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Abstract: For commercial processes, through-hole AAO membranes are fabricated from high-purity
aluminum by chemical etching. However, this method has the disadvantages of using heavy-
metal solutions, creating large amounts of material waste, and leading to an irregular pore structure.
Through-hole porous alumina membrane fabrication has been widely investigated due to applications
in filters, nanomaterial synthesis, and surface-enhanced Raman scattering. There are several means
to obtain freestanding through-hole AAO membranes, but a fast, low-cost, and repetitive process
to create complete, high-quality membranes has not yet been established. Here, we propose a
rapid and efficient method for the multi-detachment of an AAO membrane at room temperature
by integrating the one-time potentiostatic (OTP) method and two-step electrochemical polishing.
Economical commercial AA1050 was used instead of traditional high-cost high-purity aluminum for
AAO membrane fabrication at 25 ◦C. The OTP method, which is a single-step process, was applied
to achieve a high-quality membrane with unimodal pore distribution and diameters between 35
and 40 nm, maintaining a high consistency over five repetitions. To repeatedly detach the AAO
membrane, two-step electrochemical polishing was developed to minimize damage on the AA1050
substrate caused by membrane separation. The mechanism for creating AAO membranes using
the OTP method can be divided into three major components, including the Joule heating effect,
the dissolution of the barrier layer, and stress effects. The stress is attributed to two factors: bubble
formation and the difference in the coefficient of thermal expansion between the AAO membrane
and the Al substrate. This highly efficient AAO membrane detachment method will facilitate the
rapid production and applications of AAO films.

Keywords: anodic aluminum oxide; 1050 aluminum alloy; membrane detachment; one-step anodization
process; repetition

1. Introduction

Anodic aluminum oxide (AAO) is widely used in science and industry. However, the
current fabrication methods are still based on a traditional low-temperature and two-step
process from high-purity aluminum (>99.99%) [1–5]. In order to reduce costs and achieve
the high-efficiency production of AAO, it is necessary to increase the reaction temperature,
the voltage, or apply a one-step process. Various applications of AAO have been developed
after researching this topic for several decades, such as nanomaterial synthesis [6–8],
humidity sensors [9–11], bio-applications [12–15], and surface property modification [16,17].
Moreover, the detachment of the AAO membrane for further applications has become an
important research direction. Freestanding AAO films can also be used in many fields,
such as for the synthesis of nanowires [18], membrane filters [19–22], and surface-enhanced
Raman scattering (SERS) applications [23,24].

There are several methods of obtaining through-hole AAO films: for instance, the
chemical method [5,25–28], the voltage reduction method [29], the reverse-bias voltage
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method [18,30–32], the pulse voltage method [33–35], and the two-layer anodization
method [36,37]. In the first chemical method, it is inevitable to use solutions contain-
ing Cu2+ or Hg2+ [26–28], which are harmful to the environment. Also, it inevitably causes
material waste, and the commercial AAO membranes fabricated following this method
have the disadvantage of an irregular pore structure. Therefore, chemical etching with a
heavy-metal solution has been avoided in recent experiments. The reverse-bias voltage
method is the most common method used in papers. The mechanism of AAO detach-
ment relies on the generation of H2 at the Al/AAO interface. Although a complete AAO
film can be obtained, the detachment process takes about 13 to 20 min to finish, which is
relatively time-consuming. Additionally, the bias voltage has to be precisely controlled,
and the AAO thickness must exceed a certain degree, 60 µm, to avoid membrane cracks.
On the other hand, the two-layer anodization method proposed by Masuda et al. [36] can
achieve a complete AAO membrane several times by etching a sacrificial layer grown in
concentrated sulfuric acid. However, the anodization process takes more time, around 13 h,
because of the growth of the third anodization layer, and the electrolyte used may also
affect the environment. To improve the fabrication process, Zhang et al. proposed to grow
the sacrificial layer by annealing, resulting in a serious pore-widening phenomenon [37].
The pulse voltage detachment method is the most efficient for AAO membrane peeling; it
is a fast, one-step, multi-pulse process, but it does not demonstrate membrane integrity
and the possibility of repeating this process for multiple membranes, which reduce the
membrane’s quality and increase material waste [33–35,38]. Generally, the HClO4-C2H5OH
solution used for the detachment process is the same as that used in the electropolishing
pre-treatment, which can avoid the waste of the solution; a voltage 15 V higher than the
anodization voltage was recently suggested for the voltage applied during the detachment
process [35,38,39]. In early 2006, Xia et al. [34] applied 50 V, which is 10 V higher than
the anodization voltage for 3 s, to separate the AAO membrane, but the through-hole
structure had an uneven, small pore diameter, together with a residual barrier layer. In
2002, pulse voltage detachment 15 V higher than the anodization voltage was proposed by
Paterson et al. [38], establishing the foundation for subsequent research efforts. An even
higher voltage, 15 V higher, was proposed by Sulka et al. [35] to detach the AAO membrane,
using 55 V for 3 s, from 1 to 10 pulses, and a low voltage of 0.3 V for 3 s, following the
main voltage of 55 V. In 2019, Sulka et al. [39] contributed to the literature by publishing
photos of the AAO membrane obtained by the pulse voltage detachment method, but the
corners were incomplete, and the process was still not repeatable. In brief, all the research
mentioned above used high-purity aluminum (>99.99%) for the AAO membrane detach-
ment process, with the disadvantages of a long process time [18,31,32,36,37], no complete
membrane photos, and non-repeatable processes [33–35,38], alongside other restrictions.
Therefore, establishing a rapid process to obtain consistently uniform nanostructured AAO
membranes is a worthwhile research direction.

In this paper, we propose a one-step anodization in 0.3 M oxalic acid at 25 ◦C to
produce AAO from economical low-purity AA1050 and a novel one-time potentiostatic
(OTP) method in order to obtain multi-detached AAO complete membranes over a short
process time. The OTP method consisted of applying direct current anodization (DCA) at
40 V to fabricate AAO and detaching the membrane at 50 V. Furthermore, we achieved
repetition and acquired a complete film by applying the two-step electropolishing method
to solve the difficulty of the AAO being easily broken. The mechanism of the OTP method
is also discussed by its three major factors, including the Joule heating effect, the dissolution
of the barrier layer, and stress effects. The current was concentrated on the solution barrier
layer due to its lower resistance compared to the wall barrier, and the increasing Joule
heating led to the chemical dissolution of the barrier. In addition, the stress generated
during the AAO membrane detachment process played an important role for membrane
integrity. The stress was attributed to two factors: bubble formation and the difference in
the coefficient of thermal expansion at the AAO/Al interface, which cause upright stress
and lead to membrane cracking. Therefore, controlling the stress in an allowable range
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during the membrane peeling process is the measure of a successful process. In terms
of membranes with a nanostructure, the potential applications as filters and sensors are
closely related to the nanostructure of the AAO membrane, so the pore size distribution is
hereby verified to examine the consistency of the membrane.

2. Materials and Methods

The experimental process flow is shown in Figure 1. The commercial 1050 alu-
minum alloy was cut into pieces 2.5 cm × 2.5 cm in size and then electropolished by
a two-step process. The first step of coarse polishing was performed at 20 V in a mix-
ture of HClO4:C2H5OH = 1:1 (v/v) for 1 min at 0 ◦C, and the second step of polishing
was conducted in a HClO4:C2H5OH = 1:4 (v/v) solution, under the same conditions, for
5 min [40,41]. The one-step anodization experiments were performed in 0.3 M oxalic acid
by DCA at 40 V, 25 ◦C, for 3 h. The formation of the AAO was achieved using a potentiostat
(Jiehan 5000, Taichung, Taiwan) and a three-electrode electrochemical system with platinum
mesh as the counter electrode, the specimen as the working electrode, and calomel as the
reference electrode. After anodization, the HClO4:C2H5OH = 1:1 (v/v) solution was used
as the electrolyte for the AAO detachment process. We applied DC 50~55 V at 25 ◦C for 3 s
and 20 s with the platinum mesh as the counter electrode and the specimen as the working
electrode. For the repetition, the surface for multi-anodization was polished to reduce
surface roughness by prolonging the two-step polishing with HClO4:C2H5OH = 1:1 (v/v)
for 2 min and HClO4:C2H5OH = 1:4 (v/v) for 10 min, under the same condition. The
detached AAO membrane was coated with 10 nm Pt for scanning electron microscope
(SEM) observation.

The morphology and pore characteristics of the AAO membranes were observed
with a high-resolution field emission scanning electron microscope (HR-FESEM, HITACHI,
SU-5000, Tokyo, Japan). In order to illustrate the pore distributions in detail, SEM mi-
crographs and the AAO membranes were further analyzed with commercial software
(ImageJ ver. 1.53t).
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3. Results

Figure 2a shows the current–time diagram for the first 10 min of the one-step anodiza-
tion process. The specimen was anodized using a potentiostatic method at 40 V in 0.3 M
oxalic acid for 3 h at 25 ◦C. Initially, the direct reaction on the aluminum alloy resulted in a
high current; then, it decreased sharply in a short period due to barrier oxide formation.
After a few seconds, the current stabilized and remained constant for the remaining 3 h.
Figure 2b illustrates the current–time diagram of the AAO detachment process in a solution
of HClO4 and C2H5OH in a 1:1 ratio at 50 V for 20 s. It reveals that the current was initially
quite high, which promoted the dissolution of the barrier layer between the AAO and the
aluminum substrate. As the barrier layer dissolved, the current decreased, leading to the
separation of the aluminum oxide film.

Nanomaterials 2024, 14, 1216 4 of 14 
 

 

3. Results 

Figure 2a shows the current–time diagram for the first 10 min of the one-step ano-

dization process. The specimen was anodized using a potentiostatic method at 40 V in 0.3 

M oxalic acid for 3 h at 25 °C. Initially, the direct reaction on the aluminum alloy resulted 

in a high current; then, it decreased sharply in a short period due to barrier oxide for-

mation. After a few seconds, the current stabilized and remained constant for the re-

maining 3 h. Figure 2b illustrates the current–time diagram of the AAO detachment 

process in a solution of HClO4 and C2H5OH in a 1:1 ratio at 50 V for 20 s. It reveals that 

the current was initially quite high, which promoted the dissolution of the barrier layer 

between the AAO and the aluminum substrate. As the barrier layer dissolved, the current 

decreased, leading to the separation of the aluminum oxide film. 

 

Figure 2. (a) The current–time diagram of AAO anodized by the potentiostatic method at 40 V in 

0.3 M oxalic acid for 3 h at 25 °C. (b) The I-t characteristic curve during the detachment of AAO 

from the Al substrate. 

Figure 2. (a) The current–time diagram of AAO anodized by the potentiostatic method at 40 V in
0.3 M oxalic acid for 3 h at 25 ◦C. (b) The I-t characteristic curve during the detachment of AAO from
the Al substrate.
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Figure 3a,b are optical photographs of the AAO and Al substrate detached for the first
time at OTPs of 55 V for 3 s and 50 V for 20 s, respectively. The membrane obtained at 55 V
for 3 s is detached but appears broken, likely due to uneven peeling stress. In contrast, the
membrane detached at 50 V for 20 s forms a complete, crack-free circle with a diameter of
2 cm. By optimizing the voltage from 55 V to 50 V and extending the detachment time from
3 s to 20 s, the stress effect can be controlled within an acceptable range, resulting in intact
membranes. The film is completely separated without defects or cracks thanks to the lower
reaction rate and fewer bubbles. The diameter of the AAO film is 2 cm, corresponding to a
circular area of about 3.14 cm2, which matches the working area of our holder.
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Figure 3. The optical photograph of the detached AAO membrane and the substrate. Potentiostatic
detachment method performed under (a) 55 V for 3 s, leading to membrane cracking, and (b) 50 V for
20 s, resulting in a complete membrane.

Figure 4 shows the SEM micrographs of the AAO membrane from the top (a), bottom
(b), and cross-section (c). The ImageJ analysis revealed that the pore diameter (Dp) and
interpore distance (Dint) of the nanoporous AAO were 38 nm and 94 nm, respectively, in
the top view (Figure 4a), and 39 nm and 96 nm in the bottom view (Figure 4b). These data
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demonstrate the consistency of the pore structure on both sides of the freestanding film. The
AAO thickness was 37.8 µm (Figure 4c), with a growth rate of approximately 12.6 µm/h.
This growth rate was faster than that achieved with traditional mild anodization, indicating
that increasing the anodization temperature enhances efficiency.
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Figure 4. The SEM micrograph of the AAO membrane from (a) top, (b) bottom, and (c) cross-
section views.

The AAO membrane detachment mechanism of our OTP method is explained in
Figure 5. Figure 5a shows the electrochemical cell setup for the AAO membrane detachment
process, while Figure 5b,c present schematic diagrams of the AAO/Al interface and bubble
generation during membrane detachment. The main factors contributing to membrane
detachment are Joule heat, chemical dissolution, and peeling stress. During membrane
peeling, the current concentrates through the barrier layer of the pores with the electrolyte
due to the lower-resistance path compared to the higher resistance of the AAO wall
barrier (Figure 5b), generating a large amount of Joule heat. This heat causes a rapid
temperature increase in the barrier layer, accelerating its chemical dissolution and opening
the pore bottoms.
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Figure 5. The AAO membranes’ detachment mechanism. (a) The electrochemical cell setup of the
AAO membrane detachment process. (b) The schematic diagram of the AAO/Al interface during
the detachment process. (c) The schematic diagram of bubble generation during the membrane
detachment process.

The integrity of the AAO membranes is mainly affected by stress effects. During
the detachment process, bubbles are generated by chemical dissolution and rise to the
Al/AAO interface (Figure 5c). Initially, bubbles form at the lower-resistance barrier and
expand towards the barrier beneath the wall, influencing membrane peeling with uneven
vertical-to-membrane gas stress from bubble formation and escape. This is due to the
AAO pores being upright with respect to the Al/AAO interface in the electrochemical
cell (Figure 5a), which can easily lead to membrane cracks, especially in large areas with
greater stress.

In our process, we applied 50 V for 20 s instead of 55 V for 3 s to detach the AAO
membrane, reducing chemical dissolution and bubble formation. This controls the stress
within an allowable range, resulting in a complete membrane. Another factor generating
stress is the different thermal expansion coefficients of aluminum and alumina, which
are 23.2 × 10−6/◦C and 7 × 10−6/◦C, respectively. When the temperature of the barrier
layer beneath the pore and the wall increases unevenly, additional uneven thermal stress
is applied to the Al/AAO interface during peeling. By reducing the voltage to 50 V and
prolonging the reaction time to 20 s, we can reduce sudden stress generation and maintain
an acceptable stress over a longer peeling time. This ensures membrane integrity and the
repeatability of the process.
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Table 1 lists the comparison of the fabrication and results of AAO membrane peeling
reported in several journals to ours. In addition to commercial or traditional methods of
Cu2+ or Hg2+ solutions, the methods used can be divided into three categories: the reverse-
bias voltage method [5,19,25–30], the pulse voltage method [32,33,38], and the two-layer
anodization method [34,35]. It is noted that only our work successfully produced through-
hole AAO membranes from low-purity aluminum. Moreover, it took only 3 h to prepare
the AAO, which proved that our process had the advantages of being fast and having a
high efficiency and a low cost. In terms of membrane detachment, some teams claim that
they took only 3 s of the pulse voltage detachment method to achieve AAO film separation,
but none of these articles mention their film’s integrity and process repeatability. Although
the reverse-bias voltage method and the two-layer anodization method can obtain complete
membranes and repetition on the same substrate, these processes take more time, around
8~32 h, and steps. Also, the reverse-bias voltage method has film thickness restrictions and
the voltage need to be precisely controlled during several stages. The two-layer anodization
method inevitably uses a solution that is harmful to the environment or causes the large
pore widening phenomenon. Furthermore, it is based on growing a sacrificial layer to
achieve AAO membrane separation. This requires a total of three anodizations [36,37] and,
possibly, an additional annealing process [37], which prolongs the time needed to obtain a
single membrane. In this study, we demonstrate our method’s ability to repeatedly detach a
complete AAO membrane, five times, and each detachment process took only 20 s. Overall,
we proposed a fast, low-cost, and relatively green process to detach complete through-hole
AAO membranes in one step, repeatedly, which can solve the disadvantages of complex
steps, time-consuming methods, membrane integrity, non-repeatability, or toxic solutions,
as mentioned above.

Table 1. Comparison of AAO membrane detachment methods and results.

Ref. Method Al Purity Anodization
Step/Solution

AAO
Fabrication

Time (h)
Detachment

Time
Photographs
of Complete
Membrane

Repetition of
AAO

Membrane

[22]
(Commrcial
membrane)

Chemical etching
method 99.999% NA NA NA Complete NA

[18] Reverse-bias
voltage method 99.999% two-step/

Sulfuric acid 25 20 min Complete 6 times

[31] Reverse-bias
voltage method 99.999% two-step/

Sulfuric acid 44 13 min Local * NA

[32] Reverse-bias
voltage method 99.999% two-step/

oxalic acid 8–32 30–90 s Local * 5 times

[33] Pulse voltage
method 99.999% two-step/

oxalic acid 28 3 s
(1 cycle) Local * NA

[34] Pulse voltage
method 99.99% two-step/

oxalic acid 5 3 s
(1 cycle) Local * NA

[35] Pulse voltage
method 99.999% two-step/

oxalic acid 5 3–60 s
(1–10 cycle) Local * NA

[39] Pulse voltage
method 99.999% two-step/

sulfuric acid 12–20 3–60 s
(1–10 cycle) Partial NA

[36]
Two-layer

anodization
method

99.999% three-step/
sulfuric acid 13.5 15 min Complete 10 times

[37]
Two-layer

anodization
method

99.999% three-step/
oxalic acid 27 75 min Complete 4 times

Ours
Short one-time
potentiostatic

method

Al 1050 alloy
(~99.5%)

one-step/
oxalic acid 3 20 s Complete 5 times

* SEM images only.
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Figure 6 shows the optical microscope images from the aluminum substrate surface
during the experimental process: (a) after the initial two-step electrochemical polishing;
(b) after AAO membrane detachment; (c) after performing the same polishing parameters
on the substrate following AAO membrane detachment; and (d) after further extending
the polishing time for HClO4:C2H5OH= 1:1 by 2 min and for HClO4:C2H5OH = 1:4 by
10 min. During the AAO membrane detachment process, a significant amount of Joule
heat is generated, which makes the aluminum substrate surface become uneven, as shown
in (b). This is also the main reason why the pulsed voltage detachment method with
similar reaction mechanisms cannot be repeated. Therefore, we developed and improved
a two-step electrochemical polishing method to overcome defects and roughness on the
substrate, enabling the repetition of AAO membrane creation on the same substrate. How-
ever, since the surface of the aluminum substrate becomes rougher after AAO membrane
detachment compared to its initial state, it is observed that there are still some rough
traces under the same polishing conditions in (c). When we extended the polishing time
for HClO4:C2H5OH= 1:1 by 2 min and for HClO4:C2H5OH = 1:4 by 10 min, as shown in
(d), the defects were significantly reduced, allowing the subsequent repeated detachment
process to proceed smoothly.
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Figure 6. The optical micrographs of (a) AA1050 after two-step electropolishing; (b) AA1050 after
first AAO membrane detachment; (c) two-step electropolishing on (b); and (d) prolonged two-step
electropolishing on (b).

Figure 7a,b show the optical images of the AAO membrane after the third and fifth
detachment process, respectively. The freestanding AAO films are still quite complete
after several detachment experiments, which is attributed to the multi-step electrochemical
polishing. The anodization and detachment process by the potentiostatic method is a
feasible technique and can be repeatedly performed to obtain stable results on the same
substrate. Figure 8 shows the SEM micrographs of AAO morphology from the top side
(a,c) and the bottom side (b,d). The graphs from (a,b) and (c,d) are the AAO films after
the third and fifth detachment, respectively. Following the ImageJ analysis, the average
pore diameters of the membranes are 39 nm, 39 nm, 38 nm, and 40 nm, corresponding to
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Figure 8a–d, respectively. After repeated experiments, the obtained AAO films were still
highly consistent, with a similar morphology.
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Figure 8. The SEM micrographs of the AAO surface from the top (a,c) and bottom (b,d) side obtained
by the third (a,b) and fifth (c,d) repetitions of AAO membrane detachment, respectively.

Figure 9a,b show the AAO pore distribution analysis from the first detachment from
the top and bottom view, referring to Figures 4a,b, and 9c–f are from the third and fifth multi-
detachment SEM images, corresponding to Figure 8a–d, respectively. The pore diameter of
the AAO membrane presents a unimodal distribution, and the peaks fall between 35 and
40 nm on both sides of the membrane. In Figure 9a, the range of 38 ± 5 nm pores occupies
the main distribution, and the distribution uniformity is 63%, calculated by the ratio of pores
located at these main peaks to the whole amount of pores. In Figure 9b,c,e, the distribution
uniformities are 63%, 59%, and 60% in the range of 38 ± 5 nm, respectively. In Figure 9d,f,
the distribution uniformities are 59% and 60% in the range of 38 ± 5 nm and 40 ± 5 nm.
The pore distribution is still highly consistent after five membrane detachments, which
indicates that the microstructure of AAO has not changed within the multi-detachment
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process. It has been proven that our method can obtain high-quality AAO membranes
quickly and repeatedly.
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4. Conclusions

We propose a rapid and efficient method for the multi-detachment of the AAO mem-
brane at room temperature by integrating the OTP method and two-step electrochemical
polishing. This method allows for repeatedly detaching complete AAO membranes from
the same substrate, overcoming the drawbacks of complex steps and time-consuming
methods such as the voltage reduction method, the reverse-bias voltage method, or the
two-layer anodization method, or the inability to obtain multiple complete films, such as
the pulse voltage methods. Our method takes less than 200 min to fabricate a high-quality
AAO membrane, and the membrane detachment process is just 20 s long. The anodization
and detachment processes are conducted at 25 ◦C, which overcomes the shortcomings
of low-temperature reactions in the past and improves the manufacturing efficiency of
AAO through-hole membranes. We repeated the detachment of the AAO membranes five
times on the same substrate, and the pore diameters were highly consistent, between 35
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and 40 nm, with a unimodal distribution, according to our SEM micrograph analysis. The
improved two-step electrochemical polishing was applied to reduce the surface rough-
ness and impurities of the substrate, key to successfully separating AAO films multiple
times from the same substrate. Furthermore, we explained the AAO membrane peeling
mechanism from multiple aspects, including Joule heating, chemical dissolution, and stress
effects. The stress was attributed to bubble formation and the difference in the coefficient
of thermal expansion between the AAO membrane and the Al substrate. Reducing the
detachment voltage from 55 V to 50 V and prolonging the process time from 3 s to 20 s can
control the stress effect within an allowable range. These are the main factors to consider in
order to obtain a complete membrane using our OTP method.
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