the device
prior to its complete depletion [173]. Patchable and non-patchable insulin pumps were
categorized in Table 5 according to their power source.

Table 5. Insulin pumps and their powered technology with types.

Powered Technology Pump Type Insulin Pumps

Battery powered

Patch pump
Omnipod 5, Omnipod Dash, EO Patch, Accu-Check Solo, SFC Fluidics,

Niaa essential, Equil patch pump, Touchcare nano, Medisafe, Jewel
pump, Symboize, Sigi, MODD1,

Non-patch pump
MiniMed 670G, 770G, 780G, ilet Bionic Pancreas, One touch ping,

Animas vibe, IR-250, Dana, Nipro amigo, Deltec cosmo, Mylife Ypso,
Truecare, YST-IVC, Insul, Deka Ace pump

Mechanically powered
Patch pump V-Go, CeQur Simplicity PAQ, Libertas, Osmotic WBI

Non-patch pump -
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Non-patchable insulin pumps generally depend on battery power as a result of their
substantial dimensions and the requirement for a resilient motor or pumping mechanism
to ensure efficient insulin delivery. These devices frequently operate on alkaline AA or
AAA batteries, which offer dependable power for prolonged durations. On the other hand,
rechargeable batteries are frequently incorporated into patchable pumps, which are more
compact and convenient to transport. The significance of dependable power sources in
mechanically powered pumps to guarantee precise insulin delivery is highlighted by the
implementation of spring or push mechanisms. The Animas Vibe and IR 250 models, which
rely on two packs of AA batteries, can provide continuous insulin administration for up to
3 weeks [174].

Insulin manufacturers specify that insulin temperatures should not exceed 37 ◦C.
Therefore, temperature fluctuations in rechargeable insulin pumps may have significant
implications for the stability of the insulin in the pump. By measurements, we have
shown that lithium-ion rechargeable batteries, such as those currently used to power
insulin pumps, showed substantial temperature increases during a full charging period in
both ambient conditions and warm environments when compared with battery-operated
pumps [57].

3.2.6. Back Pressure

Insulin pump back pressure is predominantly caused by obstructions in the insulin
infusion system (IIS). The progressive development of these occlusions may be caused by
insulin fibrils obstructing the cannula outflow or tubing, cannula kinking, inflammation
or hematoma-induced skin compression at the infusion site, or the displacement of the
IIS. Certain insulin delivery devices, such as the Medtronic 670G, may increase insulin
delivery rates in response to elevated glucose levels; this may cause back pressure concerns.
Certain pumps, such as the Medtronic 670G, have the capability to escalate insulin delivery
rates in response to elevated glucose levels, which may potentially worsen back pressure
complications. In order to mitigate these concerns, patients may modify the parameters of
the pump accordingly [175]. Furthermore, the existence of air pockets within the insulin
infusion set (IIS) may also contribute to the development of back pressure, which may
result in altered insulin delivery into the subcutaneous tissue or interruptions of insulin
infusion [176]. Manufacturers often do not indicate back pressure as a critical characteristic
since it might vary depending on the conditions particular to the pump and the patient.

3.2.7. Size and Weight

Insulin pumps are designed to be lightweight and small wearables that improve user
comfort and mobility. This requires designers to choose components based on size and
power efficiency. Designers prioritize integrated solutions and small packaging, such as
UCSP™ and wafer-level packaging (WLP), to satisfy needs [177]. Furthermore, progress in
materials and design methodologies plays a significant role in the creation of more compact
and lighter insulin pumps, hence improving the mobility and overall quality of life for
individuals managing diabetes. The dimensions and weight of commercially available
patchable and non-patchable insulin pumps are compared in Table 6.
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Table 6. Size and weight comparison of available insulin pumps.

Pump Type Pump Name Size Weight Ref.

Patchable

Omnipod 5 39 × 52 × 14.5 mm (Pod size) 28.35 g with an empty reservoir. [178]

Omnipod Dash 39 × 52 × 14.5 mm (Pod size) 28.35 g with an empty reservoir. [179]

EOPatch 49.5 × 39 × 14.5 mm 29.4 g (Wearable unit weight: 26
g/excluding insulin) [180]

V-Go 60.96 × 33.02 × 12.7 mm. 19.8 gm to 51.03 gm [181]

Cellnovo (Discontinued) 50.8 × 38.1 × 15.24 mm - [66]

Accu Chek Solo 61 × 38 × 13 mm 29 g [169]

SFC Fluidics Patch Pumps 55 × 58 × 10 mm 113.4 g [94,182]

Equil Patch Pump 59.5 × 40.0 × 12.1 mm 23 g [183]

CeQur Simplicity (Previously One
touch Via) 63 × 35 × 8 mm 10 g [184]

PAQ 60 × 77 × 18 mm 36 g [185]

Easypatch Pump 40.5 × 31.5 × 11.5 mm 13.8 [186]

Touchcare Nano 40.5 × 31.5 × 11.5 mm 13.8 g [187]

Medisafe with 77.9 × 40.1 × 18.9 mm 34 g [145,188]

Jewel Pump 70 × 40 × 13 mm 25 g [189]

Osmotic WBI 84 × 48 × 18.5 mm - [190]

Kaleido 50 × 35 × 12.5 mm 19 g [147]

Non-
Patchable

Accu-Chek Spirit 82.5 × 56 × 21 mm
Empty approx. 80 g; insulin pump
with battery, full plastic cartridge,

and infusion set; approx. 110 g
[150]

T: Slim X2 with Basal IQ 79.5 × 50.8 × 15.24 mm 111.98 g [191]

T: Slim X2 with Control IQ 79.5 × 50.8 × 15.24 mm 111.98 g [192]

Tandem Mobi 37.85 × 45.72 × 12.7 mm 102.058 g [193]

Medtronic Paradigm 523: 51 × 83 × 20 mm
723: 51 × 94 × 21 mm

523: 95 g
723: 102 g [194]

MiniMed 630G 97 × 53.3 × 24.3 mm 104.893 g [195]

MiniMed 670G 96.8 × 53.6 × 24.9 mm 106 g [196]

MiniMed 770G 97 × 53.3 × 24.3 mm 106 g [197]

MiniMed 780G 97 × 53.3 × 24.3 mm 106 g [198]

iLet Bionic Pancreas 91 × 50 × 15 mm 110 g [199]

OneTouch Ping 97 × 62 × 28 mm 110.5 g [200]

Animas Vibe 83 × 51 × 22 mm 105 g [201]

IR-1250 77 × 51 × 18 mm 87.88 g [202]

Dana II 91 × 45.5 × 20 mm 53 g [203]

Nipro Amigo 83.312 × 55.372 × 23.622 mm 87.88 g [204]

Deltec Cozmo 81.28 × 45.72 × 22.86 mm 77 g [204]

Mylife Ypso Pump 78 × 46 × 16 mm 83 g [164]

Truecare 88 × 58 × 20 mm 105 g [205,206]

YST-IVC Insulin Pump 92 × 52 × 20 mm 55 g [127]

Insul 113 × 67 × 24 mm 250 g [128]

Twiist 50.8 × 50.8 mm - [207]
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The size and weight of the Niia Essential insulin pump, recently submitted for FDA
approval, have not been disclosed. However, the pump is circular in shape and has a
capacity to hold 300 units of insulin in its reservoir [208]. Another FDA-cleared pump, the
Deka ACE pump, has not had its dimensions disclosed [209]. However, the MODD1 device
by Modular Medical has a reservoir size that is equivalent to the Niia Essential device. The
MODD1 device has just been submitted for FDA certification, but the particular details
have not been revealed [210]. The Dibkit insulin pump, Sigi patch pump, and Unilife’s
imperium wearable injector are currently undergoing development.

3.2.8. Basal, Bolus, and Reservoir Size

Insulin pumps administer insulin in two main ways: by continuously infusing rapid-
acting insulin throughout the day and night, which is called basal insulin delivery, and by
providing individual doses of rapid-acting insulin that the user can take for meals or to
correct high blood glucose levels, known as bolus dosing [211]. Insulin pumps commonly
employ fast-acting insulin formulations such as insulin Lispro, Aspart, or Glulisine. Lispro
and Aspart have been granted approval from the U.S. Food and Drug Administration (FDA)
for use in insulin pump reservoirs for a maximum duration of 144 h. However, Glulisine
necessitates replacement every 48 h, owing to the potential for crystallization [211]. The size
of the insulin reservoir may limit the adoption of extended insulin pumps, as users with
high total daily doses need to change reservoirs daily, while those with low total daily doses
can last for seven days. To improve the usability of a seven-day insulin pump, a larger
reservoir may be desirable, but space limitations in insulin pumps make this unlikely [36].
Therefore, reservoir sizes are determined to provide continuous insulin without affecting
the insulin quality. Manufacturers take into account many aspects, such as the stability of
insulin, and the likelihood of deterioration or crystallization, while deciding the size of the
reservoir. By providing the optimum reservoir size, insulin pumps can deliver continuously
over an extended period without compromising the quality. The two primary specifications,
basal and bolus rate, of the insulin pumps along with their reservoir size are shown in
Table 7.

Table 7. Basal, bolus, and reservoir capacity comparison of available insulin pumps.

Pump Type Pump Name Basal Bolus Rate Reservoir Capacity Ref

Patchable

Omnipod 5 0 to 30 units per hour in
0.05-unit

0.05 to 30 units. Increments
of 0.05 units

200 Unit.
Can provide up to 72 h of

continuous insulin delivery
[178]

Omnipod Dash From 0 to 30 units per hour
in 0.05-unit increments

From 0.05 to 30 units.
Increments of 0.05 units.

200-Unit reservoir built into
the pod [179]

EOPatch Flexible basal Flexible Min. 80 Unit~Max. 200 Unit [180]

V-Go 20, 30 or 40 units per 24 h 36 units per 24 h in 2 unit
V-Go 20: 56 Unit total
V-Go 30: 66 Unit total
V-Go 40: 76 Unit total

[212]

Cellnovo
(Discontinued) 0.05–5 U/h 0.05–30 units. 150 Unit [213]

Accu Chek Solo

0.1 U up to under 5.0 U:
increments of 0.01 units
5.0 U up to under 25.0 U:
increments of 0.1 units

Minimum: 0.2 units
Maximum: 50 units 80–200 Unit [169]

SFC Fluidics Patch
Pumps 0.5 U/h 2 units 300 Unit [94,182]

Niia essential - - 300 Unit [214]

Equil Patch Pump min: 0.025 U/h/max:
35 U/h min: 0.025 U/max: 35 U 200 Unit [183]
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Table 7. Cont.

Pump Type Pump Name Basal Bolus Rate Reservoir Capacity Ref

Patchable

CeQur Simplicity
(Previously One

touch Via)
Only Bolus Bolus only

2-unit dose/Click 200 Unit [215,216]

PAQ 16, 20, 24, 32, 40, 50, or 60
units per day 2 units 330 Unit [66]

EasyPatch Pump 0–0.05 U/h 22.35 U 200 Units [217]

Touchcare Nano 25 U/h Minimum bolus: 0.05 Units
(0.05 U/2 secs) 200 Unit [187]

Medisafe with 0.05 U/h (0.00 to 35.00 U/h)

0.1 U (0.1 to 25.0 U)
Normal bolus (speed: 1.5

U/min) Quick bolus (speed:
15 U/min)

200 Unit [188]

Imperium Patch
Pump - - 500 Unit [102]

Jewel Pump - - 500 Unit [189]

Sigi 0.025 U 0.2 U 160 Unit [218]

MODD1 - - 300 Unit [219]

Osmotic WBI - - 300 Unit [220]

Kaleido 0.05 U/h -/5 U/h 0.05 U–30 U 200 Unit [221]

Non-
Patchable

Accu-Chek Spirit

Min. = 0.05 U/h (U/h),
Max. = 50 U/h. There are

24 hourly basal rates,
adjustable in unit

increments of 0.01 (up to
1.00 U/h), 0.05 (up to

10.0 U/h), and 0.1 (up to
50.0 U/h).

Max 50 insulin units; Quick
bolus, which is adjustable
in unit increments of 0.1,

0.2, 0.5, 1.0, and 2.0;
Standard bolus, extended

Bolus, and Multiwave
Bolus are adjustable in fixed

increments of 0.1 units;
Duration of extended bolus

and multiwave bolus are
adjustable in intervals of 15

min (from 15 min up to
12 h).

315 Unit/Accu-chek Spirit
3.15 mL cartridge system and

Accu-chek 3.15 mL plastic
cartridge with a lure-lock

connection;

[222]

T: Slim X2 with Basal
IQ

From 0.1 to 15 units per
hour in 0.001-unit

increments

From 0.05 to 25 units in
0.01-unit increments with

an option for up to an
additional 25 units

300 Unit [191]

T: Slim X2 with
Control IQ

From 0.1 to 15 units per
hour in 0.001-unit

increments

From 0.05 to 25 units in
0.01-unit increments with

an option for up to an
additional 25 units

300 Unit [192]

Tandem Mobi 0.1–15 0.05 to 25; Bolus
increment 0.01 200 Unit [193]

Medtronic Paradigm 0.025–35 U/h

0.025 units for bolus
amounts in the range of

0.025 to 0.975 units
0.05 units for bolus

amounts larger than
0.975 units

523: 176 Unit
723: 300 Unit [194]

MiniMed 630G

From 0.025 to 35 units per
hour in 0.025-unit

increments for rates of
0.025–0.975 units/hr and

increments of 0.05 units for
rates of 1.00–9.95 U/h

Bolus Range:
From 0.025 to 25 units.

Increments of 0.025 units.
300 Unit [195]
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Table 7. Cont.

Pump Type Pump Name Basal Bolus Rate Reservoir Capacity Ref

Non-
Patchable

MiniMed 670G

• 0.025 U/h for basal
amounts in the range

0 to 0.975 U
• 0.05 U/h for basal

amounts in the range
1 to 9.95 U

• 0.1 U/h for basal
amounts of 10 to 35 U

Bolus Range:
From 0 to 25 units.

Increments of
0.025/0.05/0.10 units.

300 Unit [196]

MiniMed 770G

• 0.025 U/h for basal
amounts in the range

0 to 0.975 U
• 0.05 U/h for basal

amounts in the range
1 to 9.95 U

• 0.1 U/h for basal
amounts of 10 to 35 U

Bolus Range:
From 0 to 25 units.

Increments of
0.025/0.05/0.10 units.

300 Unit [197]

MiniMed 780G

• 0.025 U/h for basal
amounts in the range

0 to 0.975 U
• 0.05 U/h for basal

amounts in the range
1 to 9.95 U

• 0.1 U/h for basal
amounts of 10 to 35 U

Bolus Range:
From 0 to 25 units.

Increments of
0.025/0.05/0.10 units.

300 Unit [198]

iLet Bionic Pancreas

±5% Max (10 U/h) and
Intermediate

(1.0 U/h)/±15%
Min Basal (0.1 U/h)

±5% Max
(30 U)/Intermediate

(5 U)/Min (0.5 U)
180 Unit [223]

OneTouch Ping 0.025–25 U/h in 0.025 U/h
steps 0.05–35 U in 0.05 U steps 200 Unit [200]

Animas Vibe
0.025 U/h across all

available ranges (0.025 U/h
to 25.00 U/h)

Bolus increment of 0.05 U
across all available bolus
ranges (0.05 U to 35.00 U)

200 Unit [158]

IR-1250 0.025–25 U/h in 0.025 U/h
steps 0.05–35 U in 0.05 U steps 200 Unit [224]

Dana II 0.04 U/h 0 to 80 units 300 unit [203]

Nipro Amigo 0.05 U–30 U/h 0.05 Units 300 Unit [204,225]

Deltec Cozmo 0.05–35 U/h 0.05, 0.1 visual; 0.05, 0.1, 0.5,
1.0 visual or audio 300 Unit [226]

Mylife Ypso Pump 0.1 U to 30.0 U 0.1 U, 0.5 U, 1.0 U and 2.0 U 160 Unit [164]

Truecare 0.1–35 U/h 0.1–25 U 300 Unit [205]

YST-IVC Insulin
Pump 0.05 U/h N/A 300 Unit [127]

Insul Up to 0.025 U/h 500 Units [128]

Deka ACE Pump 0–30 U/h 0.05–25, 0.01-unit
increments 180 Unit [227]

Twiist - - 300 Unit [130]

3.2.9. Age and Type of Diabetics

The study indicates that the effectiveness and safety of insulin pump therapy is largely
equivalent in younger and elderly T1D patients. Basal/bolus ratios in CSII-treated patients
were not significantly different between younger and older adult diabetic individuals. Pa-
tients over 50 years of age were willing to use advanced personal insulin pump options and
tools such as dual wave/square bolus, Bolus Wizard, and continuous glucose monitoring
just as frequently as younger T1D individuals [228]. Table 8 provides approved age groups
and diabetes types for the specified insulin pumps.
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Table 8. User’s age and type of diabetics for available insulin pumps.

Pump Type Pump Name Age Limit Types of Diabetics Ref.

Patchable

Omnipod 5 2 years and older Type 1 [178]

Omnipod Dash Cleared for all ages. Type 2 [179,229]

EOPatch - Type 1 [230]

V-Go 21 years and older Type 1 and 2 [231]

Cellnovo (Discontinued)
Targeted younger

T1DM including all
other age groups

Type1 [213]

Accu Chek Solo 2 years and older Type 1 [139]

SFC Fluidics Patch Pumps - Type 1 and 2 [232]

Equil Patch Pump 18 years and older Type 1 and 2 [183,233]

CeQur Simplicity (Previously One
touch Via) 21 years and older Type 1 and 2 [215,234]

PAQ - Type 2 [185]

EasyPatch Pump - Type 1 [99]

Touchcare Nano - Type 2 [144]

Medisafe with 18 years and older Type 1 [235]

Jewel Pump - Type 1 [189]

Sigi 18 years and older Type 1 [236]

Kaleido 18 years and older Type 1 [221]

Non-Patchable

Accu-Chek Spirit - Type 1 and 2 [149]

T: Slim X2 with Basal IQ 6 years and older Type 1 [237]

T: Slim X2 with Control IQ 6 years and older Type 1 [237]

Tandem Mobi 6 years and older Type 1 [111]

Medtronic Paradigm 7 years and older Type 1 [238]

MiniMed 630G 16 years and older Type 1 [113]

MiniMed 670G 7 years and older Type 1 [114,239]

MiniMed 770G 2 years and older Type 1 [115]

MiniMed 780G 7 years and older Type 1 [198]

iLet Bionic Pancreas 6 years and older Type 1 [156]

OneTouch Ping 18 years and older Type 1 [240,241]

Animas Vibe 2 years and older Type 1 [158,240]

IR-1250 - Type 1 [224]

Dana II 7 years and older Type 1 [242]

Nipro Amigo - Type 1 and 2 [123]

Deltec Cozmo 9 years to 76 years Type 1 [243,244]

Mylife Ypso Pump 1 years and older Type 1 [245]

Deka ACE Pump 13 years and older Type 1 [129]

Twiist 6 years and older Type 1 [130]

While the Niia Essential patch pump has obtained FDA certification, it has not pro-
vided information regarding the age group or specific kind of diabetes for which it is
intended. Currently, the age category and specific kind of diabetes patients for whom the
Imperium patch pump, Dibkit insulin pump, and Osmotic WBI are being developed have
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not been determined. The age group and type of diabetes for which the non-patchable
pumps Truecare, Insul, and YST-IVC are suitable have not been precisely specified.

3.2.10. CGM, Types of Insulin, and Insertion Device

Insulin pumps frequently incorporate Continuous Glucose Monitors (CGMs) to of-
fer real-time glucose monitoring data. In terms of insulin types, the majority of insulin
pumps may be used with rapid-acting insulin, such as insulin Lispro, Aspart, or Glulisine.
Insulin pumps are equipped with numerous types of insertion devices for placing infusion
sets. These include manual insertion devices and automated insertion devices, that are
mentioned in Table 9, each providing varying levels of user comfort and convenience.

Table 9. CGM integration, types of insulin, and insertion devices for available pumps.

Pump Type Pump Name CGM Integration Types of Insulin Used Insertion Device Ref.

Patchable

Omnipod 5 Dexcom CG6
Novolog/NovoRapid,

Humalog, Fiasp, Admelog,
Lyumjev, or Apidra.

No [246]

Omnipod Dash

Contour Next One blood
glucose meter (no

integration with BGM, only
connected with PDM)

Novolog/NovoRapid,
Humalog, Fiasp, Admelog,

Lyumjev, or Apidra.
No [179]

EOPatch

CGM technology from
Medtronic, Meal Detection

Technology™ algorithm
[Link]

Humalog No [230]

V-Go No U-100 insulin

Comes with a built-in
30-gauge, 4.6-mm

stainless-steel needle with a
90-degree insertion angle.

The needle retracts into the
device after use to reduce the

risk of sharps injury.

[181,212]

Cellnovo
(Discontinued)

Touch screen, app-based
handset, built in BGM - Yes [213]

Accu Chek Solo No U-100 insulin Yes [247]

SFC Fluidics Patch
Pumps - Dual Hormone - [248]

Niia essential Yes (Integrated and
external) - Yes [214]

Equil Patch Pump Integrated U-100 insulin Yes [183]

CeQur Simplicity
(Previously One

touch Via)
No CGM U-100 insulin Yes [215]

PAQ No CGM U-100 insulin Yes [185]

EasyPatch Pump S6 EasySense U-100 insulin No [217]

Touchcare Nano Touch care nano CGM U-100 insulin No [187]

Medisafe with Yes - Needs other devices, as well
as a strap and infusion set [188]

Imperium Patch
Pump No - No [249]

Jewel Pump No - - [250]

Sigi U-100 insulin Yes [218]

Dibkit Insulin pump No - - [104]

MODD1 - - Yes [219]

Osmotic WBI No - - [220]

Kaleido Yes U-100 insulin Yes [251]
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Table 9. Cont.

Pump Type Pump Name CGM Integration Types of Insulin Used Insertion Device Ref.

Non-
Patchable

Accu-Chek Spirit No U-100 insulin Yes [252]

T: Slim X2 with Basal
IQ

Dexcom G6 or Abbott Libre
2 ICGM U-100 insulin No [253]

T: Slim X2 with
Control IQ

Dexcom G6, G7, and Libre 2
Plus U-100 insulin No [192,254]

Tandem Mobi Dexcom G6 U-100 insulin No [193]

Medtronic Paradigm Yes U-100 insulin No [194]

MiniMed 630G Guardian 3 CGM, PID U-100 insulin No [255]

MiniMed 670G Guardian 3 CGM, PID U-100 insulin No [196]

MiniMed 770G Guardian Sensor 3/Zeus
CGM (MPC Algorithm) U-100 insulin No [197]

MiniMed 780G

Guardian Sensor 3/Synergy
disposable CGM (DreaMed

Advisor Pro fuzzy logic
algorithm)

U-100 insulin No [198]

iLet Bionic Pancreas
Dexcom G6 or G7

Senseonics CGM, Gen 4
PDA, PID Algorithm

U-100 insulin No [223]

OneTouch Ping No U-100 insulin No [256]

Animas Vibe Dexcom G4 U-100 insulin No [201,256]

IR-1250 No U-100 insulin No [224]

Dana II No U-100 insulin Yes [203]

Nipro Amigo No U-100 insulin [123]

Deltec Cozmo No U-100 insulin No [124]

Mylife Ypso Pump Yes U-100 insulin Yes [164]

Truecare No U-100 insulin No [205]

YST-IVC Insulin
Pump No - No [127]

Insul No - Yes [128]

Deka ACE Pump Yes U-100 insulin Yes [227]

Twiist Yes U-100 insulin - [130]

3.2.11. Patchable, Disposable, and Connection

Insulin pumps are equipped with different characteristics to improve their mobility,
disposability, and connection in order to meet the varied requirements of patients who are
controlling diabetes. Insulin pumps are usually compact and lightweight, making them
easy to wear discreetly under clothes. This allows users to go about their everyday activities
without any disruption. Certain pumps have disposable elements, including infusion sets
and reservoirs, which streamline the management of insulin therapy by reducing the
requirement for frequent changes of tubing and refills of reservoirs. Most of insulin pumps
often utilize wireless connectivity through Bluetooth or radio frequency technologies to
facilitate smooth connection with external devices like cell phones, continuous glucose
monitors (CGMs), and insulin management apps. In Table 10, the connectivity and disposal
characteristics of the patchable and non-patchable insulin pumps are detailed.
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Table 10. Portability, disposable item, and connection type of available insulin pumps.

Pump Type Pump Name Disposable Connection Ref.

Patchable

Omnipod 5 Yes Wireless [257]

Omnipod Dash Yes Wireless [178]

EOPatch Yes Wireless [258]

V-Go Yes No connection [259]

Cellnovo (Discontinued) Cartridge is disposable Wireless [213]

Accu Chek Solo Disposable adhesive pump holder, disposable adhesive
infusion cannula, disposable 200-unit reservoir, Wireless [247]

SFC Fluidics Patch Pumps Yes Wireless [94]

Niia essential Yes Wireless [214]

Equil Patch Pump Yes Wireless [260]

CeQur Simplicity (Previously
One touch Via) Yes Wireless [261]

PAQ Yes - [185]

EasyPatch Pump Yes Wireless [99]

Touchcare Nano Yes Wireless [187]

Medisafe with Insulin reservoir Wireless [188]

Imperium Patch Pump Yes No [102]

Jewel Pump Yes Wireless [262]

Sigi Yes Wireless [218]

Dibkit Insulin pump Wireless [104]

MODD1 Yes Wireless [105]

Osmotic WBI Yes Wireless [220]

Kaleido Yes Wireless [251]

Non-Patchable

Accu-Chek Spirit Yes Wireless [150,263]

T: Slim X2 with Basal IQ Yes Wireless [253]

T: Slim X2 with Control IQ Yes Wireless [254]

Tandem Mobi Disposable cartridge Wireless [264]

Medtronic Paradigm Disposable reservoir and infusion set Wireless [194]

MiniMed 630G Disposable reservoir and infusion set Wireless [255]

MiniMed 670G Disposable reservoir and infusion set Wireless [196]

MiniMed 770G Disposable reservoir and infusion set Wireless [197]

MiniMed 780G Disposable reservoir and infusion set Wireless [198]

iLet Bionic Pancreas Yes Wireless [223]

OneTouch Ping Disposable Insulin Cartridge Wireless [200]

Animas Vibe Disposable Insulin Cartridge Wireless [201]

IR-1250 Disposable Insulin Cartridge Wireless [224]

Nipro Amigo - No [122]

Dana II Yes - [203]

Deltec Cozmo Yes - [265]

Mylife Ypso Pump Yes Wireless [266]

Truecare - No [205]

YST-IVC Insulin Pump - No [127]

Insul Yes Wireless [128]

Deka ACE Pump Yes Wireless [129]

Twiist Yes Wireless [130]
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3.2.12. Price and Wearing Time

Insulin pumps offer the best diabetes control, but their high cost makes them unafford-
able to many. In the US, the cost of an insulin pump is around USD 6500, and the pump
has a life expectancy of 3–4 years. Pump users must also purchase consumables to use
with their devices. Insulin, infusion sets, pump cartridges, and filling syringes/needles
cost between USD 2000 and USD 3000 per year. Those without health insurance or whose
insurance only covers a percentage of these costs face a significant initial outlay and a
continuing financial burden when opting for an insulin pump. In single-payer health
systems, this high cost leads to the rationing of subsidized access [168].

The regular insulin pumps are approved for two to three days or with a planned set
change at three days [64]. Some insulin pumps are designed/planned with a set change at
seven days or more [65]. Table 11 displays the wearing time and cost of widely recognized
insulin pumps available for purchase.

Table 11. Wearing time and price of available insulin pump.

Pump Type Pump Name Wearing Time Price (USD) Ref.

Patchable

Omnipod 5 3 days 600–700 [267,268]

Omnipod Dash 3 days 600–700 [269,270]

EOPatch

EOPatch can provide up to 3.5 days (84 h) of
continuous insulin delivery, which allows for

twice-a-week compliance, improving user compliance.
The device can also withstand water for 24 h

- [258]

V-Go 24 h 530 [259,271]

Cellnovo (Discontinued) 3 days - [213]

Accu Chek Solo 3 days - [247]

SFC Fluidics 3 days - [182]

Niia essential 3 days - [272]

Equil Patch Pump 2–3 days 4100 [183,273]

CeQur Simplicity (Previously
One touch Via) 3 days 450 [215,274]

PAQ 3 days - [185]

EasyPatch Pump 3 days - [142]

TouchCare Nano 3 days 595 [275]

Imperium Patch Pump Multiday - [102]

Jewel Pump 6 days 6500 [262,276]

MODD1 3 days - [219]

Kaleido 3 days - [251]

Non-Patchable

Accu-Chek Spirit 516 [277]

T: Slim X2 with Basal IQ 2–3 days 4000 [253,278]

T: Slim X2 with Control IQ 2–3 days 4000 [253,279]

Tandem Mobi 2–3 days 8000 [193,264]

MiniMed 630G - 8000 [280]

MiniMed 670G - 8000 [239]

MiniMed 770G - 7250 [281]

MiniMed 780G - 7250 [282]

Animas Vibe 7 days 7150 [158,283]

Mylife Ypso Pump - 6400 [284]

Insul - 300 [128]

Deka ACE Pump 3 days - [227]
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The costs of most commercially accessible pumps have been discovered on several
web retailers. The cost of certain fuel pumps is contingent upon an individual’s health
insurance coverage. To obtain the current pricing, it is advisable to contact the pump
manufacturer and the health insurance provider, providing them with a valid prescription
from a doctor.

4. Challenges and Future Directions

Although there are several advantages to CSII, the cost of these systems is much greater
than MDI, which is a significant barrier to the widespread use of insulin pumps. Moreover,
the complexity of micropump designs has been increasing over time, posing obstacles in
guaranteeing their reliability. Recently, researchers have been developing new micropump
designs to enhance insulin delivery. Among these advancements, magnetorheological-
based micropumps are receiving considerable interest. Some designs use specialized
one-way valves for a unidirectional pumping action, while others employ a series of
electromagnets to force the fluid through the pump channel. For example, Stork first
investigated the impact of electromagnets on fluid movement and developed an MRE
peristaltic pump for fluid transportation [285]. Behrooz and Gordaninejad used a soft
MRE membrane to study the microfluid transportation system by conveying Newtonian
fluid [286,287]. Their work highlighted the significant impact of design parameters on
performance. Ehsani and Nejat presented a simple conceptual design for a flexible-valve
micropump that utilizes the magneto–fluid–structural interaction (MFSI) in three physics
simulations [288]. Xufeng et al. proposed utilizing an MRE-based magneto-active pulse
pump in three dimensions; however, their numerical analysis did not include the integration
of valves in the microchannel [289]. Current micropump designs have specific drawbacks
and limitations. For example, the initial Behrooz and Gordaninejad proposal shows a
smaller pumping capacity. The micropump configuration that Ehsani and Nejat proposed
exhibits a relatively slow response time when subjected to a magnetic field, in addition to a
reduced actuation force. Their design faces major backflow issues due to the large space
between the valve points and the upper wall. Similarly, there are response time delays and
a reduced pumping capacity with the design proposed by Xufeng et al. Hence, there is
still a need for improved magnetorheological pump designs that could function with faster
response times, reduce backflow, and offer increased pumping capacity.

Due to the controlled properties under external magnetic fields, magnetorheological
materials have attracted extensive attention [290–293]. Via the applied magnetic field, their
rheological properties can be changed rapidly, continuously, and reversibly. In the domain
of the architecture, automotive vehicles, and vibration controls, MR materials presently
play important roles [290]. In general, there are two forms of magnetorheological materials;
they are fluid [291–295], gel forms [296,297], and elastomers [298–302], which are widely ap-
plied in vibration absorbers [298,303], power transmission devices [302], magnetic actuated
devices [304], and so on. Both anisotropic and isotropic magnetorheological elastomers
(MREs) are prepared in the presence and absence of magnetic fields, respectively. For
the improvement of MREs, different kinds as well as shapes of magnetic particles are
used [305]. The magnetically induced body force or magnetic torques are used to control
the deformation of MREs [306,307]. A gradient magnetic field can be used to achieve the
magnetically induced body forces, although it is less energy efficient. The magnetic torque
is always realized through a uniform magnetic field, which is generated by elaborated
devices. For water conveying as well as the investigation of the influence of the scheduling
of electromagnets preliminarily on the fluid transport, an MRE peristaltic pump is first
proposed by Stark [308]. An MRE is a soft membrane, used to realize a microfluid transport
system, and was applied by Behrooz and Gordaninejad [286] for conveying Newtonian
fluid, and the performance is significantly affected by the design parameters, as also demon-
strated by them. Using magneto–fluid–solid interaction (MFSI) simulation, which is based
on MREs, Ehsani and Nejat [288] propose a simple flexible-valve micropump conceptual
design. The mentioned MRE pumps have potential applications in implanting artificial
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organs in human bodies through utilizing simple mechanisms. Moreover, inside these mi-
cropumps, valves are mounted, which are only capable of conveying fluids unidirectionally
and exhibiting intricate structures. A constant relative magnetic permeability is used to
simplify the magnetic property of MREs [309–312].

One of the major issues faced by the existing technologies especially piezoelectric
pumps is the clogging effect [313]. It occurs either inside the chamber or where the valve is
located [314,315]. Clogging may happen when small particles are present in the fluid. It is
also visible when bubble generates inside the chamber and gets trapped near the valve body
due to cavitation. This decreases the overall performance of the insulin pump. Different
approaches are being investigated to overcome this issue. Studies show that multiple
trials are run to develop a self-cleaning pump, chamber modification, or an anti-clog valve
design so that clogging effect can be addressed [316–319]. Overcoming this limitation will
be another milestone for the insulin industry.

Looking forward, there are several promising areas for advancing insulin pump
technology, particularly in the realm of magnetorheological (MR) elastomer (MRE)-based
pumps. Future research endeavors could prioritize enhancing the efficiency and response
times of MRE-based pumps through innovations in material science and engineering
techniques [320]. Moreover, integrating smart technologies, such as sensors and data
analytics, alongside machine learning algorithms holds significant promise for optimizing
insulin delivery in real-time [321]. This integration not only aims to improve treatment
outcomes by adapting to individual patient needs, but also enhances the overall user
experience by providing personalized and proactive diabetes management solutions [322].

Exploring novel materials beyond current MR elastomers and refining micropump
designs are critical steps towards achieving more reliable and effective insulin delivery
systems [323]. Advances in material science could lead to improvements in biocompati-
bility, durability, and performance metrics essential for long-term device reliability and
patient safety.

Addressing these challenges and continuing to innovate will be pivotal for the future
of diabetes management and the broader field of medical devices, ensuring that next-
generation insulin pumps meet the evolving needs of healthcare providers and patients
alike [324].

5. Conclusions

In conclusion, the comprehensive exploration of diabetes management presented in
this report underscores the dynamic evolution of insulin delivery systems. The initial
discussion delves into the multifaceted landscape of diabetes, covering types, risk factors,
complications, and various treatment modalities. Emphasis is placed on the pivotal role of
insulin and the nuanced understanding of its diverse physiological functions. The explo-
ration extends to different insulin types, their characteristics, and therapeutic applications.
The focus then shifts to the evolution of insulin delivery systems, showcasing remarkable
advancements that have diversified options for individuals with diabetes. From traditional
manual injections to sophisticated methods such as jet injectors, insulin pumps have played
a significant role in enhancing patient convenience and precision in administration.

This paper specifically focuses on the recent advancements in patch pumps, highlight-
ing their flexibility and patient-centric design. Key takeaways include the challenges in
managing energy consumption, the diversity of patient needs addressed by patch pumps,
and the innovative technological solutions employed. Practical challenges, such as tubing
issues and wear-related changes, are acknowledged, with ongoing innovation aimed at
enhancing user comfort and pump performance. The overview of patchable micropumps
introduces various products with unique features and mechanisms. Ongoing technological
advancements, including self-powered insulin patch pumps and smart insulin-delivery
patches, demonstrate the continuous pursuit of precision and efficiency in glucose regulation.

This report also discusses alternative delivery methods, such as implantable and
inhalable insulin pumps, along with the potential of nanotechnology for non-injectable
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insulin formulations. The challenges outlined include addressing specific user group
needs, improving software and hardware for artificial pancreas systems, and enhancing
the user-friendly features in patch pump platforms.

Our comparative study underscores the diverse landscape of insulin pumps and the
continuous innovations aimed at providing tailored solutions for individuals with diabetes.
The future holds the promise of even smaller, more efficient, and user-friendly devices,
ultimately improving diabetes management and enhancing the quality of life for those
affected by the condition.
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