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Abstract: Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure
to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent
scientific advancements have unveiled its intricate association with gut health. The intestinal barrier
serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis.
Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, com-
promising the integrity of the intestinal mucosal barrier, and predisposing individuals to various
intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors
(VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines
and influencing the intestinal barrier function. Notably, numerous studies have reported lower
serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory
bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of
vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements
in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal
barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate
and present relevant findings pertaining to the therapeutic potential of vitamin D in the management
of intestinal diseases.
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1. Introduction

Vitamin D, a fat-soluble vitamin and secosteroid hormone, is a vital nutrient that plays
a crucial role in various physiological processes within the human body. It is synthesized
in the skin upon exposure to ultraviolet B (UV-B) radiation from sunlight and can also be
obtained through the diet, primarily from fatty fish, fortified dairy products, and supple-
ments [1]. Beyond its well-established functions in regulating calcium and phosphorus
metabolism and its importance in bone health, vitamin D has emerged as a key player in a
multitude of physiological and pathological conditions.

Recent studies have provided insights into the complex connection between vitamin D
and the intestinal tract, which is the largest and most intricate immunological and digestive
organ in the body [2]. The gut microbiota, a complex and ever-changing community of
microorganisms, resides in the intestinal tract. It plays a crucial role in breaking down
nutrients, producing vitamins, and maintaining the immune balance of the gut mucosa [3].
The gut microbiota and the host’s immune system maintain a delicate equilibrium, and
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any disruption can potentially trigger a series of intestinal diseases, such as inflammatory
bowel diseases, irritable bowel syndrome, etc. [4,5]. Emerging findings indicate that
vitamin D plays a substantial role in shaping the composition of the gut microbiota and
maintaining the integrity of the intestinal mucosal barrier. The existence of vitamin D
receptors (VDR) throughout the intestinal tract highlights the significance of this nutrient
in preserving gut equilibrium. Acting as a transcription factor, VDR governs the expression
of genes associated with the biological effects of vitamin D [6]. Vitamin D exerts regulatory
control over the microbiome in both health and disease states via vitamin D and VDR
signal transduction pathways, crucial for maintaining gut health [7]. Vitamin D has been
demonstrated to regulate the gut microbiota by stimulating the growth of advantageous
bacteria and suppressing the proliferation of potentially detrimental species [8]. This
modulation can augment the inherent protective function of the intestinal tract, thereby
inhibiting the movement of harmful microorganisms and the subsequent triggering of the
immune response. Moreover, vitamin D plays a role in regulating the immune response
in the intestinal tract. It has the ability to impact both the adaptive and innate immune
systems by controlling the functioning of different immune cells, such as T cells, B cells, and
macrophages [9]. The immunomodulatory role is essential for maintaining a harmonized
immune response and preventing excessive activation of the immune system, which can
result in persistent inflammation and tissue harm in the intestinal tract.

Inflammatory bowel disease (IBD) individuals, particularly those with ulcerative colitis (UC),
exhibit low serum vitamin D concentrations (25-hydroxyvitamin D5 [25(OH)Ds] < 20 ng/mL),
according to a meta-analysis and systematic review [10]. Ensuring sufficient levels of vita-
min D can be advantageous not only in preventing these conditions but also in managing
existing intestinal diseases. The potential therapeutic efficacy of vitamin D in promoting
intestinal health is a subject of increasing interest. For example, multiple studies indicate
that vitamin D supplementation may enhance symptoms and decrease the recurrence rate
in individuals with inflammatory bowel disease [11,12].

Comprehending the intricate relationship between vitamin D and the gut is crucial
for devising innovative therapeutic approaches to enhance gut health and avert intestinal
diseases. This review aims to provide an overview of the current understanding of the
role of vitamin D in gut health and disease. We will discuss the mechanisms by which
vitamin D influences the gut microbiota, intestinal barrier function, and immune response,
and explore the clinical implications of vitamin D deficiency and supplementation in the
context of intestinal diseases.

2. Understanding Vitamin D: Definition and Sources

Vitamin D, a steroid and fat-soluble vitamin essential for human health, plays a crucial
role in various physiological processes. Its primary synthesis occurs through sunlight
exposure on the skin and dietary intake. When the skin is exposed to ultraviolet radia-
tion, 7-dehydrocholesterol is converted into pre-vitamin Ds, subsequently transformed
into vitamin D3 with the aid of body temperature [1]. This synthesized vitamin D3 en-
ters the bloodstream, binding with the vitamin D binding protein (DBP), and then is
transported to the liver. Within the liver, it undergoes conversion by microsomal 25-
hydroxylase into 25-hydroxyvitamin D3 [25(OH)Ds]. This form of vitamin D, still bound
to the DBP, is further transported to the renal tubular epithelial cells in the kidney [13].
There, mitochondrial 1x-hydroxylase catalyzes its conversion into the biologically ac-
tive form, 1,25-dihydroxyvitamin D3 [1,25(OH);D3], which predominates in the body.
1,25(0OH),D; circulates throughout the body via the bloodstream, reaching various tissues
and organs [14-16]. In instances where endogenous synthesis of vitamin D is inadequate,
dietary supplementation becomes necessary to maintain optimal levels. Vitamin D obtained
from dietary sources accompanies fat into the digestive tract and is absorbed predominantly
in the jejunum and ileum, facilitated by bile action. Once absorbed, vitamin D, along with
chylomicrons, enters the bloodstream via the lymphatic system or binds to specific vitamin
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D transporters. Eventually, it undergoes activation primarily in the liver and kidneys before
entering systemic circulation [17] (Figure 1).
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Figure 1. The synthesis, sources, and metabolism of vitamin D. Under the influence of UV-B radia-
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tion, the 7-dehydrocholesterol in the skin undergoes conversion into pre-vitamin D, subsequently
transforming into vitamin D3 through body temperature-mediated processes. Alternatively, dietary
supplements can also serve as sources of vitamin D. Notably, vitamin D, is sourced from plants,
whereas vitamin D3 originates from animals. Upon entering the bloodstream, vitamin D, /D3 binds
to the vitamin D binding protein (DBP), facilitating its transportation to the liver and kidneys. Within
these organs, it undergoes successive transformations, ultimately culminating in the formation of
biologically active 1,25-dihydroxyvitamin D3 (1,25(OH)Dj3). This active form is then circulated
throughout the body via the bloodstream, delivering its vital functions to various organs and tissues.
Created with Biorender.com (accessed on 18 July 2024).

Vitamin D is integral to the regulation of calcium and phosphorus metabolism, cru-
cial for promoting bone resorption, and pivotal in facilitating body growth and bone
development. Beyond its fundamental skeletal functions, an extensive body of research
underscores its intricate involvement in various physiological processes [18]. Numerous
studies have elucidated the intricate relationship between vitamin D and a spectrum of
health conditions, including obesity, autism, respiratory diseases, digestive tract disorders,
cardiovascular ailments, cancer, and multiple sclerosis [19-23]. Furthermore, recent investi-
gations have unveiled additional roles of vitamin D in modulating cellular proliferation
and differentiation [24], orchestrating hormone secretion [25], shaping the structure of the
gut microbiome [26], fortifying intestinal barrier function [27], and optimizing immune
system functionality [28,29]. Thus, the multifaceted influence of vitamin D extends beyond
its classical roles, highlighting its indispensable significance in maintaining overall health
and well-being.

3. The Dynamic Interplay: Impact of Vitamin D on the Gut Microbiome and Intestinal
Barrier Function

The intestinal tract, comprising the largest digestive organ in the human body, serves
as a critical site for food digestion and nutrient absorption. In conjunction with endogenous
digestive secretions, the gut harbors a vast array of microorganisms, pivotal in fostering gut


Biorender.com

Nutrients 2024, 16, 2352

40f18

and overall bodily health. A thriving gut ecosystem is instrumental in the efficient break-
down and assimilation of nutrients essential for growth and maintenance. Moreover, the
gut boasts extensive immunological activity, adept at discerning and combatting pathogens.
Sustaining gut homeostasis bolsters immune equilibrium, averting hyperimmunity and
chronic inflammation. Conversely, dysbiosis within the gut microbiome and disruption
of the intestinal mucosal barrier may precipitate immune hyperactivity, culminating in
inflammatory and autoimmune pathologies [30,31]. In addition, emerging research un-
derscores the intricate interplay between the gut microbiome and various physiological
processes, including lipid metabolism and communication with the central nervous system
via the microbiota—gut-brain axis, thereby implicating its profound implications for mental
health and neurological disorders [32,33]. Optimal levels of vitamin D are essential for
maintaining gut health, influencing the composition of the gut microbiome and the in-
tegrity of the intestinal mucosal barrier. The multifaceted impact of vitamin D encompasses
enhancing the stability and diversity of the gut microbiome, reinforcing the functionality of
the intestinal mucosal barrier, modulating immune cell activity, and preserving mucosal
integrity [34,35]. Several recent studies have identified gut-microbiota-dysbiosis-associated
metabolic disorders as possible triggers or causes for dermatological conditions [36,37].
These findings suggest a broader role of vitamin D in modulating tissue functions via the
gut microbiome.

3.1. Regulation of Vitamin D on the Composition of the Gut Microbiota

The gut harbors a diverse and intricate microbial ecosystem known as the gut micro-
biome, which is inherently host-specific. Its composition and species vary across different
microenvironments and species. Through continuous selection and coadaptation during
the interaction between the host and its environment, the gut microbiome gradually attains
dynamic stability, playing a pivotal role in host body adaptation and equilibrium. This
delicate balance can be perturbed by various factors such as genetics, age, antibiotics, and
environmental influences [7].

The interactions between vitamin D and the gut microbiome are complex, and studies
have demonstrated the capacity of vitamin D to modulate and improve the gut microbiome
under both diseased and healthy conditions [38]. For instance, a non-randomized trial
supplementing 80 vitamin D-deficient women with 50,000 IU of vitamin D per week for
12 weeks significantly augmented the richness and diversity of their gut microbiomes [39].
In the obese population, a Mediterranean lifestyle intervention was able to increase serum
vitamin D levels, which is associated with increased gut microbiota diversity, as well as
specific gut microbiota profiles [40]. Conversely, deficiency in VDR not only precipitates
metabolic disorders in mice but also alters the structure of the gut microbiome and virome,
influencing virus-microbiome interactions [41,42]. Yet, conflicting evidence exists; while
some studies indicate that long-term vitamin D supplementation (60,000 IU/month) does
not significantly alter gut microbiome composition and diversity [43], others suggest
potential effects, albeit at a lower taxonomic level [44]. It may be that factors such as the age
and gender of the participants have contributed to the inconsistent effects of vitamin D and
gut microbiome interactions [45,46]. Hence, the extent to which vitamin D supplementation
impacts the composition of the gut microbiome remains a subject of ongoing investigation.
The regulation of the gut microbiome by vitamin D is further supported by the additional
evidence provided in Table 1.
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Table 1. Effects of vitamin D supplementation on the composition of gut microbiome in diverse

populations.
Number of . . Vitamin D Changes of Gut
Participants Country Subject Information Supplementation Microbiome References
. Australians aged 60,000 IU of vitamin .
835 Australia 60-84 years D /month for 5 years No significant changes [43]
Bacteroidetes;
60 pg vitamin D3 per Actinobacteriat;
36 Ireland Healthy volunteers day for four weeks Bifidobacterium longum?; [47]
Coprococcus?t
18-60 years, with vitamin D
deficiency (serum
26 Australia 25-hydroxyvitamin D 4002 611;/]\7/(3212}57 for Lachnospira®; Blautia) [44]
(25(CH)D)
concentration < 50 nmol/L)
Adults > 18 years with Vitamin Ds (60 ug
. . . - [2400 IU]/day) or
United vitamin D deficiency . . ..
18 . . 25-hydroxyvitamin D3 Firmicutes] [48]
States (25-hydroxyvitamin D (20 g /day) for
[25(0OH)D] < 20 ng/mL) 3 woeks
Leuconostoc
pseudomesenteroidest;
Bacteroides gallinarumt;
35-75 years old colorectal Christensenella
cancer patients with . . timonensis?;
74 Italy resected colorectal cancer 2021?52 \;15?1?1133 Ruminococcus YE781; [49]
stage I-III in the last p y y Faecalibacterium
24 months prausnitziit;
Holdemanella biformist;
Eubacterium brachyl;
Bacteroides coprocolal,
4400 IU vitamin D3
United . per day between o
870 States 10-18 weeks of gestation enrollment and Desulfovibrio], [50]
delivery
Patients with Clostridioides Proteobacterial;
d1ff1'C1le {nfect}ons (CPI) and 200,000 IU vitamin Ds Lachnosplraceae?;
18 Korea vitamin D insufficiency or dav for 2 weeks RuminococcaceaeT; [51]
(vitamin D P y Akkermansiaceae?;
level <17 ng/mL) Bifidobacteriaceaet

Note: “1” and “]” represent an increase and a decrease in the abundance of the microbial community, respectively.

3.2. Contribution of the Gut Microbiome to Vitamin D Metabolism

Research has shown a correlation between serum 1,25(OH),Dj levels and the shifts
in bacterial community composition or gut microbiota diversity, indicating a role of the
microbiome in regulating vitamin D metabolism and circulation in the gut [52]. While
the gut microbiome does not possess the VDR, the gut microbiota is associated with the
expression of VDR, which in turn affects circulating vitamin D levels. For instance, in
both murine and human intestinal epithelial cells, supplementation with Lactiplantibacillus
plantarum and Limosilactobacillus reuteri increased VDR protein expression, augmented
Paneth cell numbers, and bolstered mice resilience against salmonella-induced colitis in
mice [53]. Moreover, human studies have shown that supplementation with Lactobacillus
reuteri for a duration of 9 weeks led to elevated serum 25(OH) vitamin D3 levels [54].
In obese patients, serum vitamin D levels were significantly positively correlated with
Bifidobacteria abundance in the gut [55]. Conversely, an increase in gut pathogens has been
associated with the down-regulation of VDR expression [56] (Figure 2). In addition, the gut
microbiota can produce lithocholic acid (LCA), which facilitates intestinal absorption of
vitamin D, consequently enhancing its bioavailability [57].
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Figure 2. Unlocking the nexus: vitamin D, gut microbes, and epithelial cell dynamics. The vitamin D

receptors (VDR) are highly abundant in intestinal epithelial cells [58]. Following the entry of vitamin
D into intestinal epithelial cells, VDR can form a heterodimer with RXR. This complex translocates
to the nucleus and binds to the vitamin D response element (VDRE) in the promoter region of the
target genes, thereby regulating VDR expression. Interactions between vitamin D/VDR and intestinal
microbes are observed. On one hand, they enhance tight junction protein expression, maintain
intestinal epithelial tissue integrity, reduce bacterial translocation, promote colonization by beneficial
bacteria, and alleviate mucosal damage and abnormal immune activation [59-61]. On the other
hand, the gut microbiota can produce lithocholic acid (LCA), which facilitates vitamin D absorption.
Created with Biorender.com (accessed on 18 July 2024).

3.3. Role of Vitamin D in Preserving Intestinal Barrier Function

The intestinal barrier constitutes a multifaceted structure comprising the gut micro-
biome, mucus layer, epithelial cell layer, and immune cell layer, playing a pivotal role
in both health and disease. Any impairment in barrier function or subtle alterations in
microbial, mucus, epithelial, or immune components may contribute to the pathogenesis of
complex diseases [62]. As the largest immune organ in the body, the gut harbors various
specialized structures such as plicae circulares, intestinal villi, and crypts within the intesti-
nal mucosa, where the mucus layer, epithelial cells, immune cells in the lamina propria, and
tight junctions work in concert. The intimate association between the intestinal mucosa and
the gut microbiome fosters a symbiotic relationship crucial for immune homeostasis [63,64].
The gut microbiome exerts protective effects by competitively inhibiting the attachment
and proliferation of pathogenic bacteria, while also aiding in nutrient breakdown and
synthesis of essential vitamins and amino acids necessary for host health [65,66]. The
mucus layer, enriched with mucin, antimicrobial peptides, and secretory immunoglobulin
A (slg A), serves as the initial physical barrier encountered by luminal contents, thereby
impeding direct contact between bacteria and epithelial cells and mitigating intestinal
inflammation [67].


Biorender.com

Nutrients 2024, 16, 2352

7 of 18

Intestinal epithelial cells play a pivotal role in maintaining the integrity of the barrier
by establishing a selectively permeable interface between the luminal environment and the
internal milieu. Apart from facilitating nutrient absorption and electrolyte balance, they
serve as a formidable barrier against harmful substances while preserving immunological
vigilance against potentially harmful compounds [67,68]. Moreover, the epithelial cell
layer exhibits specialized immune and endocrine functions, further contributing to barrier
integrity and immune surveillance. The immune cell layer, situated within the lamina pro-
pria beneath the epithelial cells, comprises diverse immune cells, including macrophages,
dendritic cells, T cells, and mast cells, among others, each endowed with specific secretory
and immunomodulatory roles, collectively orchestrating immune responses within the gut
microenvironment [69].

Vitamin D exerts profound regulatory effects on immune cell development and func-
tion. It facilitates the differentiation of mononuclear macrophages into dendritic cells (DCs)
and antigen-presenting cells (APCs), thereby augmenting their capacity for antigen capture
and presentation [70,71]. Moreover, vitamin D promotes the differentiation of T cells into
regulatory T cells (Tregs) while inhibiting the differentiation of inflammatory Th1 and Th17
cells [72,73]. Tregs, through the secretion of inhibitory cytokines such as transforming
growth factor-p (TGF-3) and interleukin-10 (IL-10), modulate immune responses, dampen
inflammatory reactions, and mitigate autoimmune diseases [74]. Th1 and Th17 cells, on
the other hand, are T helper cell subpopulations implicated in the activation of B cells,
neutrophils, and macrophages, as well as the mediation of inflammatory responses by in-
ducing various pro-inflammatory factors, chemokines, and cell adhesion molecules [75,76].
Dysregulation of Thl and Th17 cells is associated with inflammatory and autoimmune
diseases [77,78]. On the one hand, vitamin D can inhibit the activation of intestinal immune
cells (such as T cells) and reduce the production of inflammatory mediators, thereby reduc-
ing the intensity and duration of the intestinal immune response [74]. Specifically, vitamin
D inhibits the production of pro-inflammatory cytokines, including interleukin-6 (IL-6),
interleukin-17 (IL-17), and tumor necrosis factor-« (TNF-o), thereby curbing inflammatory
damage within the gut [79,80]. Furthermore, vitamin D promotes the synthesis of the
anti-inflammatory cytokine interleukin-10 (IL-10), which exerts immunosuppressive effects
by dampening pro-inflammatory mediator production in macrophages and T cells, thereby
enhancing immune regulation [81].

In addition to its immunoregulatory role, vitamin D enhances the integrity of the
physical barrier within the intestinal mucosa. Tight junctions (TJs), composed of various
proteins, including occludin, claudins, and zonula occludens (ZOs), constitute crucial
adhesive structures between intestinal epithelial cells, imparting a vital physical barrier for
mucosal immunity [82]. Disruption of T] integrity leads to increased cellular permeability,
exposure to bacterial toxins, and heightened pro-inflammatory cytokine release, culminat-
ing in immune cell activation and chronic inflammation [83,84]. Vitamin D preserves TJ
expression in epithelial cells, promotes tight junction protein synthesis, prevents epithelial
cell apoptosis, fortifies intercellular connections, and shields the intestinal mucosa from
harmful microorganisms and toxins, thereby mitigating inflammation [35,85] (Figure 3).
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Figure 3. Modulation of intestinal barrier and mucosal immunity by vitamin D. Upon entering
the intestine, vitamin D plays a crucial role in modulating immune responses by facilitating the
differentiation of mononuclear macrophages into B cells and dendritic cells. This process significantly
enhances the recognition and presentation of antigens. Furthermore, vitamin D promotes the transfor-
mation of dendritic cells into T cells, steering their differentiation towards Th2 and Treg phenotypes.
This shift is accompanied by an increase in the secretion of anti-inflammatory cytokines such as
IL-10 and TGF-p, while inhibiting the differentiation into pro-inflammatory Th1, Th17, and Tth cells.
Notably, vitamin D also downregulates the secretion of pro-inflammatory cytokines, including IFN,
TNF-«, IL-17, and IL-6, further attenuating inflammatory responses. Additionally, it upregulates the
expression of tight junction proteins such as occludin, zonula occludens (ZOs), and claudins, thereby
reinforcing intestinal barrier integrity. Created with Biorender.com (accessed on 18 July 2024).

3.4. Consequences of Vitamin D Deficiency on Intestinal Barrier Function

An increasing body of evidence suggests that vitamin D deficiency can disrupt the
integrity of the intestinal mucosal barrier [58,86-88]. Studies conducted in mouse models
of induced colitis have revealed significant alterations in intestinal barrier function among
mice deficient in vitamin D compared to those with sufficient levels. Specifically, defi-
ciencies in vitamin D are associated with heightened intestinal permeability, deeper crypt
mucosal hyperplasia, and increased susceptibility to viral infections [27,89]. In vitro studies
further support the protective role of vitamin D supplementation, demonstrating its ability
to mitigate the escalation of paracellular permeability and redistribution of tight junctions
in human colonic epithelial cells induced by pathogens such as Escherichia coli, thereby
preserving the structural and functional homeostasis of the intestinal epithelium [90]. More-
over, vitamin D deficiency not only exacerbates disease activity but also contributes to
low-grade inflammation. Research findings suggest that infection with Clostridium induces
colonic epithelial cell proliferation and perturbs paracellular permeability in rodent models.
However, compared to healthy counterparts with adequate vitamin D levels, uninfected
mice lacking vitamin D exhibit heightened proliferative responses, increased permeability,
and elevated expression of both pro-inflammatory and anti-inflammatory cytokines in
colon tissue [87]. These findings underscore the critical role of vitamin D in maintain-
ing intestinal barrier integrity and immune homeostasis, highlighting its potential as a
therapeutic target for managing intestinal diseases.
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4. Unraveling the Nexus: Association of Vitamin D with Gut Diseases

Vitamin D emerges as a pivotal factor in maintaining intestinal well-being and in
the prevention and management of associated diseases. Apart from its recognized efficacy
in ameliorating inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and
ulcerative colitis (UC), vitamin D demonstrates promising utility in mitigating symptoms
and complications of irritable bowel syndrome (IBS) and celiac disease (CeD) [91,92]. Notably,
inadequate vitamin D levels are implicated in heightened susceptibility to a spectrum of
intestinal ailments, encompassing IBD, IBS, and CeD (Figure 4). Interventions involving
vitamin D supplementation exhibit therapeutic potential, engendering improvements in
clinical manifestations and enhancing the quality of life for affected individuals [93-95].
Consequently, maintaining optimal vitamin D status assumes paramount importance in
safeguarding intestinal health and in the prophylaxis and management of intestinal diseases.

= e
Vitamin.D 0 a Colon muscle
o4 7 mu
v h, &
hypertrophy, cobblestone
Inflammatory appevaiice, oF

Bowel Disease mucosal ulcer

Genetic predisposition n
Environmental factors N /
Dietary patterns ‘ Constifation/\_Diarrhea A\ifed-tvpe
Stress levels —p Colon abnormal

Emoti [stat Irritable Bowel contraction and mucosal
motional states Syndrome tilcer

P

ha' | y
‘ Abnormal immune
response, assault on

intestinal epithelium, and
Celiac Disease villous atrophy

Figure 4. Factors affecting gut health and the role of vitamin D in gut diseases. Various factors includ-
ing genetic predisposition, environmental influences, dietary patterns, stress levels, and emotional
states contribute to the development of gut-related diseases. In this context, vitamin D supplementa-
tion has emerged as a promising intervention for alleviating conditions such as inflammatory bowel
disease (IBD), irritable bowel syndrome (IBS), and celiac disease (CeD). IBD primarily manifests
through colonic muscle hypertrophy, epithelial tissue fissures, pebble-like alterations (ulcerative
colitis, UC), and mucosal injury (Crohn’s disease, CD). IBS patients often experience abnormal spasms
in the large intestine and mucosal damage, leading to symptoms of constipation (IBS-C), diarrhea
(IBS-D), or a combination of both (IBS-M). CeD, primarily affecting susceptible individuals consuming
gluten, involves abnormal activation of intestinal mucosal immunity, consequently compromising
the integrity of the intestinal barrier. Created with Biorender.com (accessed on 18 July 2024).

4.1. Vitamin D and Inflammatory Bowel Disease (IBD)

IBD comprises a group of chronic, idiopathic intestinal inflammatory conditions, no-
tably encompassing UC and CD [96]. UC manifests as mucosal inflammation extending
from the rectum to the proximal colon, typified by hemorrhagic diarrhea [97]. By contrast,
CD manifests as segmental, asymmetrical, and transmural inflammation, commonly affect-
ing the ileum and colon and presenting with symptoms such as abdominal pain, chronic
diarrhea, weight loss, and fatigue [98]. The etiology of IBD remains elusive, though it is
believed to result from an aberrant immune response to intestinal antigens, influenced by a
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complex interplay of genetic predisposition, environmental factors, and gut microbiome
dysbiosis. Notably, intestinal infection and immune dysregulation are deemed pivotal
in disease pathogenesis [99,100]. Traditionally, IBD has exhibited a higher prevalence in
North America, Northern Europe, and select Western nations compared to Asia, Southern
Europe, and Africa. However, recent years have witnessed a rising incidence of IBD in
Asian countries [101].

Beyond its classical roles in calcium and phosphorus metabolism, vitamin D assumes
a critical function in modulating immune system dysregulation, rectifying gut microbiome
imbalances, and preserving the integrity of the intestinal mucosal barrier [102-104]. Given
its broad-spectrum antimicrobial and immunomodulatory properties, the role of vitamin D
in IBD pathophysiology has garnered increasing attention and elucidation.

The biological actions of vitamin D are predominantly mediated via the VDR, which
governs mucosal barrier homeostasis by upholding the integrity of junctional complexes
and promoting colonic epithelial healing. Consequently, vitamin D exerts regulatory
influence over intestinal barrier integrity, mucosal immunity, and gut microbiome composi-
tion [105]. Vitamin D deficiency may compromise mucosal barrier function, heightening
susceptibility to mucosal injury and predisposing to IBD [88]. Indeed, studies have doc-
umented a high prevalence of vitamin D deficiency in the IBD population, with murine
models of vitamin D deficiency demonstrating impaired antibacterial activity and height-
ened susceptibility to chemically induced colitis [106]. A comprehensive systematic review
encompassing 27 studies and 8316 IBD patients corroborated the association between low
vitamin D levels and disease activity, mucosal inflammation, quality of life scores, and
prognostic outcomes in adult IBD patients [107].

As per the American Institute of Medicine (IOM) guidelines, vitamin D deficiency is
defined by serum 25 (OH)Dj levels below 20 ng/mL (50 nmol/L) [108]. Notably, individu-
als with IBD often struggle to attain adequate vitamin D levels through dietary sources or
sunlight exposure, necessitating oral supplementation [109]. In pediatric IBD patients, vita-
min D supplementation has demonstrated significant efficacy in lowering serum C-reactive
protein (CRP) levels and erythrocyte sedimentation rates (ESR), concurrently elevating
serum 25 (OH)Dj3 and calcium levels. Moreover, higher supplemental doses exceeding
2000 IU per week have shown superior therapeutic outcomes [110]. Similarly, in adult
IBD patients, supplementation with 40,000 IU of vitamin D weekly for 8 weeks has been
shown to markedly reduce disease activity indices, fecal calprotectin levels, and serum
CRP concentrations, while concurrently boosting albumin levels. This underscores the
potential of vitamin D supplementation in mitigating intestinal inflammation in active
colitis patients [111]. Notably, within the dosage range of 2000 IU to 50,000 IU per week, the
therapeutic efficacy of vitamin D supplementation appears to be positively correlated with
dosage escalation, with no reported serious adverse reactions. However, the precise optimal
supplementation dosage remains to be definitively established [91,109]. Ongoing research
aims to elucidate the most efficacious dosing regimen for achieving optimal therapeutic
outcomes in IBD patients.

4.2. Implications of Vitamin D in Irritable Bowel Syndrome (IBS)

IBS represents a multifactorial chronic disorder characterized by recurrent symp-
toms of intestinal dysfunction, spasms, abdominal pain, and alterations in defecation
patterns [112]. Its etiology remains elusive, attributed to a complex interplay of environ-
mental, genetic, and immune factors. Categorized by defecation habits, IBS encompasses
diarrhea-predominant (IBS-D), constipation-predominant (IBS-C), and mixed-type (IBS-M)
presentations [113]. Stress, depression, dysregulation of the brain—-gut axis, dysbiosis of the
gut microbiome, and intestinal infections are among the implicated factors contributing to
IBS pathogenesis [114-118].

A considerable proportion of individuals with IBS may exhibit vitamin D deficiency,
with serum vitamin D levels inversely correlating with disease severity. This underscores
the potential therapeutic utility of vitamin D in IBS management [119,120]. In a randomized
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clinical trial involving IBS-D patients with vitamin D deficiency, supplementation with
50,000 IU of vitamin D over 9 weeks yielded improvements in IBS symptoms and reduction
in serum interleukin-6 (IL-6) concentrations [121]. IL-6, a pro-inflammatory cytokine, plays
a pivotal role in acute inflammatory responses and exerts regulatory effects on nerve
function, regeneration, and metabolism. Elevated serum IL-6 levels have been documented
in IBS patients [122,123]. However, it is noteworthy that achieving a therapeutic effect
with vitamin D supplementation may necessitate doses exceeding the established safe
upper limit. Notably, within safe dosage thresholds, daily supplementation with 3000 IU
of vitamin D over 12 weeks failed to yield therapeutic benefits in IBS management [124].
Thus, optimization of vitamin D supplementation strategies for IBS treatment warrants
further investigation to delineate effective dosing regimens and maximize therapeutic
efficacy while ensuring safety. Continued research efforts are imperative to refine our
understanding and approach to utilizing vitamin D as a therapeutic modality for IBS.

4.3. Influence of Vitamin D in Celiac Disease (CeD)

CeD stands as a chronic immune-mediated disorder of the small intestine, character-
ized by innate and adaptive immune responses triggered by dietary gluten ingestion in
genetically predisposed individuals [125,126]. CeD manifests with diarrhea and mucosal
damage, potentially leading to malnutrition, weight loss, growth retardation in children,
and complications such as osteoporosis and intestinal lymphoma [127-129]. In recent years,
the prevalence rate of CeD has been gradually increasing [130,131]. Currently, the primary
treatment for CeD entails adherence to a strict gluten-free diet (GFD), which facilitates
mucosal healing. However, GFD adherence may pose challenges in achieving adequate
nutrition and necessitates careful dietary management in alignment with evidence-based
guidelines. Studies have found that GFD can improve the composition of the gut micro-
biota but does not appear to safely restore the gut microbiota abundance [132]. Moreover,
emerging non-dietary treatment modalities are under investigation [133-136].

Studies have suggested a correlation between the prevalence of CeD and birth sea-
son, implicating a potential association with ultraviolet B exposure and vitamin D sta-
tus [137,138]. The intestinal mucosal permeability increased in patients with CeD. Gluten
protein is converted into immunogenic molecules under the action of transglutaminase
(TTG), which is presented to immune cells in the lamina propria to induce the production
of inflammatory cytokines, resulting in intestinal villus atrophy and damage to intestinal
barrier function [139,140]. Vitamin D supplementation has shown promise in ameliorat-
ing TJ barrier damage in CeD murine models and bolstering intestinal mucosal immu-
nity [27,88,90]. Clinical studies have demonstrated that daily supplementation with 400 IU
of vitamin D and 400 mg of calcium carbonate over 6 months in pediatric CeD patients on
a GFD regimen effectively alleviates intestinal and systemic symptoms [141]. Furthermore,
vitamin D and calcium supplementation exert notable therapeutic benefits in mitigating
CeD-induced bone metabolic disorders in children [142]. These findings underscore the
potential utility of vitamin D supplementation as an adjunctive therapeutic approach in
CeD management, particularly in conjunction with GFD adherence and comprehensive
nutritional support.

5. Limitations and Future Aspects

In the current landscape of vitamin D and gut health research, while numerous
advancements have been made, several limitations persist. Foremost, the heterogeneity
in experimental designs, sample sizes, and dosage of vitamin D across various studies
poses challenges in drawing generalized and definitive conclusions. This diversity in
methodologies often introduces inconsistencies and potential biases in the interpretation of
results. Further research is warranted in the future to elucidate the impact of vitamin D
on enhancing intestinal health across various physiological stages or in different intestinal
pathological conditions, as well as determining the optimal dosage for supplementation.
Furthermore, the intricate mechanisms underlying the role of vitamin D in modulating
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gut health, particularly its interactions with the gut microbiome and intestinal barrier
function, remain incompletely elucidated. While we have gained valuable insights, a more
comprehensive understanding of these mechanisms is crucial for developing targeted
therapeutic strategies.

The understanding of the role of vitamin D in gut health has made significant progress;
however, there still exist ample opportunities for further research and development. Look-
ing forward, the integration of cutting-edge technologies such as metagenomics, single-cell
transcriptomics, spatial transcriptomics, and metabolomics holds great potential for further
elucidating the intricate role of vitamin D in gut health. These techniques can provide
us with a deeper understanding of the molecular mechanisms and signaling pathways
involved. In particular, future research should focus on investigating the specific role of
vitamin D in intestinal diseases, such as inflammatory bowel disease and irritable bowel
syndrome. Moreover, the utilization of big data and machine learning techniques can sig-
nificantly enhance our ability to analyze vast amounts of research data. These techniques
can reveal new associations, identify potential targets, and facilitate the development of
precision medicine approaches tailored to individual patients.

6. Conclusions

The intestinal mucosal barrier serves as a critical line of defense, preventing the
invasion of harmful substances and maintaining internal environmental stability. Vitamin D
plays a multifaceted role in regulating the integrity of this barrier. It influences the structure
and diversity of the gut microbiome, modulates the proliferation and differentiation of
intestinal immune cells, affects the tight junctions between intestinal epithelial cells, and
regulates immune factors crucial for mucosal immunity. Insufficient levels of vitamin D can
disrupt the delicate balance of the gut microbiome, impair the intestinal mucosal barrier,
and predispose individuals to intestinal diseases.

Despite significant advancements in understanding the impact of vitamin D on gut
health, several fundamental questions remain unanswered and warrant further research atten-
tion. The effects of vitamin D on the gut microbiome are nuanced and varied, necessitating
comprehensive exploration into the underlying mechanisms and optimal dosage thresholds.
Additionally, elucidating the pathogenesis of intestinal diseases and unraveling the intricate
mechanisms governing microbiota responses are areas of ongoing investigation.

A comprehensive examination of the interaction between vitamin D and the gut
microbiome, intestinal epithelium, and immune responses holds immense potential for
the development of rational strategies aimed at protecting or restoring the intestinal bar-
rier. By delving deeper into these interactions, researchers can formulate evidence-based
approaches to mitigate intestinal diseases and identify novel therapeutic targets for enhanc-
ing intestinal health. Thus, further insights into this dynamic interplay are essential for
advancing our understanding and management of intestinal disorders.
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