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Poliovirus infection induces an overall inhibition of host protein synthesis, although some mRNAs continue
to be translated, suggesting different translation requirements for cellular mRNAs. It is known that ribosomal
protein mRNAs are translationally regulated and that the phosphorylation of ribosomal protein S6 is involved
in the regulation. Here, we report that the translation of ribosomal protein mRNAs resists poliovirus infection
and correlates with an increase in p70s6k activity and phosphorylation of ribosomal protein S6.

Poliovirus infection results in a drastic shutoff of cellular
protein synthesis, accompanied by a selective production of
viral proteins (11, 54). This is achieved mostly at the level of
translation by specific impairment of the cap-dependent initi-
ation step (17, 28). In fact, the mRNA of poliovirus, and that
of other picornaviruses, is uncapped and characterized by a
long and structured 59 untranslated region (59UTR) where an
internal ribosome entry site (IRES) can promote cap-indepen-
dent translation initiation (19, 22, 43). One of the mechanisms
responsible for the inhibition of cap-stimulated translation in-
volves the modification and inactivation of the translation ini-
tiation factor eIF4F, due to the cleavage of the eIF4G subunit
(11). On the other hand, the eIF4G cleavage products can
facilitate the translation initiation of viral RNAs, mediated by
an IRES, and of uncapped cellular RNAs (41). Although most
of the host protein synthesis is inhibited in poliovirus-infected
cells, the translation of some cellular mRNAs occurs. They
include the heat shock protein (HSP) mRNAs and the immu-
noglobulin heavy-chain binding protein, c-myc, and eIF4G
mRNAs, which use the mechanisms of internal initiation (25,
39, 50). The cellular modification induced by viral infection to
cellular protein synthesis can help to identify the mechanisms
that normally control mRNA translation.

We were interested in the regulatory mechanisms that
control the translation of ribosomal protein (rp) mRNAs
(rp-mRNAs) (1, 37). It is known that the translation of
rp-mRNAs is regulated by elements contained in the 59UTR of
rp-mRNAs and, in particular, by a typical terminal oligopyri-
midine segment (29, 34). Putative transacting factors can bind
the 59UTR of rp-mRNAs in mammalian and Xenopus cells (5,
26), where they were identified as the La protein and the
cellular nucleic acid binding protein (44, 45). Furthermore, it
was reported that in mitogen-stimulated cells, the efficiency of
translation of mRNAs carrying a 59-terminal pyrimidine tract
is mediated by the activity of p70S6k, the kinase responsible for
the phosphorylation of r protein S6 (4, 23, 24, 55).

In this study, we have investigated the behavior of the class
of rp-mRNAs under the translational conditions caused by

poliovirus infection, in order to obtain information on the
mechanisms that control their translation.

Translation of rp-mRNAs during poliovirus infection. We
analyzed the mRNA distribution between polysomes and mes-
senger ribonucleoprotein particles (mRNPs) in mock-infected
and poliovirus-infected HEp-2 cells. Cells were infected with
the poliovirus type 1 Mahoney strain and incubated for 4 h.
Extracts corresponding to one plate of cell culture from mock-
infected and poliovirus-infected cells were fractionated by su-
crose gradient centrifugation, and the RNA was extracted from
the fractions. Amounts corresponding to the same volumes of
gradient fractions were analyzed by Northern blotting as pre-
viously described (32). A representative example of these ex-
periments is given in Fig. 1, where the polysome-mRNP dis-
tribution of rp-mRNAs is compared to that of b-actin mRNA,
a control mRNA subjected to shutoff. It should be noticed that
in these experiments, only the distribution of the mRNAs
along the gradients should be compared between mock-
infected and infected cells and not the absolute amount of
RNA. In mock-infected cells, about 70 to 80% of the mRNAs
analyzed were loaded onto polysomes to be actively trans-
lated. In infected cells, b-actin mRNA was mostly displaced
to mRNPs at the top of the gradient, as expected, while a large
part of the L4, L32, and L11 rp-mRNAs was still associated
with polysomes. However, these rp-mRNAs were associated
with small polysomes, indicating that in infected cells, transla-
tion initiation might be less efficient than in uninfected cells.
To obtain further information about the translational behavior
of rp-mRNAs at different infection times, we analyzed the
polysome-mRNP distribution of L4, L32, L11, and b-actin
mRNAs at 90 min and 4 h after infection. Figure 2A shows
graphically that, compared with mock-infected cells, the distri-
butions of the rp-mRNAs and b-actin were soon quite differ-
ent. At 90 min after infection, polysome-associated b-actin
mRNA started decreasing and the dislocation of this mRNA to
the top of the gradient reached 90% within 4 h. On the con-
trary, 90 min after infection, about 60% of the L4, L32, and
L11 mRNAs was still associated with large polysomes and after
4 h they remained associated with polysomes which, however,
were smaller. Since gradient analysis is intended to show the
translational activity of the mRNAs and not to quantify their
absolute amount, quantitative aliquots of each extract at dif-
ferent times of infection were taken before gradient loading for
total RNA analysis by Northern blot hybridization to different
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probes. The hybridization signals were quantified by compar-
ison with 5S rRNA, which is structured in the ribosomes and
therefore is expected to be fairly stable. Figure 2B shows that
the level of all the mRNAs analyzed does not change appre-
ciably up to 90 min and, with minor differences, decreases by
about 30 to 35% at 4 h, indicating that rp-mRNAs and b-actin
mRNA are subjected to similar rates of degradation.

To check the activity of polysome-associated mRNA after
poliovirus infection, at 90 min and 3.5 h postinfection, [35S]me-
thionine-[35S]cysteine was added for 30 min to HEp-2 cells to
label synthesized r proteins. Thirty minutes of radioactive pre-
cursor administration was reasonable for detection of accumu-
lated labeled proteins and to overcome the expected effect of
r protein instability due to decreased rRNA synthesis, as will
be discussed later. Considering the short labeling time and the
fact that more extract could not be loaded onto the gel without
pattern distortion, only faint spots can be expected on the
two-dimensional (2D) gel, in accordance with data previously
obtained with other systems (47). After incubation, protein
extracts were prepared from mock-infected and infected cells
and analyzed on a 2D gel optimized to resolve ribosomal pro-
teins (58). Gels were Coomassie stained and fluorographed.
Radioactive r proteins were identified on the 2D gel by their
comigration with the purified human r proteins included in the

sample (58). A polysome gradient experiment was performed
with an aliquot of the extracts from mock-infected and infected
labeled cells to check that the RNA distribution was as ex-
pected, namely, as in Fig. 1 (data not shown). At the same
time, a protein labeling experiment was performed to check
the pattern of total protein synthesis during infection. Figure
3A shows that at 2 h postinfection, the synthesis of r proteins
is still efficient (arrowheads), in agreement with the rp-mRNA
engagement with polysomes described above. However, at this
time, the general inhibition of host cell protein synthesis is
already detectable, as shown by the pattern of total protein
synthesis at different times after infection (Fig. 3B). Note also
the remarkable shutdown of two non-r proteins that can be
seen in Fig. 3A (arrows). At 4 h postinfection, r protein label-
ing is no longer detectable (data not shown). This might be due
to the severe inhibition of rRNA synthesis during poliovirus
infection (7, 49) that becomes relevant with time, thus prevent-
ing accumulation of newly synthesized r proteins. Indeed, it has
been observed in other systems that newly synthesized r pro-
teins become unstable when rRNA needed for assembly is not
available (8, 47, 58). It was recently reported that, following
herpes simplex virus type 1 infection, r proteins continue to be
synthesized during protein synthesis shutoff. However, in this
system, where 60% rRNA synthesis persists in infected cells,

FIG. 1. Polysome-mRNP distribution of mRNA in mock-infected and poliovirus-infected cells. HEp-2 cells were grown at 37°C in Eagle’s minimum essential
medium supplemented with 10% fetal calf serum. When cells reached 80% confluence, the Mahoney strain of poliovirus type 1 was added at a multiplicity of infection
of 50 PFU per cell. A 9-cm-diameter plate culture of mock-infected and infected cells was lysed at 4 h postinfection (10 mM NaCl, 10 mM MgCl2, 1% Triton X-100,
1% Na-deoxycholate, 1 mM dithiothreitol, 10 mM Tris-HCl, pH 7.4) to prepare cytoplasmic extracts (32). Cycloheximide, often used to prevent polysome runoff, was
not added prior to extract preparation, as this drug sometime creates problems (38). Polysome protection can also be obtained by quickly preparing the extract and
loading the sample on the gradient under strict temperature control. The extracts were separated on 15 to 50% sucrose gradients in gradient buffer (0.1 M NaCl, 10
mM MgCl2, 30 mM Tris-HCl, pH 7). Gradient fractions were collected while the optical density profile at 260 nm was monitored (top), and the RNA was prepared
by protease K-SDS-phenol extraction (32) of the fractions. The RNAs from equal volumes of mock-infected and infected gradient fractions were loaded onto two gels
and analyzed by Northern blotting and autoradiography as previously described (32). Each filter was subsequently hybridized to probes for rp-L4 (2), rp-L32 (10), rp-L11
(12), and b-actin (6) mRNAs to obtain a reliable comparison of the distribution of the various RNAs along the same gradient. Probes were prepared by the random
primer technique.
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r proteins are stable, as they can assemble with rRNA into
ribosomes (52). To ascertain rp-mRNA association with poly-
somes later in infection as well, some control experiments were
carried out. Cytoplasmic extracts were prepared 4 h postinfec-
tion and treated with EDTA to dissociate polysomes. Com-
pared to untreated infected cells, a typical rp-mRNA such as
L4 was shifted by EDTA treatment to the top of the gradient,
implying association with polysomes (Fig. 3C, top and middle).
Similar results were obtained for the other rp-mRNAs (data
not shown). Moreover, to show that polysome association was
due to active translation, cells were treated with pactamycin for
30 min at 3.5 h postinfection. This drug, a translation inhibitor
at the initiation step, caused a decrease in polysome size which
resulted in the accumulation of L4 mRNA in the dimer and
80S fractions (Fig. 3C, bottom). The same occurred to other
rp-mRNAs (data not shown). Rehybridization of the filters
with the viral probe showed a signal of the expected size peak-
ing on fraction 3. This might represent the viral particles, which
migrate close to, but never coincide with, the rp-mRNAs
(data not shown). These results support the hypothesis that
rp-mRNAs associate with polysomes, a view further strength-
ened by the fact that at 2 h postinfection, a similar RNA
distribution along the gradient corresponds to protein synthe-
sis activity.

From the results described above, it appears that rp-mRNAs
are fairly resistant to protein synthesis shutoff compared to
b-actin mRNA. Therefore, in spite of the complete cleavage of
eIF4G which already occurs 1 h after infection (Western blot
in Fig. 4), rp-mRNAs can still initiate protein synthesis. Simi-

larly, HSP mRNAs are resistant to poliovirus-induced shutoff
and it has been proposed that they may utilize cap-indepen-
dent initiation (48). The limited secondary structure of the
HSP 59UTR, as well as the short and unstructured 59UTR of
rp-mRNAs, may determine a lower dependence on initiation
factors compared to more-structured mRNAs (9, 20, 53). In
line with this, it has been reported that the efficiency of trans-
lation of rp-mRNAs is regulated independently of the level or
activity of eIF4E (51), whereas the selective translational re-
pression of mRNAs bearing extensive secondary structure in
the 59UTR is relieved by the overexpression of this factor (27).
It was recently reported that eIF4GII, a functional homolog of
eIF4G (hence called eIF4GI), can persist longer in poliovirus-
infected cells, as shown by the fact that about 30% of the entire
form still persists at up to 2 h after infection (14, 15). It can be
argued that the rp-mRNA association with polysomes and
the r protein synthesis described here could be sustained by
eIF4GII in infected cells. However, later in infection, when
eIF4GII is completely cleaved, rp-mRNAs are still associated
with polysomes, suggesting that other elements are also in-
volved.

Analysis of p70S6k activity and S6 phosphorylation during
poliovirus infection. As mentioned above, a relationship among
translation of rp-mRNAs, activity of p70S6k, and phosphoryla-
tion of r-protein S6 has been reported (23, 24, 55). To inves-
tigate the state of p70S6k activity after poliovirus infection, we
performed in vitro kinase assays by using p70S6k immunopre-
cipitated from equal amounts of mock-infected and infected-
cell extracts and 40S ribosomal subunits as a substrate (16). As

FIG. 2. Time course of polysome-mRNP distribution and accumulation of mRNAs during poliovirus infection. (A) Mock-infected and poliovirus-infected cells were
processed at the times indicated as described in the legend to Fig. 1. Northern blots were subsequently hybridized with rp-L4, rp-L11, rp-L32, and b-actin probes.
Measurement of radioactivity, reported as the percentage of mRNA in each fraction, was done by PhosphorImager (Molecular Dynamics) analysis. The optical density
profiles of the sucrose gradients were monitored at 260 nm (top), and the positions of the 80S monomers are indicated. These experiments were performed at least
three times, and the results were consistently similar. (B) One tenth of each extract, prepared at the indicated time postinfection, was taken before gradient loading.
The RNA was extracted, and equivalent amounts were analyzed by Northern blotting as described in the legend to Fig. 1. The filters were subsequently hybridized to
rp-L4, rp-L32, rp-L11, b-actin, and 5S RNA probes (46). Measurement of radioactivity was done by PhosphorImager (Molecular Dynamics) analysis, and the values
obtained were normalized to the signal of the 5S rRNA probe. The level of each mRNA is expressed as a percentage of the amount measured in mock-infected cells (c).
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exemplified by the experiment of Fig. 5A, the ability of p70S6k

to phosphorylate S6 was maintained and even increased 1 h
after infection, reaching a level of two- to three-fold at 5 h.
Similar results were consistently obtained by either immuno-
precipitation or direct incubation with 40S ribosomes of equal
amounts of control and infected-cell extracts. Although we
cannot determine whether this was due to higher p70S6k activ-
ity or to an increased amount of it, the experiments reproduc-
ibly showed an increase in the capacity of p70S6k to phosphor-
ylate S6 in infected cells. Then, to analyze S6 phosphorylation
in vivo, cells were labeled with [32P]orthophosphate for 90 min
at 2.5 h postinfection, thus reaching a total infection time of
4 h, when the in vitro phosphorylating activity was still increas-
ing (Fig. 5A). Proteins were analyzed by 2D gel electrophoresis
as previously described (33), with the exception that in the
second dimension, a sodium dodecyl sulfate (SDS)–15% poly-

acrylamide gel electrophoresis (PAGE) gel was used. The 2D
gel electrophoresis conditions were set up to map S6 phosphor-
ylated forms, as indicated in the legend to Fig. 5B. In this
system, the hyperphosphorylated forms migrate slower in the
first dimension. Figure 5B shows two identical gels loaded with
extracts from [32P]orthophosphate-labeled control and in-
fected cells. Compared to control cells, infected cells show a
slight shift of the S6 spot toward the anode, as measured by the
relative positions of the radioactive S6 and stained, purified r
proteins included in each sample. A small decrease in hypo-
phosphorylated forms and a small increase in hyperphospho-
rylated forms can be seen. This finding, observed in re-
peated experiments, suggests that in infected cells, the level
of S6 phosphorylation is maintained and indeed slightly in-
creased, compared to that in control cells, in line with the
result of the p70S6k kinase assay. Similarly, the activity of the

FIG. 3. Analysis of the activity of polysome-associated RNA in infected cells by metabolic labeling of proteins and by EDTA and pactamycin treatment. (A) HEp-2
cells were grown and infected as described in the legend to Fig. 1. At 90 min postinfection, mock-infected and infected cells were incubated for 30 min with [35S]
methionine-[35S]cysteine (Pro-mix; Amersham; .1,000 Ci/mmol) at a concentration of 0.1 mCi/ml. Cells were harvested in phosphate-buffered saline and homogenized
in 0.5 ml of ice-cold rp buffer (0.1 M NaCl, 1 mM MgCl2, 10 mM HEPES, pH 7.5), acid extracted (58), and processed by the 2D gel electrophoresis method optimized
to resolve r proteins, with the exception that the second-dimension (2D) gel was 13% polyacrylamide (58). A 200-mg sample of r proteins purified from HEp-2 ribosomes
(58) was added as markers to an equal amount of control (c) or infected-cell (i) protein extract (200 mg). Gels were fluorographed and exposed to X-ray film for the
same time. Arrowheads point to some r proteins, and arrows point to non-r proteins. 1D, first dimension. (B) HEp-2 cells, grown and infected as indicated above, were
labeled with Pro-mix (40 mCi/ml) for 10 min at the indicated times after infection. Cells were lysed as described above, and 5 mg of each extract was loaded onto an
SDS–12.5% PAGE gel and autoradiographed. Arrows point to viral proteins. Lane C, control. (C) Untreated infected cells (top) were lysed at 4 h postinfection and
analyzed on a sucrose gradient as described in the legend to Fig. 1. For the EDTA treatment (middle), cytoplasmic extracts, brought to a concentration of 50 mM
EDTA, pH 7.4, were incubated in ice for 5 min, loaded onto sucrose gradients containing 10 mM EDTA instead of magnesium, and analyzed as described in the legend
to Fig. 1. To test the effect of pactamycin (bottom), cells were incubated at 3.5 h after infection with 30 ng of pactamycin per ml for 30 min, thus reaching the 4-h
infection time of untreated cells, and then processed as described in the legend to Fig. 1. When the gradient fractions were collected, the optical density at 260 nm was
monitored. The profiles are shown as a continuous line, and the 80S monomers are indicated by the arrows. Northern blots were hybridized with an rp-L4 probe.
Measurement of radioactivity, reported as a percentage of the mRNA in each fraction, was done by PhosphorImager (Molecular Dynamics) analysis.
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S6 kinase and S6 phosphorylation are stimulated following
herpes simplex virus type 1 infection (21, 35).

It is known that both p70S6k activation and the phosphory-
lation of the initiation factor 4E binding protein (4E-BP1) are
mediated by the mTOR-FRAP signalling pathway (3, 31, 57).
The different phosphorylation state of 4E-BP1 affects eIF4E
activity, since the dephosphorylated form can sequester eIF4E,
thus blocking cap-dependent initiation (30, 42). It has been
recently proposed that the p70S6k–4E-BP1 phosphorylation
pathway bifurcates immediately upstream from p70S6k (56).
Interestingly, it has been found that 4E-BP1 becomes dephos-
phorylated after poliovirus infection (13) while our data indi-
cate that p70S6k activity and S6 phosphorylation do not de-
crease but are maintained and somewhat stimulated in infected
cells. If this is the case, these observations might suggest that
poliovirus infection either influences the p70S6k–4E-BP1 ki-
nase pathway downstream from the bifurcation or differentially
regulates specific phosphatases.

In conclusion, we have identified a new class of cellular
mRNAs that, besides HSP (39), and some IRES-containing
cellular mRNAs recently analyzed with an approach similar to
the one used in this study (25), can be translated in poliovirus-
infected cells. Moreover, we have shown that the selective
translation resistance of rp-mRNAs correlates with the main-
tenance of p70S6k activity and with a small, but consistent,
phosphorylation increase in r protein S6. It is hard to believe
that r protein synthesis resistance is an advantage for the virus,
as rRNA synthesis is inhibited and ribosome assembly is not
possible. It is more likely that r protein mRNA translation can
continue because the conditions required are still sufficient, in
spite of the drastic damage to cellular translation initiation
generated by the infection. This translation survival, that so far
can be identified as lower dependence on initiation factors,
may reveal a feature of the normal mechanism governing rp-
mRNA translation in the cell. It is possible to speculate that
this mechanism can be due to the short and typical rp-mRNA
59UTR; to the utilization of specific ribosomes containing hy-
perphosphorylated S6, a feature that appears to persist under
infection conditions; and to auxiliary factors that specifically
bind the 59UTR of rp-mRNAs (44, 45). Interestingly, one of
these binding factors, La protein, is known to have a positive
role in poliovirus RNA translation in vitro (36). Study of the
mechanisms that govern cellular mRNA resistance to polio-
virus-induced shutoff of protein synthesis adds to our knowl-

edge of the cellular response to viral infection and should
provide important clues to understand the translational reg-
ulation of mRNAs.
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