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Abstract: Colostrum is a nutritious milk synthesized by mammals during the postpartum period, and
its rich bioactive components has led to a global increase in the consumption of bovine colostrum as a
supplement. Bovine colostrum contains key components such as immunoglobulins, oligosaccharides,
lactoferrin and lysozyme. It is a special supplement source due to its natural, high bioavailability and
high concentrations of growth factors. Growth factors are critical to many physiological functions, and
considering its presence in the colostrum, further research must be conducted on its safe application in
many bodily disorders. Growth factors contribute to wound healing, muscle and bone development,
and supporting growth in children. Additionally, the molecular mechanisms have been explored,
highlighting the growth factors roles in cell proliferation, tissue regeneration, and the regulation of
immune responses. These findings are crucial for understanding the potential health effects of bovine
colostrum, ensuring its safe use, and forming a basis for future clinical applications. This review
article examines the growth factors concentration in bovine colostrum, their benefits, clinical studies,
and molecular mechanisms.

Keywords: colostrum; growth factors; immune responses; health benefits; nutritional supplements

1. Introduction

Colostrum is a pre-milk substance that is essential for the health and development
of newborn mammals. This special pre-milk offers various positive effects thanks to
its bioactive components. For example, it enhances athletic performance, aids in the
healing of muscle injuries, helps with the development of immunity in newborns, and
promotes muscle mass gain [1]. Colostrum’s composition closely resembles that of blood
and differs markedly from milk. It contains a range of nutrients, including biologically
active compounds and proteins, lipids, lactose, and vital fatty acids [2].
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The various bioactive components of colostrum positively affect the body in different
ways. For example, growth factors play a role in important metabolic activities such as
wound healing, bone and muscle development, and cell proliferation [3–5].

Growth factors can vary in concentration depending on their source. Both regular
milk and colostrum contain many peptide growth factors that help mammalian cells grow
and differentiate. A study reported that within the first 10 h after birth, colostrum contains
the optimal concentration of growth factors, shown in Table 1, although this timeframe
may vary depending on the source and environmental factors [6]. The two main growth
factors, insulin-like growth factors 1 and 2 (IGF-1 and 2) and transforming growth factors
alpha and beta (TGF-A and B), are only found in colostrum (Figure 1). These growth factors
exhibit remarkable biochemical attributes that contribute to muscle repair and wound
healing [7]. Consuming bovine colostrum (BC) may be more effective compared to taking
growth factor supplements orally, because BC contains a variety of bioactive components
that work synergistically to promote health Also, applying growth factor supplementation
topically and systemically rather than orally increases its effectiveness; a study reported
that growth factors are degraded by digestive enzymes [8]. In this review article, various
types of growth factors found in BC and their health benefits were examined.
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Table 1. Growth factor concentrations and types in BC.

Growth Factor Concentration in BC
(ng/mL)

Concentration in Bovine
Milk(ng/mL) Properties Reference

EGF 324.2 155 (pasteurized milk) Cell proliferation, survival, and
differentiation [10,11]

IGF-1 870 150 Cell growth and proliferation [6,12]

IGF-2 206 2–6 Regulates cell proliferation and survival [12–14]

TGF-β 100.7 4.3 (pasteurized milk)
Pro-inflammatory mediator, stimulating the
activation and migration of immune cells and

wound healing
[15,16]

TGF-α 200 - Cell proliferation, differentiation, and
development [17,18]

PDGF - - Cell migration, proliferation, and survival [19]
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2. Exploring the Growth Factors: Types and Molecular Mechanisms

Bovine colostrum is a rich supplement in terms of growth factor concentrations and
the types it contains. Clinical studies have demonstrated the effects of administering
growth factors derived from bovine milk or bovine colostrum in various conditions such as
diseases and injuries [1,9].

Growth factors have an important role in fundamental cellular processes, including
growth, proliferation, differentiation, and survival. They achieve this intricate control by
binding to specific receptors on the cell surface, initiating a cascade of intracellular signaling
events. This intricate signaling network stimulates the regulation of gene expression and
cellular functions, directing the cell’s behavior. Epidermal Growth Factor (EGF), TGF-β,
platelet-derived growth factor, and IGFs are the main types of growth factors.

2.1. Epidermal Growth Factor (EGF)

EGF is a compact protein consisting of approximately 53 amino acids categorized
within the EGF ligand family [20]. Members of this ligand family, including EGF, exhibit
structural resemblances and interact with a group of receptors known as ErbB receptors,
among which EGFR stands out as extensively studied [21]. Numerous cell types, including
fibroblasts, endothelial cells, and epithelial cells, produce EGF [22]. Typically, it is generated
as a transmembrane precursor and subsequently undergoes cleavage by specific proteases.
This process liberates the mature, active EGF ligand into the extracellular environment [23].
EGF exhibits high-affinity binding to the extracellular domain of EGFR. This binding pocket
within EGFR is formed by loops and β-sheets, creating a specific docking site for EGF [24].
When EGF binds to EGFR, the receptor’s conformation changes significantly, exposing
previously hidden areas and facilitating the initiation of further signaling pathways [24].
This binding triggers the receptor to form dimers and phosphorylate tyrosine residues in its
cytoplasmic domain [10]. This phosphorylation activates pathways including Ras/MAPK
and PI3K/Akt, which control cell proliferation, survival, and differentiation [25,26]. It
is worth noting that EGF is just one member of a larger EGF ligand family. Each ligand
may have slightly different binding affinities and can activate distinct signaling pathways
within the cell depending on the specific ErbB receptor it interacts with [27]. This adds
complexity and potential for tailored cellular responses. The existence of EGF-like domains
in other proteins suggests possible communication between various signaling pathways
that involve the ErbB receptor family [28].

2.2. Transforming Growth Factor Beta (TGF-β)

The TGF-β superfamily, of which there are three members (TGF-β1, TGF-β2, and
TGF-β3), includes the cytokine TGF-β. Within cells, TGF-β molecules are first generated as
precursor proteins [29]. These precursors undergo cleavage to form mature TGF-β ligands,
which remain bound to a latency-associated peptide (LAP) in a non-covalent manner [30,31].
This association prevents the premature activation of TGF-β signaling [31]. The release and
activation of the TGF-β-LAP complex require additional processing, which can happen
through different mechanisms such as proteolytic cleavage or interaction with integrins
(cell surface receptors) or thrombospondin-1 (a matrix protein) [32]. After activation, the
mature TGF-β ligand exhibits strong binding to specific transmembrane TGF-β receptors
(TGFBRs) located on the cell surface [33]. The TGFBRs undergo a conformational shift
brought on by ligand interaction, which causes them to dimerize. Signal transduction
requires this dimerization, and the dimerized TGFBRs phosphorylate particular Smad
proteins (Smad2 and Smad3) inside the cell [33]. Subsequently, these phosphorylated
Smads form heterodimers with Smad4, a shared partner [33]. Once within the nucleus,
the Smad complexes interact with co-activators or DNA to regulate gene expression and
trigger biological reactions [34].
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2.3. Platelet-Derived Growth Factor (PDGF)

PDGF is present in four isoforms, namely, PDGF-AA, PDGF-AB, PDGF-BB, and
PDGF-DD, each composed of homodimers or heterodimers of A and B chains [19]. These
isoforms attach to particular PDGF receptors (PDGFRs) on the cell surface. PDGFRα
and PDGFRβ are two types of PDGFRs that are members of the receptor tyrosine kinase
(RTK) family [19]. PDGF-AA predominantly interacts with PDGFRα, whereas PDGF-BB
binds to both PDGFRα and PDGFRβ. PDGF-AB can bind to either receptor. Upon the
binding of the ligand, the PDGFR undergoes a conformational change [19]. Ligand binding
triggers the activation and dimerization of PDGFRs, involving homodimers (α-α or β-β) or
heterodimers (α-β) [19]. This dimerization process provides a binding site for intracellular
signaling molecules, initiating downstream signaling pathways. PDGFR activation triggers
multiple downstream signaling pathways, such as the Ras-MAPK (Figure 2), PI3K-Akt
(Figure 2), and PLCγ pathways, depending on the specific receptor and cellular context [35].
Eventually, these pathways result in a variety of biological reactions, such as cell migration,
proliferation, and survival.
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Figure 2. The molecular mechanism of the contribution of growth factors found in bovine colostrum
to wound healing. Growth factors found in bovine colostrum stimulate the Ras/MAPK and PI3K/Akt
signaling pathways through receptor binding, promoting the proliferation and differentiation of
cells in the affected area. Consequently, the wound-healing process is accelerated [25,26]. (p85:
regulatory subunit of phosphatidylinositol 3-kinase, p110: catalytic subunit of phosphatidylinositol
3-kinase, PTEN: phosphatase and tensin homolog, Akt: protein kinase B, PIP2: phosphatidylinositol
(4,5)-bisphosphate, PIP3: phosphatidylinositol (3,4,5)-trisphosphate, TSC: tuberous sclerosis complex,
Rheb: Ras homolog enriched in brain, mTORC1: mechanistic target of rapamycin complex, LKB1:
liver kinase B1, AMPK1: AMP-activated protein kinase, GRB2: growth factor receptor-bound protein
2, SOS: Son of Sevenless, Ras: rat sarcoma, Raf: rapidly accelerated fibrosarcoma, MEK: mitogen-
activated protein kinase, ERK: extracellular signal-regulated kinase).
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2.4. Insulin-Like Growth Factors (IGFs)

IGFs bind to specific cell surface receptors, primarily the IGF-1 receptor (IGF1R), and
to a lesser extent, the insulin receptor (IR) [36]. IGF1R is a transmembrane receptor tyrosine
kinase (RTK) and associated with several intracellular pathways, including the RAS-MAPK
and PI3K-AKT (Figure 2) [37]. Certain tyrosine residues in the receptor’s cytoplasmic
domain become autophosphorylated when IGF binds, causing the receptor to undergo a
conformational shift [38]. The phosphorylated tyrosine residues on IGF1R serve as docking
sites for adaptor proteins containing Src homology 2 (SH2) domains [39]. Upon binding
to these sites, adaptor proteins, including Grb2 and Shc, become activated, starting down-
stream signaling pathways [40]. This leads to the activation of major signaling pathways,
including the mitogen-activated protein kinase (MAPK) pathway, which regulates cell
proliferation and survival, and the PI3K/Akt/mTOR pathway (Figure 2), which is involved
in cell growth and metabolism [12].

It should be noted that the molecular mechanisms of growth factors, as indicated in
Figure 2 and discussed in the text, can lead to side effects if used improperly. For instance,
uncontrolled cell proliferation may contribute to tumor formation. Therefore, consulting
experts in the field of growth factor supplementation is crucial.

3. Clinical Trials and Effects of Growth Factors on Various Diseases

Growth factors are essential for many physiological functions, including accelerating
the healing of wounds by stimulating tissue repair and cell proliferation. Additionally, the
reason for using BC as a source of growth factors is its high bioavailability and synergistic
activity. Research studies have reported results supporting this phenomenon [41,42]. Their
ability to promote the regeneration of injured tissues makes them promise for the treatment
of musculoskeletal injuries and disorders like osteoarthritis. Furthermore, growth factors
strengthen the body’s defenses against infections and illnesses by increasing the generation
and function of immune cells. Studies indicate that their advantages surpass immune
support, pointing to wider uses in maintaining health and managing illnesses. In this part,
molecular mechanisms of various types of GF and their applications are discussed.

3.1. Wound Healing

EGF and TGF-β1 are critical factors in wound healing, each playing distinct but com-
plementary roles. EGF stimulates granulation tissue development, decreases inflammation,
and encourages re-epithelialization to speed up wound closure [43]. In a clinical study, it
was reported that EGF derived from bovine colostrum plays a role in the healing process
of intestinal epithelial wounds [44]. On the other hand, TGF-β1 initially acts as a pro-
inflammatory mediator, stimulating immune cell activation and migration. As the healing
process progresses, TGF-β1 transitions to an anti-inflammatory role crucial for tissue repair
and inflammation resolution [15].

Adding to these critical growth factors, PDGF orchestrates essential processes in
wound healing. PDGF functions as a powerful chemoattractant, drawing fibroblasts, neu-
trophils, monocytes, and smooth muscle cells to the injury site [3,45]. This recruitment
is vital for initiating the repair process and laying the foundation for tissue regeneration.
Additionally, PDGF activates macrophages, triggering them to release growth factors that
further stimulate healing mechanisms [3,45]. Furthermore, PDGF promotes the prolif-
eration of fibroblasts, increasing their numbers within the wound area. Fibroblasts are
crucial for producing the extracellular matrix (ECM), which provides structural support
and scaffolding for tissue repair [46]. By enhancing ECM production, PDGF significantly
contributes to the formation of new tissue and the restoration of tissue integrity.

The IGF family, in addition to EGF, TGF-β, and PDGF, plays a major role in the intricate
series of processes involved in wound healing. IGFs stimulate epithelial cell migration and
proliferation, which improves re-epithelialization, an essential stage of the healing process
that replaces the skins or mucosal protective layer over the wound site [47,48]. Furthermore,
IGFs stimulate the proliferation of fibroblasts, which are pivotal in producing collagen and
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other components of the ECM [48]. This activity is crucial for providing structural support
to the healing tissue and promoting wound contraction. Understanding the collaborative
roles of EGF, TGF-β1, IGF, and PDGF underscores their potential as targeted therapies to
optimize wound healing outcomes. Using a mouse excisional wound model, it was shown
that treatment with bovine milk extracellular vesicles (EVs) promoted re-epithelialization,
activated angiogenesis, and enhanced extracellular matrix maturation [49]. Together, they
effectively manage inflammatory responses, promote tissue regeneration, and accelerate
the overall healing process.

3.2. Gastrointestinal Health

IGF-1 plays a critical role in enhancing intestinal cell growth and supporting overall
gut health. Research has demonstrated its ability to increase nutrient absorption, promote
mucosal growth, and boost intestinal weight in studies involving piglets [50,51]. These
findings suggest that IGF-1 could be a beneficial therapeutic option for improving intestinal
structure and function. IGF-1 also shows promise in protecting against cytokine-induced
apoptosis, which helps to maintain the integrity of intestinal epithelial cells and reduces
damage during inflammation [52]. This dual action of promoting growth and protecting
against inflammation underscores IGF-1’s potential in enhancing overall gut health. In
summary, IGF-1 emerges as a valuable candidate for future research and potential thera-
pies aimed at enhancing intestinal health through its role in cell growth stimulation and
protective effects against inflammation. Several reports have evaluated the delivery of
TGF-β in foods, in enteral formulas, or directly by gavage in animal models of mucosal
inflammation [53]. The preclinical and clinical findings show that TGF-β supplementation
decreases mucosal and systemic inflammation in Crohn’s disease and ulcerative colitis [53].

3.3. Cancer

In oncology, while EGF is essential for normal cellular functions, its overexpression or
dysregulation is associated with various cancers. As a result, EGF and its receptor (EGFR)
are targets for cancer therapies, with several EGFR inhibitors having been developed to
block the proliferative signals in cancer cells [54]. In the context of cancer, IGF-2 is often
overexpressed in various tumors, contributing to tumor growth and progression [55]. It
plays a crucial role in oncogenesis due to its capacity to stimulate cell division and prevent
apoptosis. Thus, targeting the IGF-2 signaling pathway is being investigated as a possible
therapeutic approach for the treatment of cancer [56,57]. However, the adaptability of TGF-
β2 goes far beyond bone production, involving a variety of biological processes such as
immunological regulation, wound healing, cell development, inflammation management,
and even cancer metastasis [58–60].

3.4. Bone and Muscle Health

IGF-1 is a crucial peptide hormone involved in the growth and developmental pro-
cesses of mammals [61]. This growth factor system influences the vasculature through
a variety of physiological effects, operating via both endocrine and autocrine/paracrine
mechanisms [62]. IGF-1 is a hormone that supports and stimulates growth, and stud-
ies have shown that it increases osteoblastic activity [63]. Additionally, from a different
perspective, exercise or training activates the GH and IGF-1 axis. Conversely, exercise
also increases catabolic pro-inflammatory cytokines, such as interleukin-6 (IL-6) [64]. The
anabolic GH and IGF-1 axis are crucial because its activation after exercise enhances muscle
growth and repair, increases protein synthesis, and promotes fat metabolism, leading to
improved muscle strength, reduced body fat, and overall better physical performance [64].

Also, one study aimed to improve muscle injury recovery in elderly people [65]
(Table 2). Muscle stem cells become less common as people age, but the ones that remain
can still regenerate in a manner similar to those of youth [65]. The research showed that
changes in the muscle environment with age reduce the regenerative capacity of these cells.
IGF-2 levels were observed to be lower in the regenerated muscles of older mice based
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on protein analysis. By promoting stem cell proliferation and blood vessel creation while
decreasing the formation of fat cells, pro-IGF-2 supplementation of elderly mice resulted in
enhanced muscle regeneration [65].

Table 2. Clinical trials on growth factor supplementation.

Target Group Study Design Dose and Duration Effect Reference

Trained men
Pre-post-intervention
study with repeated

measures

60 g bovine colostrum
Total: 4 weeks

BC does not affect blood IGF-1 or
IGF binding protein-3 levels. [66]

Human keratinocytes Prospective experimental
study Not specified

BC supplementation induces
mitogenic and motogenic effects on
human keratinocytes, promoting cell

proliferation and migration.

[67]

Guinea pigs Prospective experimental
study

Daily application of liquid
formulation or gel

formulation of the IM
fraction on wounds

Total: 23 days

Colostrum-derived whey immune
fraction (IM fraction) inhibits

collagen gel contraction in vitro,
delays wound closure in

full-thickness wounds, and
minimizes residual scar formation in

scar tissues.

[68]

Individuals with skin
diseases

Cellular and molecular
approaches on
keratinocytes

Not specified Promotes keratinocyte
differentiation. [69]

Human fibroblasts in vitro Experimental study
BC at three concentrations
(0.125%, 0.25%, 0.50%) for

8 weeks

Liposomal BC protects against
telomere length erosion in fibroblasts

under normal and oxidative stress
conditions.

[70]

Keratinocyte cells in vitro Experimental study

Fermented colostrum
whey at concentrations of

100–400 µg/mL for
observed effects

BC increased AQP-3 expression and
cell proliferation via JNK and p38

MAPK activation.
[71]

Individuals with wounds Pre-post-intervention
study Not specified Enhanced wound healing properties. [72]

Keratinocytes,
melanocytes, and

fibroblasts
Experimental study Not specified

Effect of colostrum-derived
exosomes: Prevented UV-induced

damage, reduced melanin
production, suppressed matrix
metalloproteinase expression,

increased cell proliferation,
enhanced collagen production.

[73]

Patients with acne scars Retrospective study

Fractional laser treatment:
120 days; recombinant
bovine basic fibroblast
growth factor(rbFGF):

300 IU/cm2

Total: 7 days

Improved skin barrier function,
reduced lactic acid-induced stinging,
enhanced stratum corneum integrity.

[74]

Fibroblasts, immortalized
keratinocytes, Human

vein umbilical
endothelial cells

Experimental study

Rigemed D (BC containing
20 different growth factors
and exosomes) doses: 1%,

1.5%, and 2% v/v;
duration not specified

Rigemed D supplementation
promotes cell proliferation,

migration, and regeneration; exhibits
antioxidant effects; and enhances

angiogenesis

[75]

Critically ill, mechanically
ventilated patients

Randomized controlled
trial

30 g of bovine colostrum
daily for 10 days

Increased serum levels of IGF-1;
reduced incidence of diarrhea. [76]

Rabbit flexor tendon cell
populations Experimental study

IGF-1: 10, 50, and
100 ng/mL

PDGF-BB: 1, 10, and
50 ng/mL

bFGF: 0.5, 1, and 5 ng/mL
Duration not specified

Maximized tenocyte proliferation. [77]
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Table 2. Cont.

Target Group Study Design Dose and Duration Effect Reference

Injured rats Prospective experimental
study

0, 10, 100, or 1000 ng
PDGF isoform B

Total: 7 days

PDGF supplementation enhances
tendon healing. [78]

Epithelial and
fibroblastic cells Experimental study 2.5 mg/mL bovine milk

for 48 h

Mitogenic extract from bovine milk
promotes growth of

mesodermal-derived cells.
[79]

Sheep fetuses with
growth restriction

Randomized controlled
trial in sheep

IGF-1: 360 µg
Total: 128 days

Intrauterine administration of IGF-1
significantly increased fetal

growth rate.
[80]

Meniscus Experimental study
50 ng/mL bFGF and

TGF-β3
Total: 8 weeks.

bFGF and TGF-β3 improved
integration strength of meniscus
repair constructs and electrospun
PCL scaffolds. TGF-β3 increased

proteoglycan content in the explants.

[81]

Tendon tissue Experimental study

PDGF-BB and IGF-1
supplementation.

Dose and duration not
specified.

Enhanced cell attachment, alignment,
viability, and metabolic activity. [82]

Patients with skin burns Prospective, randomized,
double-blind clinical trial

EGF: 10 µg
Total: 1.5 days

Accelerated rate of
epidermal regeneration. [83]

Patients with chronic
wounds

Prospective, open-label,
crossover trial

EGF: 10 µg
Total: 6 months Stimulation of wound healing. [84]

Diabetic neuropathic or
ischemic patients with
high amputation risk

Non-controlled pilot study EGF: 25 µg
Total: 8 weeks

Reduction in diabetic lower
limb amputation. [85]

Hospitalized patients

Randomized,
double-blind,

within-patient, left/right,
controlled trial

EGF: 10 µg in 0.1% silver
sulfadiazine cream

Reduction of healing time of skin
lesions in patients with

pemphigus vulgaris.
[86]

Diabetic patients Pilot study Heberprot-P (EGF Based):
75 µg.

Exploration of clinical effects up to
complete wound closure [87]

Pediatric patients Prospective clinical trial EGF: 100 µg/kg
Total: 6 weeks.

Improved carbohydrate absorption,
increased tolerance to enteral feeds,

reduced infection rates.
[88]

Mice with sarcopenia Experimental study 12 µg pro-IGF-2/day
Total: 7 days

pro-IGF-2 improves muscle
regeneration by promoting satellite
cell proliferation, angiogenesis, and

inhibiting adipogenesis of
PDGFRα+ cells

[65]

3.5. Neurological and Mental Health

Growth factors play a crucial role in regulating cellular activities during both the
embryonic and postnatal stages. Minor alterations in the expression patterns of these fac-
tors can significantly impact brain development. These initial changes can lead to various
neuroanatomical and biochemical variations observed in the later stages of brain matura-
tion [89]. Abnormal levels of growth factors have been implicated in the development and
clinical presentation of multiple psychiatric disorders [89].

IGF-2 is a critical regulator of cellular processes such as proliferation, migration,
differentiation, and apoptosis (programmed cell death) [90]. IGF-2 exerts its cellular effects
through three distinct receptors: IGF-1 receptor (IGF-1R), insulin receptor (IR), and IGF-
2 receptor (IGF-2R) [91]. Binding to these receptors triggers the activation of critical
intracellular signaling pathways, including PI3K/Akt and MAPK, and these pathways
serve as molecular keys regulating cellular growth, survival, and metabolism (Table 2)
(Figure 2) [91]. While IGF-2 was traditionally seen as a fetal growth driver, new research has
revealed its continued significance in adulthood [92]. Scientists have found high levels of
IGF-2 gene expression in the central nervous system, where it appears to play a critical role
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in memory consolidation, especially involving the hippocampus [93]. Intriguingly, IGF-2
may be linked to memory-related disorders like schizophrenia, depression, etc. While
its exact role remains unclear, further research holds promise for new treatments and
diagnoses in these critical conditions [92].

3.6. Eye Health

The fluid inside the human eye, called aqueous humor, helps nourish the parts like
the cornea and lens. This fluid contains special signaling molecules, and TGF-β2 is the
most common one [94]. The concentration of a signaling molecule known as TGF-β2
increases in the fluid of the eye during certain eye conditions. This occurs in conditions
such as proliferative vitreoretinopathy (PVR), diabetic retinopathy, and glaucoma [95].
Studies in mice lacking specific TGF-β isoforms have revealed their distinct roles in eye
development [95,96]. While deficiencies in TGF-β1 or TGF-β3 do not cause eye problems,
mice lacking TGF-β2 exhibit several malformations. These include a thinner cornea missing
its inner cell layer, an undeveloped front chamber, an immature retina, and blood vessels
persisting in the normally clear vitreous gel. All isoforms of TGF-β, including TGF-β3, are
demonstrably expressed during fetal eye development. The specific pattern of TGF-β3
expression observed in the ganglion cell layer, photoreceptor layer, and choriocapillaris
during the second trimester suggests its potential involvement in several critical processes.
These processes likely include morphogenesis, development, and/or differentiation of the
fovea, a specialized region responsible for central vision [97].

4. Growth Factors as Health Products

Given their therapeutic promise in wound healing, tissue regeneration, and disease
management, growth factors—naturally occurring proteins—have attracted significant
attention in the production of health products. These proteins can stimulate cellular growth,
proliferation, and differentiation.

Growth factors can be presented in various forms in the medical and dietary supple-
mentation fields. As shown in Table 3, different types of growth factors can be incorporated
as the main active ingredients in these products. These products can be used as supportive
treatments for conditions such as wound formation due to chronic diseases, tissue damage,
growth disorders, hormonal imbalances, and skin aging. Healthcare professionals may
use growth factors not only as supportive treatments, but also as therapeutic drugs. The
wide variety of growth factors and their unique properties allow for the discovery of new
applications beyond the current usage areas. In particular, the ability of growth factors
to promote tissue regeneration holds the potential for broader therapeutic applications
through advanced studies. In addition to medical treatments, these products can also be
used to enhance performance and overall well-being in healthy individuals [98].

Table 3. Growth factor-based products.

Format Growth Factor Effect Reference

Gel EGF Wound healing [99]

Injection EGF Wound healing [99]

Capsule EGF Wound healing [99]

Injection IGF-1 Growth disorders [100]

Gel PDGF Bone repair and regenerative procedures [101]

Topical Gel EGF Diabetic foot ulcer [102]

Topical Gel PDGF Chronic wound healing (diabetic) [103]

Collagen TGF-β1 Anti-aging [104]
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Growth factor therapy has several limitations. A key issue is the short half-life of
growth factors in tissues, requiring a continuous angiogenic stimulus to maintain new
vessel growth [105]. Systemic expression can lead to harmful side effects in distant organs,
such as promoting tumor growth or arthritis [105]. For instance, VEGFs can increase vascu-
lar permeability and edema, with pericardial effusion being a dose-limiting side effect [106].
Therefore, consulting medical experts is crucial for growth factor supplementation. The
source, whether bovine or not, is less important due to the fundamental biological actions
of these proteins. The effects of the fundamental mechanisms, which are also seen in treat-
ments using bovine colostrum-derived growth factors (listed in Table 2), can potentially be
replicated by the patented products shown in Table 3.

Colostrum-derived growth factors are currently under research for their effectiveness
and safety in treating various health conditions, focusing on their potential benefits in
immune support, gastrointestinal health, and wound healing. Ongoing studies aim to
clarify their role in improving gut integrity, enhancing immune response, and promoting
tissue repair without significant adverse effects. In summary, the use of growth factors
in the medical and nutritional supplementation fields represents a significant innovation
that can support existing treatments and enable new therapeutic approaches. It is expected
that this field will continue to expand, with growth factors being used in a wider range of
applications in the future.

5. Conclusions and Future Outlook

BC is gaining increasing attention due to its various bioactive components. Among
these components, growth factors stand out for their significant role in physiological
processes. BC is a unique and powerful source of these development factors since it
naturally contains them, unlike other supplements or synthetic substitutes.

It has been shown that these growth factors have many positive effects on the body.
For instance, they can promote wound healing by encouraging tissue repair processes and
cell proliferation. Growth factors may also be useful as therapeutic agents for diseases
such as osteoarthritis or musculoskeletal injuries because they encourage the regeneration
of deteriorating tissues. Unlike other sources, BC’s related growth factors are highly
bioavailable and work together to improve these healing processes. Growth factors also play
a critical role in strengthening the immune system by increasing the generation and activity
of immune cells, which improves defense against infections and illnesses. The naturally
occurring growth factors in BC promote a powerful immunological response, making it a
better choice than manufactured immune boosters. Moreover, studies indicate that growth
factors might be involved in more than just immune support. Some research suggests
that they may serve as biomarkers for the diagnosis of diseases, demonstrating their
involvement in pathological processes. Through comprehending the complex mechanisms
by which growth factor’s function, researchers hope to open up new approaches to the
diagnosis and treatment of disease.

The potential of BC as a helpful supplement for improving general health and well-
being is highlighted by the complex impacts of growth factors. However, more research
is needed to understand the effects of BC on health. Future studies can help us better
understand the detailed mechanisms of action of growth factors and their effects on different
health conditions. Furthermore, future research could investigate the best dosages and
administration methods for enhancing the effects of colostrum-derived growth factors.
Furthermore, we may uncover additional features of growth factors that could improve or
broaden the benefits of colostrum ingestion. In this way, we can more comprehensively
evaluate the role of BC in health and better understand its potential health benefits.
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