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Abstract: Terpenoids and steroids are secondary plant and animal metabolites and are widely used to
produce highly effective pharmacologically significant compounds. One of the promising approaches
to the transformation of these compounds to form bioactive metabolites is their transformation using
microorganisms. Rhodococcus spp. are one of the most developed objects in biotechnology due to
their exceptional metabolic capabilities and resistance to extreme environmental conditions. In this
review, information on the processes of biotransformation of terpenoid and steroid compounds by
actinomycetes of the genus Rhodococcus and their molecular genetic bases are most fully collected and
analyzed for the first time. Examples of the use of both native whole-cell catalysts and mutant strains
and purified enzyme systems for the production of derivatives of terpenoids and steroids are given.
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1. Introduction

Actinomycetes are a large group of Gram-positive bacteria that are widespread in
terrestrial and aquatic ecosystems. The phylum Actinomycetota is represented by six valid
classes: Actinomycetes, Acidimicrobiia, Coriobacteriia, Nitriliruptoria, Rubrobacteria, and Ther-
moleophilia (https://lpsn.dsmz.de/phylum/actinomycetota, assessed on 18 June 2024).
Among actinomycetes, there are various phenotypes, such as anaerobes, aerobes, spore-
forming, unicellular, and filamentous forms. They have a relatively large genome, often
exceeding 5 Mb, and are characterized by a high (from 50 to more than 70 mol. %) GC
content in DNA. Morphology of different actinomycetal species varies from coccoid (e.g.,
Micrococcus) and rod-shaped (e.g., Arthrobacter) forms to fragmented (e.g., Nocardia) or
highly differentiated branched mycelium (e.g., Streptomyces). Actinomycetes exist in a
free-living form or as commensals or symbionts of other organisms [1]. They play an
important role in the decomposition of organic substances such as cellulose and chitin and
take part in the natural carbon cycle [2].

Representatives of Actinomycetes produce a large number of biotechnologically signifi-
cant enzymes, such as amylases, cellulases, proteases, chitinases, xylanases, peroxidases,
nitrile hydratases, and pectinases [3]. More than 22,000 biologically active microbial metabo-
lites are known, 45% of which are catalyzed by actinomycetes [4].

One of the groups of microorganisms widely developed in biotechnology is actino-
mycetes of the genus Rhodococcus sensu stricto, characterized by a wide variety of trans-
formable, hard-to-reach compounds [2,5,6]. The non-mycelial growth, the ability to pro-
duce biosurfactants, the polytrophy, and the lability of metabolic systems of rhodococci
determine the expediency of their using in biocatalysis and fine synthesis [7–11]. A
number of review articles have been published regarding the use of the biotechnolog-
ical potential of rhodococci for the degradation and transformation of complex organic
compounds [5,6,12–16]. At the same time, this prepared review is the first work on the
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summarizing and analysis of data on the use of actinomycetes only of the genus Rhodococcus
for the transformation of terpenoid and steroid compounds.

Terpenoids and steroids are secondary metabolites of plants and animals with a wide
range of biological activity. These compounds are actively used as scaffolds for the synthesis
of new substances with high pharmacological potential. Steroids and their derivatives are
widely used in medical practice [17,18], while terpenoids and their derivatives are just
gaining popularity. At the moment, only a few terpene compounds have been used in
clinical trials [19–21]. One of the most common ways to obtain valuable derivatives of
terpenoids and steroids is by chemical modification. This usually requires high temperature
and pH, the use of expensive reagents, and the introduction of protective groups of molecule
reactive centers. Microbial transformation of terpenoids and steroids allows biologically
active derivatives with high regio- and stereoselectivity under normal and environmentally
friendly conditions to be obtained [10,22,23]. This review is an attempt to highlight the
role of actinomycetes of the genus Rhodococcus as biotransformers of terpenoid and steroid
compounds and show directions of research development in this field.

2. Using the Biochemical Potential of Whole Bacterial Cells

The use of native bacterial cells in biocatalysis is economically more profitable in
comparison with the use of transforming enzyme systems or individual enzymes. Despite
the exceptional selectivity and substrate specificity of individual enzymes, their use is
limited by low stability and a narrow range of metabolizable substrates. The range of
substances that can be transformed by whole bacterial cells is much wider. Their use
allows complex transformations to be carried out in one technological stage with a high
degree of selectivity and in environmentally friendly conditions. In addition, bacteria
secrete all necessary cofactors and provide a natural environment for enzymes, preventing
conformational changes in the structure of proteins and loss of their reactivity [24]. Thus, the
specificity of multi-purpose enzyme systems, the absence of problems with the regeneration
of coenzymes, and stable activity in extreme environmental conditions make the use of
living cells of rhodococci in biocatalysis technologically promising.

2.1. Transformation of Terpene Compounds

Terpenes are widespread and structurally diverse unsaturated hydrocarbons that are
derivatives of mevalonic acid, whose structure is based on isoprene units (C5H8). Terpenes
are the largest class of natural compounds and have more than 50,000 known representative
molecules [25].

Oxygen-containing terpenes are called terpenoids [26]. They are secondary metabolites
of plants and often highly hydrophobic. According to the number of isoprene units in
the structure of the molecule, there are mono-, sesqui-, di-, tri-, tetra-, and polyterpenoids
(Figure 1).

In plants, terpenoids and their derivatives perform a variety of functions, acting as
photosynthetic pigments, electron carriers, and regulators of growth and development.
In addition, these compounds are involved in protection against insects, pathogens, and
extreme environmental factors [27]. Terpenoids have a wide range of biological activity,
exhibiting anti-inflammatory, antimicrobial, antiviral, analgesic, antitumor, antifungal, and
other actions [25,28]. It is also worth noting that in recent years there has been a growing
interest in plant terpenoids as a promising base for the production of biofuels [29]. In
this regard, there is an active development of modern ways of using terpenoids and their
derivatives in various fields of industry. One of the promising directions is their microbial
transformation, aimed at obtaining biologically active derivatives. This approach makes
it possible to eliminate the difficulties associated with the use of native substrates, and
at the same time carry out transformation reactions according to the principles of “green
chemistry” and the strategy of sustainable development [30].

At the moment, a large amount of knowledge has been accumulated about biotrans-
formations of mono-, di-, and triterpene compounds using bacteria, fungi, and even insect
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larvae. The vast majority of the described studies on bioconversion by actinomycetes
of the genus Rhodococcus are devoted to the transformation of monoterpene substrates
such as limonene, carveol, 1,8-cineol, etc. Only in recent years, has a tendency to study
biotransformations of more complex cyclic terpene compounds been traced.
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Figure 1. Representatives of terpenes.

The first information about the catalytic activity of Rhodococcus spp. in relation to
terpenoids was obtained in the late 1980s. Already at that time, much attention was paid not
only to the technological process of conversion and its optimization but also to the features
of microorganism enzyme systems involved in the studied transformations. Williams et al.
(1989) reported that the isolated strain Rhodococcus sp. C1 utilizing 1,8-cineole (1) as the only
carbon source accumulated 6-endo-hydroxycineol (2) and 6-oxocyneol (3) (Figure 2) [31].
Subsequently, the obtained metabolites, together with the initial substrate, were oxidized by
washed bacterial cells. The studies revealed that 6-endo-hydroxycineol dehydrogenase and
NADH-dependent 6-oxocineol oxygenase were presumably involved in the conversion.
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Figure 2. Scheme of biotransformation of 1,8-cineol (1) by Rhodococcus sp. C1 cells [31].

It was shown that R. opacus PWD4 is capable of conducting toluene-induced enantios-
elective hydroxylation of D-limonene (4) to form (+)-trans-carveol (up to 97%) (5) and small
amounts of (+)-carvone (6) (Figure 3). It was suggested that toluene-degrading enzymes
may participate in the catalysis, since the change of the co-substrate from toluene to glucose
led to a loss in the transformation activity of rhodococci in relation to limonene [32].
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An extensive series of studies carried out by various scientific groups is devoted to the
catalytic activity of R. erythropolis DCL14 against monoterpenoids limonene-1,2-epoxide,
carveol, and limonene. The first data on this strain as an effective biotransformer of (+)-
limonene were presented by van der Werf and de Bont in 1998 [33]. The intermediate
products obtained during degradation, limonene oxide and p-menth-7-ene-l,2-diol, did not
represent great biotechnological value; however, they enabled an expansion of the under-
standing of the pathways of microbial metabolism of limonene and created a foundation
for future research.

Subsequently, a research group led by Carla C.C.R. de Carvalho (Portugal) selected
optimal conditions for the use of native R. erythropolis DCL14 cells. Thus, the inclusion
of an organic solvent containing the substrate in the reaction system made it possible
to increase the rate of hydrolysis of limonene-1,2-epoxide (7) to limonene-1,2-diol (8),
oxidation of (−)-carveol (9) to carvone (6), and conversion of limonene (4) to carveol (9)
and carvone (6) (Figure 4) [34–36]. Fractions of essential oils of Citrus and Cymbopogon
plants contained carvone, cis-carveol, and trans-carveol possess antibacterial, antioxidant,
and antiproliferative properties [37,38].
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Figure 4. Scheme of biotransformations of limonene-1,2-epoxide (7), (−)-carveol (9), and limonene (4)
by R. erythropolis DCL14 cells [34–36].

A strain of Rhodococcus sp. GR3 isolated from soil carried out the oxidation of geraniol
(10) to geranic acid (11) with a yield of up to 54.6% (Figure 5) [39]. Geranic acid has
tyrosinase inhibitory activity [40] and is used for the synthesis of esters, with pronounced
insecticidal activity against aphids [41].
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We previously studied the bioconversion of monoterpene alcohol (−)-isopulegol (12)
by R. rhodochrous IEGM 1362 cells with the formation of two new 10-hydroxy (13) and
10-carboxy (14) derivatives (Figure 6) [11]. According to the results of the in silico analysis,
the obtained metabolites may have antitumor activity, and are also promising as respiratory
analeptics and agents for the prevention of cancer of the genitourinary system.
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The ability of resting cells of R. erythropolis MLT1 to transform the acyclic monoterpene
β-myrcene (15) was revealed (Figure 7) [42]. On the basis of this substrate being used as
the only carbon source, the monoterpene alcohol geraniol (10), which has antibacterial
activity against clinical strains of staphylococci and enterobacteria [43] and is widely used
in perfumery, the food industry, and as an insect repellent [44], was obtained.
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In recent years, in addition to monoterpene substrates, the ability of Rhodococcus
actinomycetes to convert more complex organic compounds such as diterpene resin acids
and lupane and oleanane pentacyclic triterpenoids has been revealed [45–47]. Interestingly,
of the rather large species diversity of cultures used in screening studies, representatives
of R. rhodochrous showed the greatest catalytic activity. At the same time, the greatest
efficiency of microbial conversion was achieved using resting rhodococcal cells (washed
from the medium at the end of the exponential growth phase and placed in a buffer with
a substrate) [47]. Being in this state, bacterial cells have an increased energy resource
specifically for biotransformation of the substrate. In addition to increasing the amount of
the resulting transformation product, this approach allows for more precise control of the
amount of biomass and also does not require sterile transformation conditions.

An effective biocatalyst of the biodegradation process of toxic dehydroabietic acid (16)
has recently been developed using resting cells of R. rhodochrous IEGM 107 [45], and the
formation of two less ecotoxic intermediates, 7-oxo-DHA (17) with moderate antibacterial
activity [48] and 11,12-dihydroxy-7-oxo-abieta-8,13-dien-18-oic acid (18), has been detected
(Figure 8).
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Figure 8. Scheme of biotransformation of dehydroabietic acid (16) by resting cells of R. rhodochrous
IEGM 107 [45].

The regioselective oxidation of the 3β-hydroxyl group of the pentacyclic triterpenoid
betulin (19) was studied using R. rhodochrous IEGM 66 cells (Figure 9) [46]. The metabolite
betulone (20) obtained as a result of transformation is a promising intermediate in the
synthesis of cytotoxic derivatives [49]. The highest yield of the product (up to 75%) was
achieved using resting actinomycete cells, while the maximum catalytic activity of growing
cells was only 45%.
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Figure 9. Scheme of biotransformation of betulin (19) by R. rhodochrous IEGM 66 cells [46].

Resting cells of R. rhodochrous IEGM 1360 showed high catalytic activity against oleano-
lic (21) and glycyrretinic (22) acids with the formation of 3-oxo derivatives (23, 24) (with an
efficiency of 61% and 100%, respectively) (Figure 10) [47]. The use of a suspension of resting
cells in comparison with the transformation in growth conditions allowed the conversion
time to be reduced from 7 to 3 days. 3-Oxo derivatives of oleanolic and glycyrrhetinic
acids are known as anti-inflammatory [50,51], cytotoxic [52–54], antiparasitic [55,56], and
antiviral [57] agents.
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More complex transformations of oleanolic acid (21) were achieved using R. rhodochrous
IEGM 757 [58]. As a result of the complete conversion of the initial substrate, a new
bioactive metabolite, 3β,5α,22α-trihydroxyolean-12-ene-23,28-dioic acid (25), was obtained
(Figure 11).
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2.2. Transformation of Steroid Compounds

Steroids and sterols are biogenetically close to terpenoids and are formed from triter-
pene precursors. Steroids and sterols are compounds of animal or plant origin that are
widespread in nature and have high biological activity. They are components of cell mem-
branes, act as signaling molecules, and also play an important role in the development
of cancer.

The basis of the steroid skeleton is cyclopentane perhydrophenanthrene (sterane,
gonane), the structure of which consists of four carbon rings, three cyclohexane and one
cyclopentane. Based on biological function or activity, steroids can be classified into several
types: bile acids, steroid hormones, cardioactive glycosides and aglycones, and steroid
saponins (Figure 12) [59].
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Native steroid compounds, when used as medicines, often cause various side effects.
Modification of the side chain of steroid molecules makes it possible to obtain compounds
with more pronounced biological activity, which helps to reduce drug dosages and, as a
result, reduce the manifestation of undesirable side effects.

There are many steroid compounds among environmental pollutants, which accu-
mulate in reservoirs and exhibit negative environmental effects. In this regard, another
area of microbial transformations of steroids is their degradation in order to purify the
environment from pharmaceutical pollutants [60]. Having a relatively high hydrophobicity,
steroids do not biodegrade easily. Nevertheless, the mechanisms of steroid metabolism
using aerobic (including Rhodococcus) and anaerobic microorganisms, as well as the key
stages and enzymes involved in the process of steroid conversion and genes encoding
them, have been studied in detail [61]. Of particular interest to researchers are methods
of obtaining pharmacologically significant steroid derivatives based on the use of genetic
engineering of Rhodococcus spp. cells.

9α-Hydroxy derivatives of steroids are valuable intermediates in the synthesis of
compounds with targeted anti-inflammatory activity. A large part of studies on the hy-
droxylation of androst-4-ene-3,17-dione (AD) by actinomycetes of the genus Rhodococcus
was carried out by a group of scientists from Bulgaria [62]. The difficulty of this reac-
tion lies in the high activity of ∆1-steroid dehydrogenase of microorganisms. When this
enzyme is combined with 9α-steroid hydroxylase, an unstable intermediate 9α-hydroxy-l,4-
androstadiene-3,17-dione is formed, and subsequently complete degradation of the initial
substrate occurs. For the first time, the ability of rhodococci to direct biotransformation of
AD (26) into 9α-hydroxy-4-androstene-3,17-dione (9α-OH-AD) (27) was recorded using
Rhodococcus sp. isolated from oil-contaminated soil (Figure 13) [62]. However, the yield of
the product when using the substrate in a concentration of no more than 3 g/L reached
only 70%.
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The subsequent series of research concerned the optimization of the process of 9α-
hydroxylation of AD using Rhodococcus sp. IOC-77 cells by the selection of optimal substrate
solvents, the composition and characteristics of the reaction medium, and the effect on the
enzyme systems of microorganisms [63–67]. The most significant results were achieved
in experiments with blocking protein synthesis and preliminary adaptation of bacterial
cells to the substrate, which allowed for the complete conversion of AD to 9α-OH-AD [64].
Recently, data have been obtained on the use of rhodococci pre-grown on n-alkanes to
double the yield of 9α-OH-AD compared with the efficiency of using cells grown on
glucose [67].

The strain R. erythropolis Ac-1740 obtained as a result of directed selection showed
the ability to completely convert AD to 9α-OH-AD [68]. The advantage of this strain is
its low degradation activity against the steroid core due to the absence of 3-ketosteroid-
1,2-dehydrogenase, which greatly simplifies the selection of optimal reaction conditions
and the further use of a biocatalytic system for the production of the target product. Thus,
a method has been developed for the production of 9α-OH-AD from a mixture of soy
sterols using the microbial association Mycobacterium neoaurum Ac-1634 and R. erythropolis
Ac-1740. According to Andryushina et al. [69], M. neoaurum Ac-1634 cells transformed the
initial mixture of phytosterols (sitosterol, stigmasterol, campesterol, and saturated sterols)
into AD, the subsequent 9α-hydroxylation of which to the target product occurred with
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the participation of R. erythropolis Ac-1740 cells. It should be noted that the use of these
biocatalysts for the first time made it possible to increase the initial concentration of the
substrate to 13.5 g/L.

In addition to 9α-hydroxylation, another reaction catalyzed by rhodococci is aromati-
zation of the A ring of steroid molecules. A group of scientists from Egypt [70] discovered
the ability of Rhodococcus sp. DSM 92-344 to aromatize 19-nortestosterone (28) to form
estrone (29) and estradiol (30) (Figure 14), with a maximum overall conversion efficiency of
up to 77%. Further optimization of the steroid biotransformation process using an air-lift
column allowed for an increase in the yield of products to 56 and 23%, respectively [71].
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lower doses of the drug. According to the results of screening 13 rhodococcal strains, R. 
coprophilus DSM 43347 showed the highest target activity, catalyzing Δ1-dehydrogenation 
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Figure 14. Scheme of biotransformation of 19-nortestosterone (28) by Rhodococcus sp. DSM 92-344
cells [70].

The transformation of progestin dienogest (31) using R. erythropolis FZB 53 cells was
studied in order to obtain pharmaceutically active compounds [72]. Despite the authors’
supposed manifestation of nitrile hydrolase activity by this strain, the main direction
of dienogest transformation was the aromatization of the A ring with the formation of
estra-1,3,5(10)-triene (32) and 1,3,5(10),9(11)-tetraene (33) compounds, which subsequently
transformed to 17α-acetamide derivatives of estradiol (34) and 9(11)-dehydroestradiol (35)
(Figure 15). However, the process of obtaining target products 34 and 35 turned out to be
quite long and was up to 27 days.
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Costa et al. [73] conducted research on the development of an alternative method
for the synthesis of therapeutically effective steroids prednisone and prednisolone. The
glucocorticoids cortisone and hydrocortisone have anti-inflammatory activity, but their use
is difficult due to many side effects. In this regard, it is promising to use more effective
derivatives of these compounds, prednisone and prednisolone, which allows for lower
doses of the drug. According to the results of screening 13 rhodococcal strains, R. coprophilus
DSM 43347 showed the highest target activity, catalyzing ∆1-dehydrogenation of cortisone
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(36) and hydrocortisone (37), with the formation of prednisone (38) (94%) and prednisolone
(39) (97%), respectively (Figure 16).
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genase, and reductase in the process of biodegradation of 7-ketocholesterol (42) was re-
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Figure 16. Scheme of biotransformation of cortisone (36) and hydrocortisone (37) by R. coprophilus
DSM 43347 cells [73].

Based on cortisone (36), new compounds with potential cytotoxic activity, 1,9β,17,21-
tetrahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11,20-dione (70%) (40) and
1,9β,17,20β,21-pentahydroxy-4-methyl-19-nor-9β-pregna-1,3,5(10)-trien-11-one (20%)
(41), were obtained using whole R. rhodnii DSM 43960 cells (Figure 17) [74]. Additionally,
the time of complete conversion of the initial substrate was only 24 h.
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It has been shown that R. erythropolis MTCC 3951 is a promising strain for the biodegra-
dation of 7-ketocholesterol (42), which has a cytotoxic effect and causes various age-related
pathologies [75]. As a result of optimization, 93% degradation of the substrate was achieved
and the participation of the enzymes cholesterol oxidase, lipase, dehydrogenase, and reduc-
tase in the process of biodegradation of 7-ketocholesterol (42) was revealed. 4-Cholesten-3,7-
dione (43), chol-5-en-3,7-dione (44), and androsta-4-ene-3,7,17-trione (45) were identified as
intermediates (Figure 18).
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Hao et al. (2024) obtained interesting data on Rhodococcus sp. RSBS9 isolated from
dairy farm soil capable of efficient degradation of 17β-estradiol under low-temperature
conditions [76]. The strain retained catabolic activity against the steroid at 10 ◦C (up to 94%)
and even 5 ◦C (56%). The obtained information indicates the prospects of using rhodococci
to develop methods for the treatment of polluted ecosystems at low temperatures.

3. Using Bacterial Enzymes

The ability of bacterial cells to transform various compounds is due to the action of
their enzyme systems. A logical trend in the development of biotechnology is the isolation
and purification of bacterial enzymes, as well as their overexpression in model organisms in
order to scale the production of target compounds. The use of individual enzymes allows for
highly selective reactions with repeated use, reduces sterility requirements, and simplifies
the process of isolation and purification of the target product [24]. In this regard, studies of
the catalytic activity of Rhodococcus spp. in relation to terpene and steroid substrates were
accompanied by the study of microbial enzymes involved in transformations, as well as
functional genes encoding them.

3.1. Transformation of Terpene Compounds

At the end of the last century, Dutch microbiologists obtained data about a new path-
way for the biodegradation of (4R)- and (4S)-isomers of limonene by R. erythropolis DCL14
cells [77,78]. The enzymes limonene-1,2-monooxygenase, limonene-1,2-epoxide hydro-
lase, limonene-1,2-diol dehydrogenase, and 1-hydroxy-2-oxo-limonene-1,2-monooxygenase
participated in these transformations of limonene. In addition, the limA gene encoding
limonene-1,2-epoxide hydrolase was identified and overexpressed in E. coli [79].

The same research group isolated and purified a new enzyme from R. erythropolis
DCL14, nicotinoprotein dichlorophenolindophenol-dependent carveol dehydrogenase,
which catalyzes the oxidation of carveol to carvone (see Figure 4), and revealed limonene
and carveol-induced specific action of this enzyme [80].

The cinA1 gene localized in the CinTMP1 operon and encoding cytochrome P450
was identified in the genome of R. josii TMP1, a biotransformer of 1,8-cineol [81]. Using
recombinant E. coli and R. erythropolis cells, it was found that this enzyme catalyzes the
oxidation of 1,8-cineol to 6-oxocineol (see Figure 2).

The strain R. globerulus JDV-SF1993 isolated from the rhizosphere of Eucalyptus sp.
contains genes of the enzyme CYP102N12, belonging to the cytochrome P450 family [82]. It
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was found that CYP108N12 catalyzes the region-specific hydroxylation of p-cymene (45),
(R/S)-limonene (4), and p-xylene (46) to 4-isopropylbenzyl alcohol (47), perillyl alcohol
(48), and p-tolylmethanol (49), respectively (Figure 19).
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using CYP102N12 [82].

Subsequent studies of the genome of R. globerulus JDV-SF1993 revealed a gene encod-
ing CYP108N14 [83]. This enzyme, like the previously described CYP102N12, hydroxylates
p-cymene (45) and (R/S)-limonene (4), and also transforms (S)-α-terpineol (50) to (S)-7-
hydroxyterpineol (51) and (S)-4-terpineol (52) to (S)-7-hydroxy-4-terpineol (53) (Figure 20).
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3.2. Transformation of Steroid Compounds

Currently, there is a tendency to isolate, analyze, and heterologously express enzymes
that catalyze the reactions of the microbial transformation of steroids. This approach allows
you to expand the range of target products and scale their production in the future [84].

Steroid NADPH-dependent monooxygenase isolated from R. rhodochrous cells cat-
alyzes the oxidation of progesterone (54) through the Bayer–Villiger reaction to form
testosterone acetate (55) (Figure 21) [85].
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Figure 22. Scheme of biotransformation of cholesterol (56) using cholesterol oxidase. 

The regulation and transcription mechanisms of various isoforms of the KshAB gene 
are of particular interest to researchers. Based on data obtained by Baldanta et al. (2021), 
it appears that isoforms KshA2 and KshA3 are the primary enzymes involved in the 
degradation of AD and cholesterol, respectively, while KshA1 has a supporting role in 
these processes [90]. 

Using a mutant strain derived from Rhodococcus sp. MIL 1038, a new compound 
identified as 
7aβ-methyl-1β-[1,5-dimethyl-6-hydroxyl-hexyl]-5-oxo-3aα-hexa-4-indanepropionic acid 
was obtained from cholesterol. The resulting metabolite can be used as an intermediate 
for the chemical synthesis of steroids with pharmaceutical potential [91]. 

It was revealed that R. erythropolis SQ1 contains two isoforms of 
3-ketosteroid-1-dehydrogenase [92]. Complete suppression of the activity of this enzyme 
by deletion of the KstD functional gene and UV mutagenesis made it possible to block the 
formation of by-products and subsequent degradation of the steroid skeleton. As a result, 
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Many representatives of Rhodococcus sp. are characterized by the presence of extra-
cellular cholesterol oxidase, which catalyzes the conversion of 3β-hydroxy-∆5-sterols into
the corresponding 3-keto-∆4-derivatives (Figure 22). The ChoG gene corresponding to
this enzyme is found in strains belonging to the species R. erythropolis [86], R. ruber [87],
R. triatomae [88], and Rhodococcus sp. [89], and is often located next to the genes of 3-
ketosteroid-∆1-dehydrogenase (KstD) and 3-ketosteroid-9α-hydroxylase (KshAB).
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The regulation and transcription mechanisms of various isoforms of the KshAB gene
are of particular interest to researchers. Based on data obtained by Baldanta et al. (2021),
it appears that isoforms KshA2 and KshA3 are the primary enzymes involved in the
degradation of AD and cholesterol, respectively, while KshA1 has a supporting role in
these processes [90].

Using a mutant strain derived from Rhodococcus sp. MIL 1038, a new compound identi-
fied as 7aβ-methyl-1β-[1,5-dimethyl-6-hydroxyl-hexyl]-5-oxo-3aα-hexa-4-indanepropionic
acid was obtained from cholesterol. The resulting metabolite can be used as an intermediate
for the chemical synthesis of steroids with pharmaceutical potential [91].

It was revealed that R. erythropolis SQ1 contains two isoforms of 3-ketosteroid-1-
dehydrogenase [92]. Complete suppression of the activity of this enzyme by deletion of
the KstD functional gene and UV mutagenesis made it possible to block the formation of
by-products and subsequent degradation of the steroid skeleton. As a result, the resulting
mutant strain R. erythropolis RG1-UV29 catalyzed the reaction of effective transformation of
AD to the target product 9-OH-AD, with a yield of 93%.

A new (NAD+)-dependent 12α-hydroxysteroid dehydrogenase (Rr12α-HSDH) has
been identified in the genomic sequence of R. ruber [93]. The purified enzyme demon-
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strated high catalytic activity against cholic acid (58), carrying out its oxidation to 12-
oxochenodeoxycholic acid (59) (85%) (Figure 23).
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Figure 23. Scheme of biotransformation of cholic acid (58) using (NAD+)-dependent 12α-
hydroxysteroid dehydrogenase [93].

It is known that the initial stage of microbial degradation of steroids is dehydrogena-
tion in the C17 position, which determines the prospects of using steroid dehydrogenases
for bioremediation. A gene encoding 17β-hydroxysteroid dehydrogenase (17β-HSD) was
identified in the genome of Rhodococcus sp. P14 [94]. Recombinant E. coli BL21 cells express-
ing this enzyme were able to transform estradiol (60) into estrone (61) with an efficiency of
up to 94%. Later, the same research group showed that Rhodococcus sp. P14 also uses other
steroids, including estriol and testosterone, as a sole carbon source [95]. Genome screening
made it possible to identify the gene for short-chain dehydrogenase (17β-HSDx), which
catalyzes the conversion of estradiol (60) to estrone (61), estriol (62) to 16-hydroxyestrone
(63), and testosterone (64) to androst-4-en-3,17-dione (65) (Figure 24).
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17β-hydroxysteroid dehydrogenase [94,95].

The 14α-demethylase CYP51 of R. triatomae BKS 15-14, which catalyzes the demethyla-
tion of lanosterol (66), has been identified and characterized (Figure 25) [96].
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Rhodococci can be used not only as sources of steroid transformation enzymes but
also as effective recipients for heterologous expression of functional genes. Thus, the R. ery-
thropolis RG9 strain containing the P450 BM3 mutant M02 enzyme from Bacillus megaterium
transformed 17-ketosteroid norandrostenedione (68) into 16β-OH norandrostenedione (69),
with a product yield of more than 95% (Figure 26) [97].
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R. ruber Chol-4 was used as a model organism for overexpression of the 17-ketoreductase
gene (17β-hsd) of the pathogenic fungus Cochliobolus lunatus in order to obtain testosterone
(64) from AD (26) (Figure 27) [98]. In addition, the genome of the resulting mutant strain
was characterized by the deletion of four genes (KshB, KstD1,2,3), which prevented degra-
dation of the substrate. Despite the low yield of the target product (61%) and the rather
complex process of mutagenesis, R. ruber Chol-4 is of interest for further research, since the
overwhelming amount of testosterone was secreted extracellularly.
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Recently, the 4,5-seco pathway of biodegradation of 17β-estradiol by R. equi DSSKP-
R-001 was discovered, and enzymes and their encoding genes involved in the initial
stages of catabolism were identified [99]. It was found that the initial 17β-estradiol
(60) is dehydrogenated by short-chain dehydrogenase (hsd17b14 gene) to estrone (61),
which, in turn, is transformed by flavin-binding monooxygenase (At1g12200) to form
4-hydroxyestrone (65) (Figure 28). The subsequent cleavage of the steroid ring A is cat-
alyzed by 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dion monooxygenase (hsaC)
and catechol-1,2-dioxygenase (catA).
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4. Conclusions 
Taking into account the historical development of the discussed topic and focusing 

on data from recent years, we conducted an extensive analysis of information on the use 
of actinomycetes of the genus Rhodococcus for the transformation of terpenoid and steroid 
compounds. It was shown that the biotransformation of terpenoid compounds is ac-
companied, as a rule, by hydroxylation, carboxylation, and dehydration reactions, 
whereas the conversion of steroids proceeds along more complex pathways, with the 
reactions of aromatization of the steroid ring and the introduction of double bonds and 
amide groups. Currently obtained derivatives of terpenoids and steroids are known for 
their anti-inflammatory, antibacterial, antioxidant, antitumor, insecticidal, and antiviral 
activity, etc. [25,28,100]. Analysis of Rhodococcus species used as biotransformers revealed 
that R. erythropolis, R. globerulus, and R. rhodochrous possess the highest catalytic activity 
(Table 1). 

Among the advantages of using whole-cell catalysts, it may be noted that they are 
cheap and stable, and there is no need to add additional cofactors for enzyme systems. At 
the same time, such catalysts as a rule have limitations on the maximum concentration of 
the transformed starting substrate (usually up to 5 g/L) and the rate of transformation, 
often require additional sources of carbon (such as toluene, succinate, ethanol, yeast ex-
tract, etc.), and also carry out undesirable side reactions [11,31,32,45,70,72,74] due to the 
redundancy of metabolic systems, which leads to contamination of the product and an 
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Figure 28. Scheme of biotransformation of 17β-estradiol (60) by R. equi DSSKP-R-001 cells [99].

4. Conclusions

Taking into account the historical development of the discussed topic and focusing
on data from recent years, we conducted an extensive analysis of information on the
use of actinomycetes of the genus Rhodococcus for the transformation of terpenoid and
steroid compounds. It was shown that the biotransformation of terpenoid compounds
is accompanied, as a rule, by hydroxylation, carboxylation, and dehydration reactions,
whereas the conversion of steroids proceeds along more complex pathways, with the
reactions of aromatization of the steroid ring and the introduction of double bonds and
amide groups. Currently obtained derivatives of terpenoids and steroids are known for
their anti-inflammatory, antibacterial, antioxidant, antitumor, insecticidal, and antiviral
activity, etc. [25,28,100]. Analysis of Rhodococcus species used as biotransformers revealed
that R. erythropolis, R. globerulus, and R. rhodochrous possess the highest catalytic activity
(Table 1).

Among the advantages of using whole-cell catalysts, it may be noted that they are
cheap and stable, and there is no need to add additional cofactors for enzyme systems. At
the same time, such catalysts as a rule have limitations on the maximum concentration of
the transformed starting substrate (usually up to 5 g/L) and the rate of transformation, often
require additional sources of carbon (such as toluene, succinate, ethanol, yeast extract, etc.),
and also carry out undesirable side reactions [11,31,32,45,70,72,74] due to the redundancy of
metabolic systems, which leads to contamination of the product and an increase in its final
cost. The tendency to use purified enzyme systems for the directed conversion of terpenoid
and steroid substrates makes it possible to obtain valuable metabolites with a high level
of purity in a short amount of time but requires additional costs for the purification and
stabilization of such systems.

The rhodococcal genes and enzyme systems involved in the processes of steroid
transformation were studied in detail. Data on the genes and enzymes responsible for the
transformation of terpene compounds are scarce. Among the identified enzyme systems of
rhodococci involved in the conversion of terpenes and steroids, enzymes of the families
of hydrolases, hydroxylases, dehydrogenases, demethylases, oxidases, and oxygenases,
including CYP450, were identified.

The data obtained indicate the pronounced biocatalytic potential of actinomycetes of
the genus Rhodococcus and the prospects for further research aimed at studying the features
and molecular genetic basis of the biotransformation processes of natural compounds of
the terpenoid and steroid groups. According to the PubMed service, since the middle of
the 20th century, the number of articles devoted to the biotransformation of terpenoids and
steroids has grown (Figure 29). Though Rhodococcus actinomycetes started to be actively
used for terpenoid and steroid biotransformation in the beginning of the 21st century
(Figure 29, light green), research in this field is expected to significantly expand.
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Figure 29. Number of articles devoted to the biotransformation of terpenoids and steroids (according
to PubMed). Light green indicates the number of articles where Rhodococcus actinomycetes were used.

Table 1. Biotransformation of terpenoids and steroids by actinomycetes of the genus Rhodococcus.

Substrate Strain Type of Catalyst Type of Reaction Derivatives Reference

Terpenoids

1,8-Cineole

Rhodococcus sp. C1 Native cells Hydroxylation,
oxidation

6-endo-Hydroxycineol,
6-oxocyneol [31]

R. josii TMP1 Enzyme P450cin
(gene cinA1) Oxidation 6-Oxocineol [81]

Limonene

R. opacus PWD4 Native cells Hydroxylation,
oxidation

(+)-trans-Carveol,
(+)-carvone [32,36]

R. erythropolis DCL14 Native cells Oxidation Limonene oxide,
p-menth-7-ene-l,2-diol [33]

R. erythropolis DCL14

Enzymes limonene
1,2-monooxygenase,

limonene-1,2-epoxide
hydrolase

Oxidation,
epoxidation Limonene-1,2-diol [77,78]

R. globerulus
JDV-SF1993

Enzymes CYP108N12,
CYP108N14 Hydroxylation Perillyl alcohol [82,83]

Limonene-
1,2-epoxide R. erythropolis DCL14

Native cells Hydrolysis Limonene-1,2-diol [34]

Enzyme
limonene-1,2-epoxide

hydrolase
(gene limA)

Hydrolysis

Limonene-1,2-diol,
hydroxy-2-oxolimonene,

3-isopropenyl-6-
oxoheptanoate

[79]

Carveol R. erythropolis DCL14

Native cells Oxidation Carvone [35]

Enzyme carveol
dehydrogenase - CDH

(gene limC)
Oxidation Carvone [80]

Geraniol Rhodococcus sp. GR3 Native cells Oxidation Geranic acid [39]

(−)-Isopulegol R. rhodochrous
IEGM 1362 Native cells Hydroxylation,

carboxylation

10-Hydroxy-(−)-
isopulegol,

10-carboxy-(−)-isopulegol
[11]

β-Myrcene R. erythropolis MLT1 Resting cells Dehydrogenation Geraniol [42]

p-Cymene R. globerulus
JDV-SF1993

Enzymes CYP108N12,
CYP108N14 Hydroxylation 4-Isopropylbenzyl alcohol [82,83]

p-Xylene R. globerulus
JDV-SF1993 Enzyme CYP108N12 Hydroxylation p-Tolylmethanol [82]

(S)-α-Terpineol R. globerulus
JDV-SF1993 Enzyme CYP108N14 Hydroxylation (S)-7-Hydroxyterpineol [83]

(S)-4-Terpineol R. globerulus
JDV-SF1993 Enzyme CYP108N14 Hydroxylation (S)-7-Hydroxy-4-terpineol [83]
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Table 1. Cont.

Substrate Strain Type of Catalyst Type of Reaction Derivatives Reference

Dehydroabietic
acid

R. rhodochrous
IEGM 107 Resting cells Oxidation,

hydroxylation

7-Oxo-dehydroabietic acid,
11,12-dihydroxy-7-oxo-

abieta-8,13-dien-18-oic acid
[45]

Betulin R. rhodochrous
IEGM 66 Native cells, resting cells Oxidation Betulone [46]

Oleanolic acid

R. rhodochrous
IEGM 1360 Resting cells Oxidation 3-Oxo-oleanolic acid [47]

R. rhodochrous
IEGM 757 Native cells Hydroxylation,

carboxylation

3β,5α,22α-
Trihydroxyolean-12-ene-

23,28-dioic acid
[58]

Glycyrretinic
acid

R. rhodochrous
IEGM 1360 Resting cells Oxidation 3-Oxo-glycyrretinic acid [47]

Steroids

Androst-4-ene-
3,17-dione

Rhodococcus sp.

Native cells Hydroxylation 9α-Hydroxy-4-androstene-
3,17-dione

[62]

Rhodococcus sp.
IOC-77 [63–67]

R. erythropolis
Ac-1740 [68,69]

R. erythropolis
RG1-UV29

Mutant strain
(deletion of gene KstD,

UV irradiation)
Hydroxylation 9α-Hydroxy-4-androstene-

3,17-dione [92]

R. ruber Chol-4

Mutant strain
(insertion of gene 17β-hsd,

deletion of genes KshB,
KstD1,2,3)

Dehydrogenation Testosterone [88]

19-
Nortestosterone

Rhodococcus sp.
DSM 92-344 Native cells Aromatization Estrone,

estradiol [70,71]

Dienogest R. erythropolis FZB 53 Native cells Aromatization,
amination

17α-Acetamide-estradiol,
17α-acetamide-9(11)-

dehydroestradiol
[72]

Cortisone

R. coprophilus DSM
43347 Native cells Dehydrogenation Prednisone [73]

R. rhodnii
DSM 43960 Native cells Hydroxylation,

methylation

1,9β,17,21-Tetrahydroxy-4-
methyl-19-nor-9β-pregna-
1,3,5(10)-trien-11,20-dione,

1,9β,17,20β,21-
pentahydroxy-4-methyl-19-

nor-9β-pregna-1,3,5(10)-
trien-11-one

[74]

Hydrocortisone R. coprophilus
DSM 43347 Native cells Dehydrogenation Prednisolone [73]

7-
Ketocholesterol

R. erythropolis
MTCC 3951 Native cells Oxidation,

dehydrogenation

4-Cholesten-3,7-dione,
chol-5-en-3,7-dione,

androsta-4-ene-3,7,17-
trione

[75]

17β-Estradiol

Rhodococcus sp.
RSBS9 Native cells ND * ND * [76]

Rhodococcus sp. P14

Enzyme
17β-hydroxysteroid

dehydrogenase
(gene 17β-HSD)

Dehydrogenation Estrone [94]

R. equi DSSKP-R-001

Enzyme
short-chain

dehydrogenase (gene
hsd17b14), flavin-binding

monooxygenase (gene
At1g12200)

Dehydrogenation,
hydroxylation

Estrone,
4-hydroxyestrone [99]
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Table 1. Cont.

Substrate Strain Type of Catalyst Type of Reaction Derivatives Reference

Estriol Rhodococcus sp. P14

Enzyme
short-chain

17β-hydroxysteroid
dehydrogenase (gene

17β-HSDx)

Dehydrogenation 16-Hydroxyestrone [94]

Testosterone Rhodococcus sp. P14

Enzyme
short-chain

17β-hydroxysteroid
dehydrogenase (gene

17β-HSDx)

Dehydrogenation Androst-4-en-3,17-dione [94]

Progesterone R.rhodochrous Enzyme
steroid monooxygenase Oxidation Testosterone acetate [85]

Cholesterol

R. erythropolis Enzyme
extracellular cholesterol

oxidase (gene ChoG)
Oxidation 3-Keto-∆4-cholesterol

[86]
R. ruber [87]

R. triatomae [88]
Rhodococcus sp. [89]

Rhodococcus sp. MIL
1038

Mutant strain
(biochemical mutagenesis

by NTG)

Hydroxylation,
oxidation,

carboxylation,
carbon cycle

decomposition

7aβ-Methyl-1β-[1,5-
dimethyl-6-hydroxyl-

hexyl]-5-oxo-3aα-hexa-4-
indanepropionic acid

[91]

Cholic acid R. ruber

Enzyme
12α-hydroxysteroid

dehydrogenase (gene
Rr12α-HSDH)

Dehydrogenation 12-Oxochenodeoxycholic
acid [93]

Lanosterol R. triatomae BKS
15-14

Enzyme
CYP51 (gene RtCYP51) Demethylation 14α-Dimethyllanosterol [96]

Norandrostenedione R. erythropolis RG9

Mutant strain
(insertion of CYP450 BM3

mutant M02 enzyme
genes)

Hydroxylation 16β-Hydroxy-
norandrostenedione [97]

* No data.
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13. Martínková, L.; Uhnáková, B.; Pátek, M.; Nešvera, J.; Křen, V. Biodegradation Potential of the Genus Rhodococcus. Environ. Int.
2009, 35, 162–177. [CrossRef]

14. Kim, D.; Choi, K.Y.; Yoo, M.; Zylstra, G.J.; Kim, E. Biotechnological Potential of Rhodococcus Biodegradative Pathways. J. Microbiol.
Biotechnol. 2018, 28, 1037–1051. [CrossRef] [PubMed]

15. Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the
Production of Valuable Compounds. Appl. Microbiol. Biotechnol. 2020, 104, 8567–8594. [CrossRef] [PubMed]

16. Ivshina, I.; Bazhutin, G.; Tyumina, E. Rhodococcus Strains as a Good Biotool for Neutralizing Pharmaceutical Pollutants and
Obtaining Therapeutically Valuable Products: Through the Past into the Future. Front. Microbiol. 2022, 13, 967127. [CrossRef]
[PubMed]

17. Broekman, M. Applications of Steroid in Clinical Practice. Ann. Clin. Trials Vaccines Res. 2023, 13, 7–10.
18. Ericson-Neilsen, W.; Kaye, A.D. Steroids: Pharmacology, Complications, and Practice Delivery Issues. Ochsner J. 2014, 14, 203–207.

[PubMed]
19. Arici, C.; Mergen, B.; Yildiz-Tas, A.; Bahar-Tokman, H.; Tokuc, E.; Ozturk-Bakar, Y.; Kutlubay, Z.; Sahin, A. Randomized Double-

Blind Trial of Wipes Containing Terpinen-4-ol and Hyaluronate versus Baby Shampoo in Seborrheic Blepharitis Patients. Eye
2022, 36, 869–876. [CrossRef]

20. Hermann, C.; Lang, S.; Popp, T.; Hafner, S.; Steinritz, D.; Rump, A.; Port, M.; Eder, S. Bardoxolone-Methyl (CDDO-Me) Impairs
Tumor Growth and Induces Radiosensitization of Oral Squamous Cell Carcinoma Cells. Front. Pharmacol. 2021, 11, 607580.
[CrossRef]

21. Alavinezhad, A.; Khazdair, M.R.; Boskabady, M.H. Possible Therapeutic Effect of Carvacrol on Asthmatic Patients: A Randomized,
Double Blind, Placebo-controlled, Phase II Clinical Trial. Phyther. Res. 2018, 32, 151–159. [CrossRef] [PubMed]

22. Feng, J.; Wu, Q.; Zhu, D.; Ma, Y. Biotransformation Enables Innovations toward Green Synthesis of Steroidal Pharmaceuticals.
ChemSusChem 2022, 15, e202102399. [CrossRef] [PubMed]

23. Aminudin, N.I.; Ridzuan, M.; Susanti, D.; Zainal Abidin, Z.A. Biotransformation of Sesquiterpenoids: A Recent Insight. J. Asian
Nat. Prod. Res. 2022, 24, 103–145. [CrossRef] [PubMed]

24. de Carvalho, C.C.C.R.; da Fonseca, M.M.R. Biotransformations. In Comprehensive Biotechnology, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2011; Volume 2, pp. 451–460. [CrossRef]

25. Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun.
2020, 15, 1–13. [CrossRef]

26. Moss, G.P.; Smith, P.A.S.; Tavernier, D. Glossary of Class Names of Organic Compounds and Reactive Intermediates Based on
Structure (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1307–1375. [CrossRef]

27. Tetali, S.D. Terpenes and Isoprenoids: A Wealth of Compounds for Global Use. Planta 2019, 249, 1–8. [CrossRef] [PubMed]
28. Carocho, M.; Heleno, S.A.; Barros, L. Natural Secondary Metabolites: From Nature, Through Science, to Industry; Springer Nature:

Berlin, Germany, 2023; ISBN 9783031185878.
29. Mewalal, R.; Rai, D.K.; Kainer, D.; Chen, F.; Külheim, C.; Peter, G.F.; Tuskan, G.A. Plant-Derived Terpenes: A Feedstock for

Specialty Biofuels. Trends Biotechnol. 2017, 35, 227–240. [CrossRef] [PubMed]
30. Hegazy, M.E.F.; Mohamed, T.A.; ElShamy, A.I.; Mohamed, A.E.H.H.; Mahalel, U.A.; Reda, E.H.; Shaheen, A.M.; Tawfik, W.A.;

Shahat, A.A.; Shams, K.A.; et al. Microbial Biotransformation as a Tool for Drug Development Based on Natural Products from
Mevalonic Acid Pathway: A Review. J. Adv. Res. 2015, 6, 17–33. [CrossRef] [PubMed]

31. Williams, D.R.; Trudgill, P.W.; Taylor, D.G. Metabolism of 1,8-Cineole by a Rhodococcus Species: Ring Cleavage Reactions.
Microbiology 1989, 135, 1957–1967. [CrossRef]

32. Duetz, W.A.; Fjallman, A.H.; Ren, S.; Jourdat, C.; Witholt, B. Biotransformation of D-Limonene to (+)-Trans-Carveol by Toluene-
Grown Rhodococcus opacus PWD4 Cells. Appl. Environ. Microbiol. 2001, 67, 2829–2832. [CrossRef]

33. van der Werf, M.J.; de Bont, J.A.M. Screening for Microorganisms Converting Limonene into Carvone. Stud. Org. Chem. 1998, 53,
231–234. [CrossRef]

34. De Carvalho, C.C.C.R.; Van Keulen, F.; Da Fonseca, M.M.R. Biotransformation of Limonene-1,2-epoxide to Limonene-1,2-diol by
Rhodococcus erythropolis Cells: An Introductory Approach to Selective Hydrolysis and Product Separation. Food Technol. Biotechnol.
2000, 38, 181–185.

https://doi.org/10.1016/j.procbio.2016.10.003
https://doi.org/10.1016/j.jhazmat.2017.12.025
https://doi.org/10.3390/molecules25235526
https://doi.org/10.3390/ph15080964
https://www.ncbi.nlm.nih.gov/pubmed/36015112
https://doi.org/10.1016/S0065-2164(06)59001-X
https://www.ncbi.nlm.nih.gov/pubmed/16829254
https://doi.org/10.1016/j.envint.2008.07.018
https://doi.org/10.4014/jmb.1712.12017
https://www.ncbi.nlm.nih.gov/pubmed/29913546
https://doi.org/10.1007/s00253-020-10861-z
https://www.ncbi.nlm.nih.gov/pubmed/32918579
https://doi.org/10.3389/fmicb.2022.967127
https://www.ncbi.nlm.nih.gov/pubmed/36246215
https://www.ncbi.nlm.nih.gov/pubmed/24940130
https://doi.org/10.1038/s41433-021-01642-7
https://doi.org/10.3389/fphar.2020.607580
https://doi.org/10.1002/ptr.5967
https://www.ncbi.nlm.nih.gov/pubmed/29193478
https://doi.org/10.1002/cssc.202102399
https://www.ncbi.nlm.nih.gov/pubmed/35089653
https://doi.org/10.1080/10286020.2021.1906657
https://www.ncbi.nlm.nih.gov/pubmed/33783284
https://doi.org/10.1016/B978-0-08-088504-9.00109-4
https://doi.org/10.1177/1934578X20903555
https://doi.org/10.1351/pac199567081307
https://doi.org/10.1007/s00425-018-3056-x
https://www.ncbi.nlm.nih.gov/pubmed/30467631
https://doi.org/10.1016/j.tibtech.2016.08.003
https://www.ncbi.nlm.nih.gov/pubmed/27622303
https://doi.org/10.1016/j.jare.2014.11.009
https://www.ncbi.nlm.nih.gov/pubmed/25685541
https://doi.org/10.1099/00221287-135-7-1957
https://doi.org/10.1128/AEM.67.6.2829-2832.2001
https://doi.org/10.1016/S0165-3253(98)80029-1


Molecules 2024, 29, 3378 21 of 23

35. De Carvalho, C.C.C.R.; Da Fonseca, M.M.R. Maintenance of Cell Viability in the Biotransformation of (–)-Carveol with Whole
Cells of Rhodococcus erythropolis. J. Mol. Catal. B Enzym. 2002, 19–20, 389–398. [CrossRef]

36. De Carvalho, C.C.C.R.; Da Fonseca, M.M.R. Towards the Bio-Production of trans-Carveol and Carvone from Limonene: Induction
after Cell Growth on Limonene and Toluene. Tetrahedron Asymmetry 2003, 14, 3925–3931. [CrossRef]

37. Yagi, S.; Mohammed, A.B.A.; Tzanova, T.; Schohn, H.; Abdelgadir, H.; Stefanucci, A.; Mollica, A.; Zengin, G. Chemical Profile,
Antiproliferative, Antioxidant, and Enzyme Inhibition Activities and Docking Studies of Cymbopogon schoenanthus (L.) Spreng.
and Cymbopogon nervatus (Hochst.) Chiov. from Sudan. J. Food Biochem. 2019, 44, e13107. [CrossRef] [PubMed]

38. Ambrosio, C.M.S.; Diaz-Arenas, G.L.; Agudelo, L.P.A.; Stashenko, E.; Contreras-Castillo, C.J.; da Gloria, E.M. Chemical Composi-
tion and Antibacterial and Antioxidant Activity of a Citrus Essential Oil and Its Fractions. Molecules 2021, 26, 2888. [CrossRef]
[PubMed]

39. Chatterjee, T. Biotransformation of Geraniol by Rhodococcus sp. Strain GR3. Biotechnol. Appl. Biochem. 2004, 39, 303–306. [CrossRef]
[PubMed]

40. Masuda, T.; Odaka, Y.; Ogawa, N.; Nakamoto, K.; Kuninaga, H. Identification of Geranic Acid, a Tyrosinase Inhibitor in
Lemongrass (Cymbopogon citratus). J. Agric. Food Chem. 2008, 56, 597–601. [CrossRef]

41. Pan, S.; Li, W.; Qin, Y.; Yang, Z.; Liu, Y.; Shi, Z.; Qu, C.; Luo, C.; Yang, X. Discovery of Novel Potential Aphid Repellents: Geranic
Acid Esters Containing Substituted Aromatic Rings. Molecules 2022, 27, 5949. [CrossRef]

42. Thompson, M.L.; Marriott, R.; Dowle, A.; Grogan, G. Biotransformation of β-Myrcene to Geraniol by a Strain of Rhodococcus
erythropolis Isolated by Selective Enrichment from Hop Plants. Appl. Microbiol. Biotechnol. 2010, 85, 721–730. [CrossRef]
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