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Abstract: Signal transduction and homeostasis are regulated by complex protein interactions in the
intracellular environment. Therefore, the transportation of impermeable macromolecules (nucleic
acids, proteins, and drugs) that control protein interactions is essential for modulating cell functions
and therapeutic applications. However, macromolecule transportation across the cell membrane is
not easy because the cell membrane separates the intra/extracellular environments, and the types
of molecular transportation are regulated by membrane proteins. Cell‑penetrating peptides (CPPs)
are expected to be carriers for molecular transport. CPPs can transport macromolecules into cells
through endocytosis and direct translocation. The transport mechanism remains largely unclear
owing to several possibilities. In this review, we describe the methods for investigating CPP con‑
formation, translocation, and cargo transportation using artificial membranes. We also investigated
biomolecular transport across living cell membranes via CPPs. Subsequently, we show not only
the biochemical applications but also the synthetic biological applications of CPPs. Finally, recent
progress in biomolecule and nanoparticle transportation via CPPs into specific tissues is described
from the viewpoint of drug delivery. This review provides the opportunity to discuss the mechanism
of biomolecule transportation through these two platforms.

Keywords: membrane‑active peptide; cell‑penetrating peptide; lipid vesicle; artificial cell model;
biomolecule transport; protein transport; therapy

1. Introduction
The cell membrane separates the intracellular and extracellular environments. It com‑

prises a phospholipid bilayer and integrates membrane proteins, such as ion channels [1,2],
receptors [3,4], and transporters [5,6]. These proteins in the cell membrane regulate the
transport of molecules entering and exiting the living cell to allow the transport of essen‑
tial materials into the cell and discard waste products from the cell. This is called selective
semi‑permeability [7]. The intracellular environment contains various types of proteins,
such as kinases [8,9], phosphatases [10,11], ligases [12,13], and transferases [14,15]. Smooth
signal transduction [16] and homeostasis [17] are typically maintained because of complex
interactions between proteins. Therefore, controlling these protein interactions outside of
living cells is essential for investigating living cell systems and therapies. Several methods
have been proposed for the translocation of biomolecules [18,19]. For example, to achieve
low toxicity and efficient delivery, nanoparticles formed from cube‑octameric silsecquioxanes
(COSSs) and hydrogels formed from hyaluronic acid (HA) have been proposed for peptide
or protein delivery [20–22]. Electroporation [23,24] and lipofection [25,26] are methods used
for translocating nucleic acids into living cells. However, the problem with electroporation is
that it induces cell lysis and death. Liposome‑mediated translocations (such as lipofection) are
entrapped in endosomes. To overcome these problems, the cell‑penetrating peptide (CPP)‑
mediated translocation of biomolecules has been investigated (Figure 1). TAT was initially
discovered as a CPP derived from the HIV‑1 transactivator of the HIV‑1 protein Tat [27,28].
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When the fragment of Tat protein was conjugated to β‑galactosidase and HRP, these enzymes
were translocated into mouse model cells and HeLa cells. Cell‑penetrating peptide‑mediated
biomolecule translocation has relatively low cytotoxicity compared with other translocation
methods. Therefore, this peptide‑mediated translocation system may have therapeutic ap‑
plications [29–31].

Molecules 2024, 29, x FOR PEER REVIEW 2 of 22 
 

 

biomolecules has been investigated (Figure 1). TAT was initially discovered as a CPP 
derived from the HIV-1 transactivator of the HIV-1 protein Tat [27,28]. When the fragment 
of Tat protein was conjugated to β-galactosidase and HRP, these enzymes were 
translocated into mouse model cells and HeLa cells. Cell-penetrating peptide-mediated 
biomolecule translocation has relatively low cytotoxicity compared with other 
translocation methods. Therefore, this peptide-mediated translocation system may have 
therapeutic applications [29–31]. 

 
Figure 1. Schematic representation of CPP-mediated cargo molecule transportation into the living 
cell. Pink, orange and green heads show some lipids in the inner leaflet; PS, PI and PE, respectively. 

Although translocation via CPPs has been widely reported, the translocation mechanism 
of large cargo molecules is not entirely understood; how CPPs enable the transport of 
biomolecules beyond their size is still unclear. The mechanism of CPP translocation and cargo 
transportation has been investigated using an artificial membrane consisting of only 
phospholipids, which easily changes the membrane composition [32,33] because cell 
membranes containing various types of lipids and membrane proteins are complex. 

This review focuses on the methodologies for investigating CPP conformation, CPP 
translocation, and cargo transportation using two platforms: artificial membranes (lipid 
vesicles and planar lipid membranes) and living cells. In particular, we introduce 
biomolecular transport across artificial and living cell membranes. Therefore, this review 
provides the opportunity to discuss the mechanisms of biomolecular transportation. In 
addition, we introduce not only biochemical applications but also synthetic biological 
applications of CPPs. The combination of synthetic biology and cell-penetrating peptides 
will contribute to the construction of artificial cells and the elucidation of cargo 
transportation mechanisms. Finally, from the viewpoint of drug delivery, recent progress 
in biomolecule and nanoparticle transportation via CPPs that have tissue specificity is 
described. 

2. Membrane-Active Peptides 
Recently, short peptides of 5–50 amino acids were shown to have unique activity in 

terms of cell membrane permeability and attack on multidrug-resistant bacteria. In this 

Figure 1. Schematic representation of CPP‑mediated cargo molecule transportation into the living
cell. Pink, orange and green heads show some lipids in the inner leaflet; PS, PI and PE, respectively.

Although translocation via CPPs has been widely reported, the translocation mecha‑
nism of large cargo molecules is not entirely understood; how CPPs enable the transport
of biomolecules beyond their size is still unclear. The mechanism of CPP translocation
and cargo transportation has been investigated using an artificial membrane consisting of
only phospholipids, which easily changes the membrane composition [32,33] because cell
membranes containing various types of lipids and membrane proteins are complex.

This review focuses on the methodologies for investigating CPP conformation, CPP
translocation, and cargo transportation using two platforms: artificial membranes (lipid
vesicles and planar lipid membranes) and living cells. In particular, we introduce biomolec‑
ular transport across artificial and living cell membranes. Therefore, this review provides
the opportunity to discuss the mechanisms of biomolecular transportation. In addition, we
introduce not only biochemical applications but also synthetic biological applications of
CPPs. The combination of synthetic biology and cell‑penetrating peptides will contribute
to the construction of artificial cells and the elucidation of cargo transportation mecha‑
nisms. Finally, from the viewpoint of drug delivery, recent progress in biomolecule and
nanoparticle transportation via CPPs that have tissue specificity is described.

2. Membrane‑Active Peptides
Recently, short peptides of 5–50 amino acids were shown to have unique activity in

terms of cell membrane permeability and attack on multidrug‑resistant bacteria. In this
section, we introduce the classification of membrane‑active peptides, their mechanisms of
translocation, and their antimicrobial properties.
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2.1. Classification of Membrane‑Active Peptides
Membrane‑active peptides (MAPs) interact with membranes. The MAP classifica‑

tions based on primary structures are listed in Table 1. Based on their apparent activities,
there were two major classes. Antimicrobial peptides (AMPs) are a class of MAPs that kill
bacteria. AMPs have multiple functions, including membrane disruption [34], inhibition
of DNA synthesis [35], and cell wall synthesis in Gram‑positive bacteria [36]. Therefore, it
is difficult for bacteria to develop resistance to AMPs. Thus, AMPs are considered a ma‑
terial for solving multidrug resistance issues [37]. AMPs have an amphiphilic structure
consisting of cationic amino acid residues (arginine and lysine) and hydrophobic regions;
therefore, they have a positive net charge [38–43]. These cationic residues allow electro‑
static interactions between the cell membrane and AMPs, and AMPs enter the hydrophobic
region of the phospholipid bilayer [44]. A recent study has shown that the combination of
two kinds of AMPs can significantly enhance their antimicrobial properties [45,46]. More‑
over, Drab and Sugihara reported that mixtures of AMP derived from humans, such as
LL‑37 [47,48] and HNP1, have more effective antimicrobial activity against bacteria while
minimizing host cell damage (double cooperative effects) [49]. Mixtures of two different
AMPs not only enhance but also inhibit their function. Mixtures of two different AMPs
may also create completely different functions.
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Table 1. Classification of typical membrane‑active peptides.

Primary Name Origin Secondary Activity (Concentration) Target Membrane or
Cell pH, Temprature Ref.

cationic

melitin Apis mellifera amphipathic α‑helix pore formation (≥8 nM) DOPC or DOPG
liposome pH 7 [38]

AMP

magainin Xenopus laevis α‑helix toroidal pore (≥10 nM) monolayer of E. coli
lipid extract and LUV pH 7.4 [39]

protegrin porcine neutrophils anti parallel β‑sheet octomer pore (25 mg/mL) E. coli ML‑35p cells pH 7.4 [40]

nisin Lactococcus lactis Loop pore formation/inhibition of cell wall synthesis (−) bacterial membrane pH 2.8, 6.8 (pressure
treatment) [41]

ndolicidin Bovine neutrophils α‑helix membrane dissolution/inhibition of DNA synthesis
(10 µg/mL) E. coli ML‑35, S. sureus pH 7.4 [42]

Lactferricin human lactoferrin βturn/loop direct transrocation/pore formation (≥7.5 mg/L) E. coli, S. aureus 8532
and 8530 and so on. pH 5–8 [43]

LL‑37 Human basic/amphiphathic
α‑helix pore formation/carpet model (7.5 µM) PC/chol or PC/PS SUV

and E. coli D21 pH 7.4, pH 8.1 [47,48]

CPP

cationic

R8 Chemic random coil direct transrocation/endocytosis (10 µM) HeLa cell pH 7 (α‑MEM), 37 ◦C
or 4 ◦C [50,51]

TAT HIV‑1‑TAT protein random coil/PpII helix direct transrocation (500 nM)/pore formation (100
µM) HeLa cell pH 7 (Opt‑MEM), 37 ◦C

or 4 ◦C [52,53]

penetratin Antennapedia
homeodomain

amphipathic α‑helix,
β‑sheet (under PG

lipid)
direct translocation/endocytosis (25 µM) E15 striatal cell pH 7.4 (DMEM/F12),

37 ◦C or 4 ◦C [54]

amphipathic

Pep‑1
Chimera

(Trp‑rich motif‑SV40
NLS)

α‑helix direct translocation/water pore (0.1 µM) HS68 fibroblasts pH 7 (DMEM), 37 ◦C [55]

MAP Chimeric α‑helix Multiroute (1.8–5 µM) Calf aortic endothelial
cells (AEC)

pH 7 (DMEM), 37 ◦C or
0 ◦C [56]

transportan Galanin‑mastoparan α‑helix endocytosis/direct translocation (5–500 nM) Bowes’ melanoma cells pH 7 (MEM), 37 ◦C or 0
◦C [57]

pVEC murine VE‑cadherin β‑sheet direct translocation/transporter mediated (10 µM) AEC, HBCEC, bEND,
Bowes melanoma cells

pH 7(DMEM or MEM),
37 ◦C or 4 ◦C [58]

anionic GALA Chemic (EALA repeat) α‑helix pore formation/ membrane distavilization (2 µM) PC LUV, POPC SUV pH 4.5–8 [59]

hydrophobic Pep‑7 Random Library α‑helix/homodimer endocytosis (1 µM) B‑lymphocyte WI–L2
cells

pH 7 (RPMI 1640
medium), 37 ◦C [60]
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Cell‑penetrating peptides (CPPs) are another class of MAPs. CPPs have the ability to
transport cargo into the living cell [61]. CPPs consist of 5‑30 amino acid residues, and they
have low cytotoxicity. CPPs can transport nucleotides [30], full‑length proteins [62,63],
small biomolecules [64], and phages [65] into living cells through covalent or non‑covalent
interactions. The four primary structures are cationic, amphipathic, anionic [59], and hy‑
drophobic (Table 1). CPPs are classified using primary and secondary structures into five
main classes: cationic, primary amphipathic, amphipathic α‑helix, amphipathic β‑sheet,
and hydrophobic [66]. Cationic CPPs mainly consist of arginine and lysine: TAT (RKKR‑
RQRRR), R8 (RRRRRRRR), and penetratin (RQIKIWFQNRRMKWKK) [50–54]. Primary
amphipathic CPPs contain both hydrophobic and cationic domains. Some primary amphi‑
pathic CPPs are chimeric peptides, such as Pep‑1 (KETWWETWWTEWSQPKKRKV) [55]
and MPG (GLAFLGFLGAAGSTMGAWSQPKKKRKV) [67]. A nuclear localization sig‑
nal sequence (NLS) exists in the cationic domain of these CPPs. CPPs consisting of am‑
phipathic α‑helix and amphipathic β‑sheet are uniformly placed in the sequence [56–58].
These CPPs form secondary structures, such as VT5 (DPKGDPKGVTVTVTVTVTGKGDP‑
KPD) [68]; these CPPs contain a highly hydrophobic region on one face and a cationic,
anionic, or polar region on the other face [69]. Recently, peptide libraries have emerged
as powerful tools for exploring new CPPs [70–72]. Hydrophobic CPPs discovered from
the random peptide library, such as Pep‑7, may be more efficient for interaction with the
hydrophobic region of the membrane than charged CPPs derived from naturally occurring
proteins and chimeric peptides [60,73].

2.2. Internalization Mechanism of Cell‑Penetrating Peptides
The internalization mechanisms of CPPs into living cells are categorized into direct

translocation and endocytosis. Direct translocation is an energy‑independent pathway due
to the plasma membrane potential and electrostatic interactions [74]. Four models of di‑
rect translocation are proposed, such as the inverted micelle model, pore formation model,
carpet‑like model, and membrane‑thinning model (Figure 2a(i)–(iv)) [29,75–77]. In the in‑
verted micelle model, CPPs first interact with the negatively charged molecules of the cell
membrane (phospholipids, membrane proteins, or sugars). Membrane formation with an
inverted structure occurs through the interaction between the hydrophobic amino acids
of CPPs and the hydrophobic region of phospholipids. Therefore, direct translocation in
this model can only be caused by CPPs containing cationic and hydrophobic amino acids.
There are two models of pore formation formed by the CPPs: toroidal pores and barrel‑
stave pores. In this model, an amphiphilic α‑helical peptide forms bundles on the cell
membrane, and then the hydrophobic face of the peptide interacts with the phospholipid
membrane. Finally, nanosized pores are formed on the cell membrane. The carpet‑like
model consists of three steps. First, CPPs interact with the anionic lipids of the cell mem‑
brane, and then the basic residues of CPPs are oriented on the membrane surface. Next,
the hydrophobic residues of the rotating CPPs interact with the hydrophobic regions of
the phospholipids. This interaction causes a minor disruption of the cell membrane. Mem‑
brane destabilization, which permits the internalization of CPPs, occurs in the inverted
micelle and carpet‑like models. In the membrane‑thinning model, the accumulation of
CPPs on the cell membrane disrupts packing in the phospholipid bilayer. The carpet‑like
model and membrane‑thinning model translocation is caused when the CPP concentration
reaches above a threshold concentration for courting the membrane surface, e.g., maga‑
ini2/lipid = 65:1 molar ratio [78].
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mediated endocytosis; (iv) caveolae and/or lipid raft‑mediated endocytosis.

There are four formats of endocytosis pathways, such as phagocytosis, micropinocy‑
tosis, clathrin‑mediated endocytosis, and caveolae and/or lipid raft‑mediated endocytosis
(Figure 2b(i)–(iv)) [79]. Futaki et al. proposed that micropinocytosis is one of the major
pathways involved in the internalization of arginine‑rich peptides [51]. Micropinocytosis
is activated by a signaling pathway that triggers actin‑mediated membrane ruffling and
blebbing [80]. Following the plasma membrane ruffling and blebbing, micropinosomes
take particles (>0.2 µm) into the living cell. Phagocytosis is a regulatory process involved
in the uptake of large particles (>0.5 µm). Clathrin‑mediated endocytosis and caveolae‑
and/or lipid raft‑mediated endocytosis are types of receptor‑mediated endocytosis. During
caveolae‑mediated endocytosis, caveolae‑coated vesicles (50–60 nm) contain small parti‑
cles (~60 nm). Clathrin‑mediated endocytosis takes particles (~120 nm) into the cells. These
pathways depend on various CPP types, which exhibit different chemical and physical
properties.

3. Artificial Membranes
The living cell membrane is composed of phospholipids, cholesterol, and membrane

proteins (receptors, channels, transporters, etc.). A lipid vesicle or liposome, discovered by
Bangham in the 1960s, is formed from a phospholipid bilayer [81]. Simple artificial mem‑
branes, such as lipid vesicles or liposomes, can easily be modified to change the biophysical
properties of the membrane by avoiding complex reactions in biological systems. Hence,
artificial membranes, such as vesicles and planar bilayers, have been used to investigate
the function of membrane proteins and cellular uptake mechanisms [82–86]. In this sec‑
tion, we describe the determination of CPP characteristics, such as lipid interactions, CPP
conformation, and cargo transportation using lipid vesicles and planar lipid membranes
(Figure 3).
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3.1. Observation of Conformation and Interaction Using Small Unilamellar Vesicles (SUVs) and
Large Unilamellar Vesicles (LUVs)

SUVs and LUVs are mainly used to investigate the secondary structure of CPPs in the
presence of phospholipids using circular dichroism spectroscopy (CD measurements) [91–95].
For example, TAT and the Rrg9 peptide remained disordered in the presence of SUVs con‑
taining either 1,2‑di‑(9Z‑octadecenoyl)‑sn‑glycero‑3‑phospho‑(1′‑rac‑glycerol) (DOPG), neu‑
tral phospholipids (1,2‑dioleoyl‑sn‑glycero‑3‑phosphocholine; DOPC), or an 80/20 mixture of
DOPC/DOPG [92]. The β‑sheet structure of penetratin in the presence of SUVs containing
DOPG, POPG [93], and DMPG [91] was observed. In addition, the conformational changes
from a random coil structure to a β‑structure depend on the concentration of PG lipids. The
CD measurements revealed the electrostatic interaction between the CPP and the SUV mem‑
brane and the induction of a confocal transition of the CPP from random coil to α‑helical or
β‑sheet forms on the SUV membranes. In other cases involving the use of LUVs, the inter‑
action between the lipid membrane and fluorescent probe‑labeled CPP was observed using
fluorescence spectrophotometry (Figure 3a) [87]. The CPP translocation assay using a fluo‑
rescent probe has been performed under various conditions, such as membrane composition
containing negatively charged lipids and a pH gradient using ionophores (nigericin [96], vali‑
nomycin [97,98], or membrane proteins (bacteriorhodopsin; bR)) [96,99].

3.2. Direct Observation of the Translocation of CPPs Using Giant Unilamellar Vesicles (GUVs)
Cell‑sized lipid vesicles, for example, GUVs with a membrane composition, such as

DOPC/DOPG, DOPC/chol/DOPE, and asymmetric lipid distribution, are generated using the
droplet transfer method and microfluidic devices [100–102]. GUVs can be observed using opti‑
cal microscopy. Therefore, the interaction between GUV membranes and CPPs, as well as the
internalization of CPPs into GUVs, can be directly observed at the single vesicle level [103]. Vi‑
ral fusion mimic GALA (sequence: WEAALAEALAEALAEHLAEALAEALEALAA)‑induced
fluorophore leakage inside a GUV at pH 5 was observed [59]. Recently, Md. Islam et al. pro‑
posed a method for investigating CPP internalization using a mother GUV containing small
GUVs (Figure 3b). When CPPs were transported into the mother GUV, these fluorescently
labeled CPPs that accumulated on the small membrane of the GUV in high concentrations
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were easily observed during CPP transport [104–106]. Furthermore, an increase in GUV cur‑
vature can be caused by external stimuli, such as osmotic pressure or micromanipulation [107].
Kazutami et al. showed that oligo‑arginine, a CPP, is localized to the GUV membrane by
changing the positive curvature of the GUV membrane [108]. GUVs are also used to study
pore formations by MAPs. Some AMPs, such as melittin and magainin, induced pore forma‑
tion in the GUV membrane composed of DOPC/DOPG [38,109]. In a CPP, the pore forma‑
tion mechanism of the TAT peptide was also investigated using GUVs of DOPC, DOPG, and
DOPS [110,111].

3.3. Observation of CPP‑Mediated Cargo Transportation Using Planar Bilayer Lipid Membrane
A droplet interface bilayer (DIB) membrane, which is a planar bilayer lipid membrane,

is formed between two lipid monolayers of two water‑in‑oil droplet interfaces based on the
droplet contact method [112]. When the DIB device is connected to a patch‑clamp ampli‑
fier, the ion current of the ion channel, which is reconstituted in the DIB membrane, can be
recorded [113–115].

Gehan et al. proposed that anionic lipids (PS or PG) in the distal leaflet drive the translo‑
cation of a fluorescent probe‑labeled penetratin peptide using a DIB membrane [116]. CPPs
can transport oversized cargo, such as proteins and DNA, into the cytoplasm and across the
cell membrane. However, the observation of a fluorescent‑labeled CPP on artificial mem‑
branes has not reached a quantitative analysis of peptide‑mediated protein transportation be‑
cause the labeling fluorophore affects the peptide properties. Recently, Huang et al. proposed
a direct method for cargo protein transport using a DIB membrane [117]. The CPP (Pep‑1) and
cargo (horseradish peroxidase, HRP) were mixed to create a complex formation. The CPP–
cargo complexes were added to the source droplet, and only the buffer solution was added to
the capture droplet. A DIB membrane was formed at the contact interface between the two
types of droplets, and CPP‑mediated enzyme transportation was initiated. The droplets were
separated during enzyme transportation. To measure the amount of transported enzyme, the
capture droplet, which was fused with another droplet containing a fluorogenic substrate, ini‑
tiated the enzyme reaction. Pep‑1‑mediated HRP transportation was observed at a membrane
potential of −50 mV. Moreover, pep‑1‑mediated HRP transport occurred under asymmetric
membrane conditions (outer leaflets, 100% PC; inner leaflets, 90% PC and 10% PG). Xin Li et al.
also obtained the high efficiency of Pep‑1‑mediated β‑galactosidase transportation caused by
the increase in PG amount in the capture droplet (Figure 3c). Therefore, the DIB membrane
can be used to investigate not only the self‑crossing of CPPs but also peptide‑mediated protein
transportation based on the direct translocation mechanisms of CPPs [89,118].

3.4. Application of Artificial Cell Models Using GUVs
Artificial cell models based on the self‑organization of molecular building blocks (bottom‑

up approach) are constructed to mimic cellular behavior [119,120]. The use of CPPs in the
construction of artificial cell models has also been reported. Mishra et al. showed that an
FITC‑labeled TAT peptide can actively induce a cytoskeletal actin response in GUVs [121].
Consequently, the actin bundles in the GUV caused their deformation. Miwa and Kamiya
demonstrated the CPP‑mediated direct transportation of proteins into asymmetric GUVs con‑
taining negatively charged lipids in the inner leaflet [90]. Some CPPs (Pep‑1, penetratin, etc.)
have a direct translocation pathway induced by a negative membrane potential (Figure 3d).
This CPP‑mediated protein transportation system controls the initiation of enzymatic reac‑
tions in GUVs. These studies suggest that CPPs can contribute to the development of well‑
defined artificial cell models integrated with membrane deformation and induction control
of the protein function in GUVs.

4. Cargo Transportation into the Living Cell for the Control of Cellular Reactions
The delivery of biomolecules (proteins and nucleotides) to living cells plays a vital role

in gene editing and cancer treatment. An encapsulation methodology for biomolecules has
been developed. However, cytosolic delivery and endosomal escape remain challenging. In
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this section, we introduce biomolecule transportation into living cells via CPPs and a trans‑
portation system using innovative CPPs (Table 2).

Table 2. Comparison of the covalent and non‑covalent connection.

CPP Cargo Combining
Strategy

Treatment Concentration (of
CPP or CPP

Conjugated Cargo)
Cell Efficiency Ref.

Pep‑1
β‑gal, GFP,

FITC‑labeled
peptide

noncovalent
complex 0.5 µM< [Pep‑1] < 50 µM HS‑68, Cos‑7 cell >80%(protein),

>90% (peptide) [122]

CADY short peptide,
siRNA

noncovalent
complex

40 or 60 µM(peptide), 1.6
µM(siRNA) HeLa cell

unable to
deliver(peptide),
97%(knockdown)

[123,124]

Cyclic R10 mcherry disulfide bond,
maleimide bond 30 µM, 50 µM HeLa cell ー [125]

Branch
TAT fluorescein(FI) carbonyl bond 1 µM, 3 µM HeLa cell 40 %(1 µM),

80%(3 µM) [126]

tetrameric
LK‑1 eGFP, PPAR peptide bond 50 nM, 100 nM HeLa, HEK293T

cells 50%, almost 100% [127]

PAS‑CPP Glucagon‑like
Peptide‑2 peptide bond 6.75 µM A549 cells >90% [128]

R8 TAMRA, GBP1,
mcherry disulfide bond 1 µM, 10 µM, 30 µM HeLa Kyoto cells 5%, 90%(under

free linear CPP) [129]

activatable
M918 PNA maleimide bond 8 µM HT‑29‑luc cell 60% (luciferase

expression) [130]

R4 + R4 sfGFP peptide bond
(Zipper peptide) 10 µM HeLa cell ー [131]

4.1. CPP‑Mediated Biomolecule Transportation into the Living Cell
When a CPP interacts significantly with biomolecules, CPP‑mediated biomolecules are

transported into living cells by simple mixing with the CPP and biomolecules. Protein and
peptide transportation using Pep‑1 involves its hydrophobic region of Pep‑1 [122,124,132].
Moreover, negatively charged molecules, such as pDNA, ssDNA, and siRNA, can interact
with CPPs that have positively charged amino acids through nonspecific electrostatic interac‑
tions. For example, CADY (a CPP) effectively transports siRNA into living cells because of
its cationic surface. Stable CADY/siRNA complexes are obtained at a molar ratio ≥of 40/1
(CADY/siRNA) [123]. Nanomolar concentrations of CADY‑mediated siRNAs can be deliv‑
ered into living cells. In this non‑covalent strategy, cargo, such as proteins and nucleotides,
are mainly internalized into living cells via the direct transportation pathway. However, there
are some restrictions to applying the non‑covalent strategy, such as a high concentration of
CPPs for transporting cargo and the necessity of the surface charge of the cargo.

In the covalent strategy, CPPs and cargo are conjugated via covalent bonds, such as pep‑
tide bonds (peptide linkers), disulfide bonds, sulfanyl bonds, maleimide linkers, and polyethy‑
lene glycol linkers [62,125,133–135]. Polyarginine and TAT have been widely studied as a
covalent bond strategy. TAT(GRKKRRQRRR)‑conjugated GFP at the N‑terminal of GFP pre‑
pared by Escherichia coli expression, derived from the GST‑TAT‑GFP plasmid, was transferred
into HeLa and CHO cells [136]. The transportation of TAT‑GFP was inhibited at 4 ◦C. TAT‑
GFP was mainly transported via the caveola‑mediated endocytic pathway. In general, the con‑
jugation between CPPs and proteins may affect the biological response by reducing the affin‑
ity of the protein for the substrate in the cytoplasm. Therefore, the efficiency of cytosolic deliv‑
ery (e.g., endosomal escape and direct translocation) of the cargo and the specificity of cargo
delivery (e.g., targeting, and removability) using CPPs need to be developed using CPPs.
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4.2. Increase in Endosomal Escape Efficiency in the Strategy of Non‑Covalent Bonds
Non‑covalent CPPs have been developed for therapeutic cargo transportation, including

siRNA, Quantum Dots, antibodies, Cre protein, and Cas9 [137–141]. Recently, new peptides
based on non‑covalent complexation with the cargo have been explored, including de novo
designs and peptide libraries [142]. In addition, to overcome the limitations of the endosomal
release of antibodies, some non‑covalent CPPs have been proposed [143,144]. For example, a
lipid‑sensitive endosomolytic peptide, the L17E peptide derived from M‑lycotoxin (cationic
membrane–lytic peptide), regulates membrane lytic activity owing to a single Glu residue
on the hydrophobic face. This peptide translocates IgG from the endosome to the cytosol.
This peptide does not interact with the cargo to increase the amount taken up by the cell but
interacts with the endosomal membrane to efficiently release the cargo into the cell.

4.3. Improving Biomolecules Transportation in the Strategy of Covalent Bonds
4.3.1. Enhancement of the Endosome Escape Efficiency of Cargo Molecules

The low efficiency of endosomal escape for cargo delivery is a bottleneck in covalent
strategies. Several strategies have been developed to enhance the endosomal escape of CPP‑
conjugated cargo. For example, the eTAT system comprises four modules: CPP (TAT se‑
quence), pH‑dependent membrane‑active peptides (PMAPs), endosome‑specific protease sites,
and a leucine zipper (Figure 4a) [145]. The eTAT system delivered GFP and Protein phos‑
phatase 1B (Ppm1b) into HEK‑293T cells. To remove CPP‑PMAP from the cargo protein in
this eTAT system, the proteolytic cleavage site was modified between CPP‑PMAP and the
cargo protein. The proteolytic removal of CPP‑PMAP promotes the endosomal escape of
cargo proteins. Lee et al. reported that a disulfide bond between CPP and PMAP promotes
endosomal escape via cytosolic cleavage [146]. These results show that the removability of
CPP‑PMAP plays an important role in its escape from endosomes. Moreover, the dimeriza‑
tion of eTAT was caused by the leucine zipper sequence in the eTAT sequence, and dimeriza‑
tion induces the effect of multivalent CPPs (MCPPs) with multiple copies of CPPs. MCPPs
also increase endosomolytic activity. MCPPs can increase local concentrations of CPPs. High
concentrations of CPPs lead to strong interactions with the cell membrane and enhance en‑
dosomal escape efficiency [147]. Several synthetic protocols for MCPPs, including the 53tet

(tetramerization protein)‑TAT system, the branched TAT system, the squid‑like (polylysine
branch scaffold) TAT system, the tree‑like TAT dendrimer, and multimerization of the peptide
sequence, have been developed (Figure 4b,c) [126]. Jae Hoon Oh et al. showed that the multi‑
merization of an amphipathic α‑helical peptide (LKKLCKLLKKLCKLAG; leucine (L) and ly‑
sine (K)‑rich α‑helical (LK) peptide) accelerates the penetration rate [127]. This phenomenon
was particularly observed in the tetrameric sequences. Therefore, transportation efficiency is
affected by the configuration and multimerization of CPPs in the covalent strategy. CPP cy‑
clization also increases the transportation efficiency of the cargo because cyclization increases
the distance between arginine residues, thereby enhancing uptake [129,148]. Cyclic R9 deliv‑
ered mCherry and the anti‑GFP nanobody GBP1 to the HeLa Kyoto cells. The conjugation of
the penetration‑accelerating site (Pas) sequence has been previously reported [128,149]. The
Pas sequence, discovered in the cleavable Cathepsin D sequence, enhances the endosomal
escape efficiency of polyarginine and pAntp (N‑terminally biotinylated penetratin). Pas‑R8
delivered glucagon‑like peptide‑2 (GLP‑2) into the A549 cell and the nuero‑2A cell via mi‑
cropinocytosis and promoted endosomal escape (Figure 4d).
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4.3.2. Overcoming the Lack of Specificity of Cargo Transportation
The low specificity of cargo delivery is another limitation of transportation via cell‑penetrating

peptides. Activatable CPPs (ACPPs) were first described in 2004 [150] to overcome this prob‑
lem. Jiang et al. produced an ACPP via protease digestion. A CPP consists of a polyargi‑
nine domain, a cleavable linker, and polyanionic sequences as penetration inhibitors. A hair‑
pin structure was constructed by electrostatic interactions between the polyanionic sequences
and the polyarginine domain. Polyarginine is released by the cleavage of matrix metallopro‑
teases (MMPs), which are extracellular proteases that are upregulated in cancer. Therefore,
there is a specific MMP‑activated polyarginine uptake by cancer cells. Many ACPP struc‑
tures masked by inhibitory sequences activated by enzymes have been reported [151–155].
For example, Lee et al. constructed a selective cytotoxic peptide with an MMP‑activatable
CPP [156] that consisted of an anionic masking sequence, an MMP‑cleavable linker, an an‑
timicrobial peptide (cargo; KLA peptide), and a cationic polyarginine sequence (Figure 5a).
A polyarginine sequence was conjugated to the C‑terminal of the anticancer KLA peptide.
The masking sequence was introduced at the other end using the MMP2 cleavable sequence
as a linker. The cytotoxicity of the KLA peptide was induced by the activation of the cell‑
penetrating peptide. Furthermore, there are different approaches to controlling CPP activity
using reduction [130], ROS‑sensitive linkers [157,158], light [159,160], or the reconstitution
of two short peptides [131]. Lee et al. reported a reduction in an ACPP using azobenzene
PEG chains (Figure 5b). The lysine residues of the M918K peptide (MVTVLFKRLRIRRACGP‑
PRVKV) were masked by reversible PEGylation using azobenzene. This peptide delivered
peptide nucleic acids (PNAs) to HT‑29‑luc cells. Bode et al. investigated the reconstitution of
arginine peptides derived from the leucine zipper sequence, consisting of R4(polyarginine)‑
VinA‑sfGFP and R4‑VinB (Figure 5c). This ACPP reconstitution delivers sfGFP to HeLa cells.
However, unintended triggers may occur in vivo and induce off‑target effects. Homing CPPs
are another example of a technique to increase the selectivity of cargo transportation [161].
Several peptides that have properties of tumor cell penetration have been reported [162–164].
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Novel homing CPPs have been isolated using mRNA display, phage display, or the random
peptide library [70,165]. In addition to these methodologies, the conjugation of target lig‑
ands [166,167] and the recognition of cell‑specific receptors [168] are ways to overcome the
lack of specificity of cargo transportation.
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5. Application of CPP‑Mediated Control of Cellular Reactions: Functional
Component Internalization

A control‑released drug delivery system was proposed in 1952 with the advent of the
Spansule® dissolution control (a detailed DDS review is shown in [169]). When the drug
components are transferred into non‑target cells, side effects will be generated. Therefore,
the target delivery of the drug is essential in a therapeutic approach. The development of
CPP‑mediated transportation has been applied in therapy in vivo. Some of the CPP‑mediated
transportation of functional components regarding a therapeutic approach in vivo are shown
in Table 3.

Table 3. Selected examples of CPP‑mediated therapeutic molecule transportation.

CPP Composition Cargo Conbining Strategy Target, Effects Ref.

TAT TAT‑PGFK‑E5 QD nanoparticles makeimide linker cancer (doxorubicin) [152]

aTAT amine masked TAT PEG‑PCL micelles makeimide linker tumor [170]

R9 E8‑PLGLAG‑R9‑Cys PB nanoparticles protease cleaving
linker spinal cord injury [171]

TAT TAT‑4 × NLS‑Cas9‑2 × NLS,
TAT‑HA2 Cas9 protein expression, mixing genome editing [172]

TAT TAT (YGRKKRRQRRRC) tandem nanomicelles PEG linler anti‑glioma
chemotherapy [173]

R8, TAT,
Penetratin

RRRRRRRR,
GRKKRRQRRRPPQ,

RQIKIWFQNRRMKWKK
insuline noncovalent Brain Delivery [174]

TAT GRKKRRQRRRPQPLGLAGGC
paclitaxel (PTX)

prodrug
nanoparticle

protease cleaving
linker

Inhibition of tumor
growth [175]

R8 RRRRRRRR‑hydrazone
linker‑ehGehGehGehG

liposome containing
siRNA hydrazone bond gene silencing [176]

R9 RRRRRRRR DNA origami
nanostructure

azide‑alkyne
cycroaddition ros scavenger [177]

Jin et al. developed a pH‑responsive TAT system (Figure 6a) [170]. β‑carboxylic amide
is stable at neutral pH but hydrolyzes at acidic pH to regenerate amines. Lysine residue
amines were masked by acid‑labile amides to produce inactive TAT (aTAT). The anticancer
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drug doxorubicin (DOX) was encapsulated in aTAT micelles. When aTAT micelles were in‑
jected into mice, the tumor volume significantly decreased in the acidic tumor extracellular
fluids (pH < 7). In addition, aTAT is very stable in blood and does not cause nonspecific in‑
teractions with blood components. However, a cationic CPP sometimes non‑specifically in‑
teracts with negatively charged molecules in blood serum [178]. The masking of the target
amino acid residues of CPP sequences affects not only tumor specificity but also the inhibi‑
tion of nonspecific interactions.
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Shen et al. developed an ACPP‑modified nanozyme to inhibit mTOR activity (Figure 6b) [171].
The ACPP sequence is E8‑PLGLAG‑R9, which is cleaved by MMP‑2/‑9. MMPs are overex‑
pressed in spinal cord injury (SCI) microenvironments. ACPP‑modified Prussian blue (PB)
nanoparticles have multi‑enzyme‑like activity, such as Ros scavenging activity, in the pres‑
ence of rapamycin (RHPAzyme). When MMPs cleave the ACPP linker, RHPAzyme is released
into the cytosol via CPPs. In an oxygen–glucose‑deprived environment, RHPAzyme showed
neuroprotective efficiency by scavenging ROS using PB nanoparticles and inhibiting the mTOR
activity of rapamycin. In addition, ACPP‑RHPAzyme targeted the injured spinal cord in mice
with SCI. Thus, ACPP modification is useful for targeting typical microenvironments.

Zhang et al. developed a peptide‑assisted genome editing (PAGE) system [172]. The
authors proposed two hypotheses: (1) the TAT and NLS combination sequence assists cell
penetration and nuclear transport, and (2) it assists chemicals, such as chloroquine and poly‑
brene, or assists peptides (APs), such as transportan, TAT, and TAT‑HA2, for endosomal
escape. The PAGE system, which consists of Cas9‑T2N (TAT‑4 × NLS‑Cas9‑2 × NLS) and
AP(TAT‑HA2), delivers the Cas9 protein to edit the genome of primary T cells (mouse and
human) and hematopoietic stem and progenitor cells (HSPCs). In addition, a single‑step di‑
rect delivery of the Cas ribonucleotide protein (RNP) complex consisting of the Cas12 protein
and sgRNA was achieved. After incubation for 30 min, both Cas‑PAGE and Cas‑RNP‑PAGE
showed ~100% gene‑editing efficiency in primary T cells and HSPCs. Moreover, PAGE edit‑
ing is less detrimental to cell viability and does not cause transcriptional changes. The PAGE
system provides a platform for the ex vivo engineering of T‑cell therapies using human cells.

CPP‑mediated therapeutic strategies have been extended using a combination of chem‑
ical modifications or nanoparticles [173–177]. However, the CPP‑mediated delivery of func‑
tional components must be considered for efficiency and safety in long‑term applications.
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6. Conclusions and Future Directions
This review describes methodologies for investigating CPP conformation and cargo trans‑

portation using artificial membranes (such as lipid vesicles and planar lipid membranes) and
living cells. Furthermore, the improved cargo transportation systems of modified CPPs con‑
taining endosomolytic CPPs, the high endosomal escape efficiency of CPPs and ACPPs, and
some therapeutic applications are introduced.

The versatility of transported cargo is one of the advantages of CPP‑mediated transporta‑
tion. However, the detailed mechanism of cargo transportation via CPPs is not completely
understood because the mechanism of CPP‑mediated cargo transportation does not simply
apply to the mechanism of CPP internalization. Therefore, safety and selectivity are open to
discussion for the in vivo application of CPPs. The elucidation of the CPP–cargo transporta‑
tion mechanism will lead to the production of well‑defined CPP systems for therapy. The use
of artificial membranes, such as GUV and DIB membranes, allows the direct observation of
cargo transportation. Some cargo transportation mechanisms have been proposed by observ‑
ing cargo transportation using an artificial membrane. Moreover, the selectivity and stability
of CPPs were increased by the modification and substitution of key functional groups or the
addition of an inhibitor domain. To fill the gap in the effect between in vitro and in vivo ap‑
plications, the combination of two materials, for example, ACPPs and nanoparticles, may im‑
prove the stability of the transportation for in vivo applications. Moreover, optimized CPPs
that combine multi‑technology, such as organic chemistry or inorganic chemistry, will be gen‑
erated to provide a highly efficient and biocompatible drug delivery system.

CPP‑mediated transportation is less problematic for ex vivo applications. Therefore, the
ex vivo application of CPPs can be widely used for gene editing in living cells and the control of
cellular functions. In addition, the application of CPP‑mediated transportation will contribute
not only to the functional modulation of living cells but also to the construction of artificial
cells that enable the control of enzymatic reaction initiation into lipid vesicles.
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