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Abstract: Cancer is a complicated and ever-evolving disease that remains a significant global cause
of disease and mortality. Its complexity, which is evident at the genetic and phenotypic levels,
contributes to its diversity and resistance to treatment. Numerous scientific investigations on human
and animal models demonstrate the potential of phytochemicals in cancer prevention. Coffee has been
shown to possess potent anti-carcinogenic properties, and studies have documented the consumption
of coffee as a beverage reduces the risk of cancer occurrence. The major secondary metabolites of
coffee, named caffeine and chlorogenic acid, have been linked to anti-inflammatory and antineoplastic
effects through various signaling. In light of this, this review article provides a comprehensive
analysis based on studies in anticancer effects of coffee, chlorogenic acid, and caffeine published
between 2010 and 2023, sourced from Scopus, Pubmed, and Google Scholar databases. We summarize
recent advances and scientific evidence on the association of phytochemicals found in coffee with a
special emphasis on their biological activities against cancer and their molecular mechanism deemed
potential to be used as a novel therapeutic target for cancer prevention and therapy.
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1. Introduction

The development of novel and effective cancer medicines is critical, given the global
expanding incidence of malignant diseases. The multifaceted nature of cancer, as evidenced
at both the molecular and clinical levels, highlights its diversity and treatment resistance [1].
Despite the obstacle in developing cancer chemopreventive agents based on natural sources,
there are still several promising pieces of evidence that support the evaluation of potential
active natural products with regards to reducing or reversing the premalignant tissues [2].
Furthermore, the notion of cancer chemoprevention surfaced from anecdotal experience
with nutritious meals, as well as epidemiological studies, with most of that focused on
cancer treatment. For instance, people who consume plant-based foods are thought to have
a lesser risk of cancer, showing increased interest in dietary phytochemical studies [3].

Coffee, being one of the most widely consumed beverages worldwide [4], has been
shown to contain potent natural chemopreventive and antineoplastic agents [5,6]. Coffee
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is derived from the berries of the Coffea sp., but only two species were considered for
production, including Coffea arabica (Arabica) and Coffea canephora (Robusta). Apart from its
renowned effect as a stimulant due to the high amount of caffeine, the bioactive compounds
in coffee have been increasingly explored for other biological activities, from antioxidant
to associated activities, including antiinflammation and anticancer [7]. These occurrences
have caught the attention of health experts, given that coffee consumption has rapidly
expanded over the last few decades due to greater prosperity and economic interest [8,9].

The chemical constituents of coffee beverages are mostly determined by the processing
procedures (pre-roasting and roasting) used to prepare green coffee beans. Furthermore,
harvesting methods and industrial processes for green coffee, as well as consumer ways
for preparing coffee beverages, all contribute to variations in the concentration of partic-
ular substances in the final product [10]. Various factors such as coffee species, growing
circumstances, harvesting methods, and processing procedures (such as high-temperature
roasting) affect the amount of bioactive chemicals in coffee, such as antioxidants and
biogenic amines [11,12]. Coffee beans comprise an abundance of xanthine-based caf-
feine, polyphenol chlorogenic acids, and tannins [10], followed by other polyphenols and
flavonoids which possess the antioxidant properties [13]. Numerous epidemiological
studies have demonstrated that coffee consumption has been associated with potential
health advantages due to its anti-inflammatory and chemopreventive activities. It has been
proposed that the antioxidative properties of several coffee ingredients are responsible
for the decrease in inflammation when coffee is administered [14]. We therefore sought
to review the recent advances and knowledge in the association of major phytochemicals
present in coffee (caffeine and chlorogenic acid), with their preventive or therapeutic effects
targeted at the cellular and molecular mechanisms that lead to cancer progression.

2. Biochemistry and Metabolism of Caffeine from Coffee Beans

Around 1.67% of dried green coffee contains caffeine (1,3,7-trimethylxanthine) re-
gardless of the different geographical origins that would affect the amount of caffeine [15].
Concerning oral consumption of caffeine in beverages, the caffeine is mostly absorbed in the
gastrointestinal tract and small intestine, with unnoticeable significant first pass effect. Fol-
lowing absorption, caffeine spreads swiftly throughout plasma-binding. It has been found
to occur in bile, saliva, semen, breast milk, and umbilical cord blood. The caffeine-plasma
concentration peaks between 15 and 120 min after oral consumption. Notably, after inges-
tion, caffeine may rapidly pass through cell membranes with detectable levels in the brain
as early as 5 min [16]. The study by Lin et al. [17] showed that daily caffeine intake affected
higher concentrations of caffeine in gray matter and cerebral blood flow, indicating the
accumulation of caffeine residual in the brain. The primary metabolism of caffeine occurs
in the liver through phase-I oxidation by cytochrome P450 1A2 resulting in active paraxan-
thine as a major metabolite, followed by theobromine and theophylline [18–22] (Figure 1).
Prior reports have already discovered the connection between daily coffee consumption
and caffeine metabolism through the polymorphism of CYP1A2 and CYP2A6 [23,24]. The
second phase conjugated-metabolism produces a mixture of di- and tri-methylated xan-
thine, uric acid, and acetylated uracil derivatives, all being excreted through urine [25].
Previous studies have established that the biological effects of caffeine are tightly associated
at three primary modulatory points: an antagonistic action on adenosine receptors, calcium
mobilization, and phosphodiesterases inhibition [26,27].

The capacity of caffeine (and metabolite paraxanthine) to inhibit adenosine receptors
due to their similar purine structure, shows its significant effect regarding cellular energy
and inflammatory response [28,29]. Furthermore, caffeine induces intracellular activity
on calcium and the cyclic adenosine monophosphate phosphodiesterase (cAMP) pathway
by inhibiting phosphodiesterase in adipose tissue and skeletal muscle [30], resulting in
cardiostimulatory and antiasthmatic actions [31]. Adenosine receptor stimulation leads to
an increase in cAMP production, which may reduce the inflammatory response in a variety
of pathophysiological circumstances. Despite caffeine not being a selective adenosine
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receptor antagonist, its modulatory effects on adenosine receptors may worsen the acute
inflammatory response which depends on its concentration [32,33]. Additionally, caffeine
stimulates calcium release by activating ryanodine receptors in skeletal muscles, raising
intracellular calcium and speeding up the excitation–contraction coupling process, thus
playing a crucial role in the neurotransmitters released by neurons [34,35]. Recent studies
of caffeine also documented several mechanisms that involve systemic metabolism and
oxidative-inflammatory signaling, indicating that caffeine also affects peripheral signaling
and may have beneficial effects on the human body regarding the aging process [16].
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3. Biochemistry and Metabolism of Chlorogenic Acid from Coffee Beans

There is a greater amount of chlorogenic acid (CGA) in green coffee bean than caffeine
(5.43%), and this would be lost during roasting [15,36]. Most of the biotransformation
of chlorogenic acids in humans occurs in the colon, followed by the liver [37]. Dietary
chlorogenic acids are absorbed in the small intestine, next they are hydrolyzed with es-
terases from gut mucosa into quinic acid and caffeic acid (Figure 2), and then they pass
into the bloodstream. A substantial amount of the unaltered chlorogenic acid enters the
colon, where it is metabolized by esterases produced by colon microflora. The colon plays
a crucial role in transforming both caffeic and ferulic acid into dihydroferulic acid and
facilitating their absorption through the intestine. Caffeic acid, e.g., 3, 4-dihydroxycinnamic
acid, is converted by the enzyme catechol-O-methyltransferase into another phenolic acid,
ferulic acid [38]. Both compounds have the ability to form an ester bond with quinic acid,



Molecules 2024, 29, 3302 4 of 14

resulting in the formation of various isomers within the chlorogenic acid family. Most of
the metabolized products from chlorogenic acid result from reaction with transferase, and
are excreted as another form of benzoic acid called hippuric acid [39,40].
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Figure 2. The major metabolism of chlorogenic acid in humans, adopted from [37,40].

4. The Role of Coffee in Chemoprevention Activities on Carcinogenesis

The targeted molecular pathways for developing and accessing future cancer-management
techniques are carcinogenesis and chemoprevention. Chemoprevention refers to the use
of pharmaceutical methods to stop or reverse the development of cancer before invasion
and/or metastasis take place. According to epidemiological research, coffee consumption
may be associated with a lower risk of cancer. The potential role of coffee in cancer
chemoprevention has been supported by a number of experimental models, including
human [41,42]. The scientific literature has hypothesized a variety of coffee-dependent
mechanisms, including the suppression of oxidative stress and damage, the activation
of metabolizing liver enzymes involved in the detoxification processes of carcinogens,
and modulation of the inflammatory response. Furthermore, specific coffee ingredients
have been shown to affect tumor cell apoptosis, proliferation, and metastasis, and to
exhibit anti-angiogenic properties [43,44]. Interestingly, a higher intake of decaffeinated
coffee significantly reduced the risk of colorectal cancer, but this effect was not observed
with caffeinated coffee. However, it is known that caffeinated coffee can lower the risk
of rectal tumor [45]. In another cohort study, both caffeinated and decaffeinated coffee
consumption improved overall survival (OS) and progression free-survival (PFS) in patients
with metastatic colorectal cancer [46]. Furthermore, frequent consumption of all coffee
types lowered the chance of liver disease and carcinoma [47,48], while daily coffee intake
reduced tumor size in invasive breast tumor with positive estrogen receptor (ER) more
effectively than in triple-negative tumor [49]. These findings suggest that while drinking
coffee with or without caffeine provides equivalent health benefits, caffeine may still play a
role in some coffee-induced effects which also likely depend on the subsite of the tumor [50].

In addition to the chemopreventive activities demonstrated by caffeine and chloro-
genic acid, studies have indicated that coffee extracts and kahweol also possess anti-
carcinogenesis properties in a number of cancer cell lines. Kahweol inhibits cancer growth
in macrophage cells of mice via activating the NF-κB pathway [44,51,52]. Moreover, co-
treatment with kahweol and cafestol has demonstrated anti-carcinogenic effects in male
F344 rats [53]. Additionally, kahweol and cafestol together have been observed to provide
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chemoprevention against malignancies caused by heterocyclic amines. Given that coffee
constituents have the potential to exhibit antioxidant, cytotoxic, anti-mutagenic, and car-
cinogenic properties, they are therefore being studied for the treatment of different types of
cancer, with particular attention to cafestol and kahweol [54,55], as these compounds may
serve as valuable supplements to cancer prevention or therapy.

5. The Antitumor Activities of Coffee and Its Chemical Constituent

A substansial report related to coffee extract and its metabolite constituents in cancer
cells is summarized in Table 1. Caffeine directly inhibits the cyclin D/CDK 4/6 com-
plex which causes G1 arrest independently of p53 [49], and several reports also revealed
that caffeine overrides the G2 phase arrest caused by DNA-damaging chemicals, pro-
pelling the cells into a deadly mitosis. Caffeine’s capacity to restart Cdc25C and Cdc2
activity contributes to averting G2 arrest [56,57]. Interestingly, due to its planar xanthine
structure, caffeine is hypothetically a formed π-π complex with nucleobases in DNA [58],
which is similar to conventional anticancer drugs [59]. In addition to triggering DNA
intercalation, a report by Moura et al. [58] found that caffeine had two possible roles: to
protect DNA against DNA-damaging agents and to modulate intercalating drugs used in
chemotherapy treatments.

Previous studies have documented that in melanoma cells, caffeine has a modula-
tory effect on the signaling cascades of AMP-activated protein kinase (AMPK), PI3K/Akt,
and the mammalian target of rapamycin (mTOR) [60]. Moreover, caffeine downregulates
the expression of several proteins, including retinoblastoma protein (Rb), extracellular
signal-regulated kinases (ERK) 1/2, GSK3β, pyruvate dehydrogenase kinase 1 (PDK1),
cyclin D1, cyclin E, c-Myc, Akt, and mTOR in various cancer cell lines [61–63]. In another
study, caffeine upregulates p300 expression in glioma cells [64]. Caffeine has been observed
to reduce the phosphorylation of ERK induced by NF-κB in osteoclasts. A similar phe-
nomenon also occurred in macrophage RAW 264.7 to suppress pro-inflammatory genes
following lipopolysaccharide (LPS)-induced inflammation [62,65]. In addition, coffee also
demonstrated antitumor activity in vivo [66,67], and several studies have been conducted
in humans to assess the correlation of coffee consumption and the risk of cancer [68].

Chlorogenic acid in coffee has demonstrated antitumor action against cancer cell lines
by reducing cell survival and suppressing reactive oxygen species (ROS) [69]. Additionally,
it has been observed to suppress the production of cell adhesion molecules in human
endothelial cells that are triggered by TNF-α16 [70]. Cafestol possesses anti-angiogenesis
action in human umbilical vein endothelial cells, as it inhibits the proliferation, migration,
and tube-formation ability of the cells [71,72]. Ferulic acid also inhibits angiogenesis via
targeting FGFR1 and activating the PI3K/Akt signaling pathways, limiting cell proliferation
via cell cycle arrest and death in addition to reducing invasion, migration, and colony
formation [73,74]. Kahweol in green coffee bean has been shown to have an anti-angiogenic
impact in zebrafish and chicken chorioallantoic membranes, in addition to exhibiting
other significant activities including cell cycle arrest, anti-angiogenesis/proliferative, and
associated phenomena [75].

Currently, numerous cytotoxic medicines are utilized clinically for the treatment of
various cancer types, despite their substantial side effects, low rate of cure, and development
of resistance. Coffee, owing to its widespread availability, low cost, and racial compatibility,
may hold promise as a significant anti-cancer treatment option [50]. In addition, combining
coffee constituents (caffeine or chlorogenic acid) with existing chemotherapeutic drugs in
cancer therapy has been evaluated. The combination of caffeine with doxorubicin prevented
the efflux effect of doxorubicin from cancer cells and enhanced the cytotoxic activity [76].
A similar result was demonstrated in the synergistic effect of caffeine in cisplatin-treated
sarcoma tumors [77]. Other antitumor drugs have also been summarized in a review by
Ialongo et al. [78]. Clinical trials for caffeine have been reported in several publications,
mainly combined with DNA-intercalating agents including cisplatin, doxorubicin, and the
tyrosine kinase inhibitor dovitinib [79–81].



Molecules 2024, 29, 3302 6 of 14

Table 1. The cytotoxic activities of chemical constituents of coffee bean against cancer cells.

Compound Concentration In Vitro Model Mechanism of Action Reference

Chlorogenic acid 10 µM Human umbilical vein
endothelial cells

Reduction in wound cell migration,
cell invasion, hypoxia-induced tube
formation

[82]

25 and 50 µM Glioma, lung cancer, colon
cancer and solid tumor
cell lines from hepatoma

Induction of cell differentiation,
inhibition of cell proliferation,
decreased expression of genes
associated with poor differentiation,
increased expression of key genes
associated with differentiation

[83]

5 mM Leukemia (K562 cells) Induction of apoptotic
topoisomerase−DNA complexes and
generation of hydrogen peroxide

[84]

1–1000 µM Liver cancer (HepG2 cells) Inhibition of invasion and migration,
inhibition of cell proliferation and
colony formation, induction of cell
death, decreased MMP2/TIMP-2,
DNA methyltransferase1, ERK1/2
phosphorylation and MMP-9
expression, increased p53 and p21

[85,86]

1–5000 µM Lung cancer (A549 cells) Inhibition of
phorbol-12-myristate-13-acetate
Stimulated invasion of A549 cells,
induction of apoptosis, inhibition of
cell proliferation, decreased stem cell
marker related genes (CD44, NANOG,
POU5F1, and SOX2), MAPK and
PI3K/Akt signaling, inactivation of
NF-κB, activator protein 1 and STAT3,
hypoxia-induced HIF-1α protein level,
transcriptional activity of HIF-1α,
vascular endothelial growth factor and
Bcl-2, increased Bax, Bax/Bcl-2, p38,
JUN, and caspase 3

[69,75,82,84]

20–200 µM Irradiated plasmids Decreased DNA single-strand breaks [87]

Caffeine 0.5, 1, 2 mM Prostate cancer (PC-3 and
DU145 cells)

Inhibition of cell adhesion and motility
and decreased cell proliferation

[88]

0.1–5 mM Breast cancer
(MDA-MB-231, Tam-R,
MCF-7 cells)

MDA-MB-231 cells: inhibition of cell
proliferation by 40%
MCF-7 cells: inhibition of cell
proliferation by 80%, induction of cell
death, decreased estrogen receptor,
poly (ADP-ribose) polymerase
cleavage, decreased cyclin D1, Akt and
Bcl-xL, increased caspase 7, Tam-R
cells: inhibition of cell proliferation

[49]

50–400 µM Irradiated plasmids Decreased DNA single-strand breaks [87]

10–1000 mM Liver inflammation
(human hepatic stellate
cells)

Decreased procollagen type Ic,
alpha-smooth muscle actin expression
and progression of intrahepatic
induction of apoptosis, increased
F-actin and cyclic adenosine
monophosphate, fibrosis

[89]

0.1–4 mM Leukemia (NB4 cells) Bax, increase p21 and caspase 3,
induction of apoptosis, inhibition of
cell proliferation

[90]

2 mM Lung cancer (HTB182 and
CRL5985 cells)

Increase PUMA (CRL5985), inhibition
of cell proliferation

[91]
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Table 1. Cont.

Compound Concentration In Vitro Model Mechanism of Action Reference

Cafestol 1–40 µM Renal cancer (Caki cells) Induction of apoptosis, inhibition of
proliferation, increased Bim, Bax and
FADD-like IL-1β-converting
enzyme)-inhibitory protein, increased
caspases 2 and 3, cleavage of poly
(ADP-ribose) polymerase, decreased
Akt phosphorylation, Mcl-1, Bcl-xL,
release of Cytochrome c and Bcl-2

[92]

40, 80, 150 µM Leukemia (HL-60 and
KG1 cells)

Decreased ROS generation and
clonogenic potential, increased caspase
3, CD11b and CD15 differentiation
markers, induction of apoptosis

[43]

Kahweol 1–25 µM Human umbilical vein
endothelial cells

Decreased MMP-2 expression,
urokinase, cyclooxygenase-2 and
monocyte chemoattractant protein-1,
inhibition of tubule formation,
inhibition of cell proliferation,
inhibition of migration, inhibition of
invasion

[93]

40 µM Liver inflammation
(primary Kupffer cells and
primary hepatocytes)

Decreased
lipopolysaccharide-stimulated
phospho-nuclear factor kappa B and
signal transducer and activator of
transcription 3 expression and
lipopolysaccharide-induced
production of interleukin 1 alpha,
interleukin 1 beta, interleukin 6, and
tumor necrosis factor alpha

[94]

0.1–10 µM Leukemia (U937 cells) Decreased Bcl-2, Bcl-XL, Mcl-1, XIAP
and Akt phosphorylation, increased
JNK pathway, JNK, ROS generation
and caspases 2, 3, 8, and 9, cytochrome
c release, inhibition of cell proliferation,
induction of apoptosis

[95]

1–200 µM Colorectal cancer
(HCT116, SW480, LoVo,
HT-29 cells)

Decreased heat shock protein 70, Bcl2
and phosphorylated Akt, increased
ATF3 transcription and caspase 3, poly
(ADP-ribose) polymerase cleavage,
induction of apoptosis

[51,96]

10–90 µM Lung cancer (NCI-H358,
NCI-H1299 cells)

Inhibition of cell proliferation,
induction of apoptosis, increased p21
and Bax, decreased cyclin D1, basic
transcription factor 3, ERK signaling
pathway and Bcl-2, Bcl-xL

[97]

6. The Role of Coffee in Inducing Apoptosis toward Cancer Cells

Coffee induces apoptosis by altering a number of the apoptotic response’s constituent
parts (Figure 3). Different coffee compounds may target different apoptotic signaling
mechanisms, such as increased cleavage of poly ADP ribose polymerase, downregulation
of the signal transducer and activator of transcription 3 (STAT3) signaling pathway, and
upregulation of the cyclic AMP-dependent transcription factor ATF3 [96,98]. Caffeic acid
has been shown to produce apoptotic cell death and dramatically decrease Akt signaling in
PC-3 human prostate cancer cells, TW2.6, and HCT 15 colon cancer cell lines. Additionally,
it has been proposed to decrease congenic survival and apoptotic cell death in SCC25,
CAL27, and FaDu cell lines [99]. Numerous studies suggest that chemical constituents in
coffee may possess apoptotic potential. The antioxidant function of these substances is also
influenced by their environment. Some mechanisms of action include the inhibition of ROS
generation and pro-survival gene expression, conformational changes in pro-apoptotic
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proteins, loss of the mitochondrial membrane that activates caspases, and transcription
factor Sp1 [100].
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Despite its activity with respect to triggering apoptosis, it was later found that caffeine
intake should be avoided in colorectal tumors treated with cell cycle modifying agents such
as paclitaxel [101]. This was confirmed by Xu et al. who described that caffeine interferes
with the anticancer effect of the antimitotic drug paclitaxel by preventing α-tubulin acetyla-
tion, which could enhance the progression of lung and cervical tumors [102]. It is important
to note that the effect of caffeine in preventing the cytotoxicity of chemotherapy can be
associated with cancer type, as caffeine enhanced the apoptosis in paclitaxel-induced breast
cancer cells [103]. Nevertheless, these reports suggest that patients receiving antimitotic
drugs as part of their cancer therapy regimen should avoid consuming foods or beverages
containing caffeine.

7. The Role of Coffee in Autophagy Process in Cancer Cells

A double-membrane autophagosome is formed as part of the intracellular breakdown
process known as autophagy. This mechanism facilitates the removal of inclusion bodies
and misfolded cytotoxic proteins more effectively than apoptosis [104,105]. Apart from
programmed cell death, autophagy-induced cancer may also involve phosphatidylinositol
3-kinase (PI3K) pathways and the endoplasmic reticulum (ER) stress response. The dysregu-
lation in this pathway has been linked to the development of cancer and resistance to cancer
treatment, and it may have an impact on the level of autophagy in tumor cells [106,107]. In
the same way, mTOR has also been identified as an autophagy mediator that contributes to
cell growth, survival, and proliferation [108,109]. Furthermore, the abnormal relationship
between autophagy, inflammation, and oxidative stress may aid in the development of
innovative pharmacotherapeutic approaches for the management and treatment of cancer.
Recent developments have proposed that induced autophagy is a novel target for cancer
treatment [110,111].

It has been acknowledged that caffeine is able to suppress mTORC1 in both mice and
in vitro models, to promote autophagosome generation in HepG2 cells, leading to the reduc-
tion of intracellular fats, to enhance β-oxidation, and to control hepatosteatosis [112,113]. It
is noteworthy that caffeine in coffee has also exhibited cytoprotective effects in transformed
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skin cells, preventing cellular senescence and suppressing ROS generation by inducing
SIRT3/AMPK-mediated autophagy [114]. Despite its initial approach in normal tissues,
many studies have proven that inducing autophagy in cancer cells can be beneficial for
chemotherapy agents with respect to eliminating cancer cells. A study by Erzurumlu
et al. [115] showed that the addition of caffeine in docetaxel-treated breast cancer cells
activated the unfolded protein response (UPR)-associated pathway and accelerated au-
tophagy signaling due to increased Beclin-1 protein; this led to apoptosis in cancer cells as
detected by the cleaved effector caspase-3. Also, methylxanthines derivatives (theophylline
and caffeine) activated autophagy signaling through PTEN activation, followed by mTOR
suppression in gastric tumor cells [116]. These findings open up the new challenge in caf-
feine development of inducing autophagy to initiate apoptosis in tumor cells, necessitating
further experimental and clinical studies [117].

8. Conclusions and Recommendations

Coffee has been shown to exhibit anticancer activities through several mechanisms
and shows its potential to prevent carcinogenesis. Among these mechanisms, coffee and
its major content caffeine have promising activities regarding autophagy, which serves
as a potential therapeutic target due to its strong association with other mechanisms
such as cellular senescence and ROS production. Further investigations are warranted to
answer several interesting questions regarding the specific mechanisms by which chemical
compounds in coffee induce autophagy. Additionally, the consumption of coffee as a daily
beverage also shows reduced risk of cancer occurrence, thus supporting further exploration
of the supplementation of coffee as a chemopreventive agent for cancer. One thing to note
is that the physiological characteristics of whole coffee will probably vary since coffee is
a complex, non-standardized beverage, despite its remarkable results from in vitro and
in vivo investigations utilizing certain coffee secondary metabolite constituents, which have
shown a variety of biological activities. As a result, the bioactivity of coffee in mixtures can
be possibly affected by matrix, synergistic, and/or antagonist effects in preventing tumor
progression. Also, only a small proportion of the substances consumed can pass through the
circulatory system and enter the tissues, and very little of the absorbed content may retain
the original structure of the phytochemical from coffee. For these reasons, it is noteworthy
that the prevention of many diseases prompted by coffee use is usually the result of the
combined action of numerous components, and in some cases, the synergistic effect of
multiple types of compounds is substantially superior to the activity of single compounds.
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115. Erzurumlu, Y.; Çataklı, D.; Doğan, H.K.; Aydoğdu, E. Caffeine May Improve the Chemotherapeutic Effect of Docetaxel by
Inducing UPR and Autophagy in Breast Cancer Cells. FABAD J. Pharm. Sci. 2023, 48, 91–104. [CrossRef]

116. Liu, H.; Song, J.; Zhou, Y.; Cao, L.; Gong, Y.; Wei, Y.; Yang, H.; Tang, L. Methylxanthine derivatives promote autophagy in gastric
cancer cells targeting PTEN. Anticancer Drugs 2019, 30, 347–355. [CrossRef]

117. Benvenuto, M.; Albonici, L.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Cifaldi, L.; Miele, M.T.; De Maio, F.; Tresoldi, I.; Manzari, V.; et al.
Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2020, 21, 6635. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/1535-7163.MCT-11-0047
https://www.ncbi.nlm.nih.gov/pubmed/21878654
https://doi.org/10.1172/JCI73939
https://www.ncbi.nlm.nih.gov/pubmed/25654547
https://doi.org/10.1042/ebc20170027
https://doi.org/10.1016/j.biopha.2019.109249
https://www.ncbi.nlm.nih.gov/pubmed/31351428
https://doi.org/10.3390/antiox12020428
https://www.ncbi.nlm.nih.gov/pubmed/36829987
https://doi.org/10.1002/hep.26667
https://doi.org/10.4161/cc.28929
https://www.ncbi.nlm.nih.gov/pubmed/24769862
https://doi.org/10.7150/thno.28778
https://www.ncbi.nlm.nih.gov/pubmed/30555576
https://doi.org/10.55262/fabadeczacilik.1164699
https://doi.org/10.1097/CAD.0000000000000724
https://doi.org/10.3390/ijms21186635

	Introduction 
	Biochemistry and Metabolism of Caffeine from Coffee Beans 
	Biochemistry and Metabolism of Chlorogenic Acid from Coffee Beans 
	The Role of Coffee in Chemoprevention Activities on Carcinogenesis 
	The Antitumor Activities of Coffee and Its Chemical Constituent 
	The Role of Coffee in Inducing Apoptosis toward Cancer Cells 
	The Role of Coffee in Autophagy Process in Cancer Cells 
	Conclusions and Recommendations 
	References

