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Abstract: To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium
nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET)
substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can
be easily applied in biomedical diagnostic and environmental monitoring applications with the
advantages of flexible, disposable, cost-effective, and reliable components. Various duty cycle
conditions in HiPIMSs were designed to investigate the corresponding sensing performance and
material properties including surface morphology and composition. As the duty cycle increased,
the grain size of HfN increased. Additionally, X-ray photoelectron spectroscopy (XPS) analysis
illustrated the presence of HfOxNy on the deposited HfN surface. Both behaviors could result in a
better pH sensing performance based on the theory of the site-binding model. Subsequently, HfN
with a 15% duty cycle exhibited excellent pH sensitivity and linearity, with values of 59.3 mV/pH and
99.8%, respectively; its hysteresis width and drift coefficient were −1 mV and 0.5 mV/h, respectively.
Furthermore, this pH-sensing performance remained stable even after 2000 repeated bending cycles.
These results indicate the potential and feasibility of this HiPIMS-deposited HfN for future wearable
chemical applications.

Keywords: extended-gate field-effect transistor; flexible; HfN; HiPIMS

1. Introduction

Ultrahigh temperature ceramics (UHTCs) and their composite materials are usually
nonmetallic inorganic materials that melt above 3000 ◦C or can withstand high temper-
atures above 2000 ◦C in air; these materials have excellent properties, such as excellent
heat, chemical, and corrosion resistance [1,2]. These materials primarily consist of binary
compounds comprising metal atoms (e.g., titanium, zirconium, and hafnium) bonded with
nonmetals (e.g., carbon, nitrogen, and boron) [3]. UHTCs encompass a diverse range of
nonoxide compositions, maintaining a distinct blend of metallic and ceramic properties [4].
Found in transition metal carbides, nitrides and borides, they possess strong covalent bonds
and excellent properties, such as a high melting point, high hardness, excellent thermal and
electrical conductivity, and excellent mechanical strength [1]. Consequently, the aerospace
sector, which includes aviation, rocket propulsion, and hypersonic technology and often
demands materials capable of withstanding extreme temperatures, has sparked significant
interest in UHTCs [4]. Carbides and nitrides are garnering attention for their suitability
in applications involving nozzles and control gases [5,6]. These materials are required to
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endure harsh environments characterized by high temperatures, high mechanical stresses,
corrosive oxidizing conditions, and rapid heating during flight [3–5,7]. Fahrenholtz et al.
reported the use of hafnium nitride (HfN), which has low electrical resistivity and high
chemical and thermal stability and is widely used in solar applications and wear-resistant
coatings [4,8]. However, the presence of structural defects such as pores, pinholes, and
droplets, poses a challenge for reliability and lifetime considerations in real applications [9].
To address this issue in chemical sensor applications, this study employed high-power
impulse magnetron sputtering (HiPIMS), which delivers short bursts of high-energy pulses
lasting for microseconds, to fabricate a proper material quality for pH-sensing membranes.
This HiPIMS technique enables a higher power density without increasing the substrate
temperature [10] and a high plasma density compared to conventional sputter systems,
leading to increased ionization rates of sputtered species, potentially exceeding 90% [11,12];
this results in a dense coating thin film with good crystallinity, even when processed at low
temperatures [13,14].

With the increasing demand for biomedical and flexible wearable device applications,
conventional glass electrodes with several drawbacks, including low flexibility and fragility,
cannot be considered potential candidates [15–17]. Therefore, fast, robust, and simple
solid-state sensing devices based on ion-sensitive field-effect transistors (ISFETs) have been
proven for pH sensing in various applications, including biomedical, environmental, and
industrial applications [18–20]. J. Van Der Spiegel proposed an extended gate field-effect
transistor (EGFET) in 1983 [21], which has an extended gate connected to the gate terminal
of a conventional metal–oxide field-effect transistor (MOSFET) to function as the sensing
area. In comparison to conventional ISFETs, EGFETs offer many advantages, such as low
cost, easy fabrication, biocompatibility, simple structure, disposability, miniaturization, fa-
cility packaging, and high sensitivity for both biomolecule and real-time detection [22]. The
sensing film is a crucial component of highly sensitive and stable ISFETs and EGFETs. With
recent improvements in processing technology, flexible substrates are widely used in the
manufacturing of electronic devices (e.g., organic light-emitting diodes [OLEDs]) [23] and
biosensors due to their suitability for point-of-care testing (POCT) diagnostics [24]. Various
types of flexible substrates, including polyimide (PI)/Kapton, polyethylene terephthalate
(PET), polypropylene (PP), and polyethylene naphthalate (PEN), have been extensively
applied to electrochemical sensors [25]. In our previous results, ITO deposited on flexible
PET substrates was applied as an EGFET with unstable pH sensing performance compared
to that of other conventional EGs [26].

The purpose of this study is to provide a potential material with superior sensing
performance for EGFET application by a new fabrication method, the HIPIMS. HfN films
deposited through a HiPIMS with different duty cycle ratios on indium tin oxide/PET
(ITO/PET) substrates working as extended gates are first presented for evaluating the
sensing performance for potential applications in wearable sensors. To investigate the
structural characteristics of the HfN films and their sensing performance in detail, atomic
force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron
spectroscopy (XPS) were used to determine the surface roughness, morphology, and ele-
mental composition, respectively. In addition, a reliability test of the sensing performance
of HfN on a flexible substrate with bending cycle testing is also presented.

2. Materials and Methods

In this study, HfN extended gates (EGs) were deposited on commercial indium tin ox-
ide and polyethylene-terephthalate (ITO/PET) substrates purchased from UNI-ONWARD,
Inc., in New Taipei city, Taiwan. First, the ITO/PET substrates were cut into small pieces
with dimensions of 1.5 cm × 2 cm. Before HfN deposition, areas that functioned as the
bottom electrode were first covered with vacuum tape (UNI-ONWARD, 3 M-92, New Taipei
city, Taiwan) on the ITO conductive thin film. Then, a HiPIMS process was performed
in unipolar mode with argon (Ar) and nitrogen (N2), with gas flow controlled at 38 and
2 sccm, respectively, during the deposition process. A Hf target with a purity of 99.99%
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was obtained from Gredmann Inc. in Taipei, Taiwan. The power was set to 90 W, and
the process pressure was controlled at 10 mTorr. The following experimental conditions
for the HiPIMS process were selected for different duty cycles: 2.5%, 3.3%, 15%, and 25%
(e.g., D2.5%, D3.3%, D15%, and D25%, respectively). The final thickness of the HfN layer
in all the groups was controlled to approximately 50 nm by a time-mode control using a
precalculated deposition rate. Then, an automatic dispensing system (ES2020, Ever Sharp
Technology Co., New Taipei City, Taiwan) was used to define the opening area on the HfN
surface with a radius of 2 mm by using chemical resistant epoxy (JC711-6, EVERWIDE,
Yunlin, Taiwan). As shown in Figure 1a, for less bending and subsequent reliability con-
cerns, HfN EG fabricated on ITO/PET was then adhered to a copper conductive line on a
printed circuit board (PCB) by using silver paste (Double-O Technology, OP-928, Taipei,
Taiwan). Finally, the outside of the sensing area and the copper conductive line area were
all encapsulated with polydimethylsiloxane (PDMS) (SYLGARD, 184 A-B, Morrisville,
PA, USA) to leave only the sensing area exposed without an electrical leakage path in
the whole signal route. In addition, the deposited HfN EGs were subjected to automatic
multiple bending tests and then packaged using the same method. To obtain real-time,
volume, and fast measurement results, a four-channel constant voltage and constant current
(CVCC) circuit readout system equipped with self-developed software was used to quickly
analyze the pH sensing characteristics and long-term stability [27]. Images of the prepared
HfN EGs and the connection diagram of the electrical measurement system are shown in
Figure 1a,b. A semiconductor parameter analyzer (B1500A, Agilent, Santa Clarn, CA, USA)
was also used to measure the typical drain-to-source current versus gate-to-source voltage
(IDS-VGS) characteristics by connecting the source and drain terminal of an N-channel
MOSFET (NMOS) in a commercial chip (CD4007, Texas Instruments, Pallas, TA, USA)
and the gate bias through a standard Ag/AgCl reference electrode (accumet #13-620-855,
Fisher Scientific, Waltham, MA, USA). The gate terminal of the NMOS was connected to
the fabricated HfN EG. The settings of the operation points in the CVCC system were a
drain-to-source voltage (VDS) fixed at 0.5 V and a drain-to-source current (IDS) fixed at
100 µA. Four measurement channels were connected to 4 different EGs, and one common
reference electrode was connected to the ground in this system. The reference electrode and
all 4 EGs were placed in the same buffer solution with a specific solution defined for experi-
mental design purposes (e.g., sensitivity, drift, and hysteresis) to reduce variation from the
environment and human errors. To verify the stability of the EGs, the drift characteristics
of the sensing film surface were measured continuously for 12 h at intervals of 2.5 min
in a fixed solution (e.g., a pH 7 standard buffer solution). To assess stability, hysteresis
measurements were taken for the following sequence of pH buffer solutions with a pH of
7-4-7-10-7 to verify the effect of soaking in different acid and alkali solutions on the ion
exchange rate of the neutral solution.
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Material analysis of fabricated HfN EGs and surface treatments were performed to
investigate the material properties and the potential mechanism of pH sensing improve-
ments. First, the surface morphology of the HfN EGs was investigated via field emission
scanning electron microscopy (SEM) (SU8220, Hitachi, Tokyo, Japan). The roughness of
the HfN surfaces was measured using an atomic force microscope (AFM) (Nanoview 1000,
FSM-Precision, Suzhou, China). The elemental distribution on the surface of the HfN EGs
was analyzed by X-ray photoelectron spectroscopy (XPS) (PHI 5000 VersaProbe III, ULVAC-
PHI. Inc., Kanagawa, Japan). Bending tests with automatic settings involved bending with
a tensile torsion composite testing machine (YZ-11020-001, Yang Yi Technology Co., Ltd.,
Tainan, Taiwan). The unpackaged HfN EGs were fixed with top and bottom clamps. With
an area of 1 cm × 1 cm, a moving distance of 1 mm was set to perform bending for 500,
1000, 1500, 2000, and 2500 continuous cycles.

3. Results
3.1. Surface Structure and Chemical State Analysis

First, the surface morphology of the sensing membrane is an important factor of the
sensing membrane based on the surface site number and site-binding model [28]. Due
to the flexible nature of the PET substrate, the surface morphology cannot be properly
investigated by atomic force microscopy (AFM). Therefore, SEM images of all four groups
of HfN EGs were used to determine the surface morphologies, as shown in Figure 2a–d.
The film surface is composed of grains, especially at a low duty cycle such as 2.5%; this is
attributed to the high ion bombardment caused by the lower duty cycle, and more grains
with high surface roughness could be deposited on the film surface [29]. Chen et al. also
reported that a lower duty cycle and increased peak current or peak power density lead to
an increase in the ionization rate and strong ion bombardment, resulting in a smaller grain
size [30]. Liu et al. reported similar results for depositing AlCrN films with different duty
cycles through a HiPIMS, with increasing roughness as the duty cycle increased [31], which
supports that the minimum roughness is observed in the D2.5% group. The roughness
increases with the duty cycle [31]. To verify this effect, the same HiPIMS process conditions
were used on ITO/glass to determine the surface morphology by AFM. As shown in
Figure 3a–d, the root-mean-square roughness (Rrms) values of the D2.5%, D5%, D15%, and
D25% groups are 3.92, 4.57, 4.63, and 5.12 nm, respectively. Moreover, the SEM images
show similar morphologies of HfN EGs with different duty cycles on ITO/glass, as shown
in Figure 4a–d. A slight difference in the surface morphology between HfN EGs deposited
on ITO/PET and those deposited on ITO/glass can be found. Liu et al. reported that the
substrate surface affects the surface morphology of the film, which is attributed to the
kinetic rate of atomic structure formation and affects the energy deposited during film
growth [32].
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Figure 3. AFM results on the surface morphology of the HfN film fabricated on ITO/glass by the
HiPIMS with a duty cycle of (a) D2.5%, (b) D3.3%, (c) D15%, and (d) D25% on ITO/glass substrate.
The root-mean-square roughness (Rrms) is 3.92 nm, 4.57 nm, 4.63 nm, and 5.12 nm, respectively.
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Moreover, the composition of the sensing membrane could result in various types and
numbers of surface sites, dissociation coefficients, and different sensing performances [33].
To evaluate the composition of the fabricated HfN EGs, XPS analysis was performed to
study the chemical bonding of Hf 4f, N 1s, and O 1s in HfN films with different duty ratios,
as shown in Figure 5a–c, respectively. As shown in Figure 5a, the XPS spectrum of the Hf
4f peak of all HfN films is composed of binding energy peaks related to Hf-N and Hf-O
bonds, including Hf 4f 7/2 and Hf 4f 5/2. Due to spin–orbit splitting, their binding energies
are approximately 14.3~15.1 eV and 16.1 eV [34,35]. Furthermore, Figure 5a shows that the
binding energy peak located at 17.8 eV for the Hf-O bonds of Hf 4f 5/2 could be evidence of
the existence of HfO2 [34]. Zhang et al. reported similar results for Hf/HfN multilayers
deposited through magnetron sputtering with an oxidized surface and with a weak HfO2
peak [34]. Hf atoms have a high reactivity [34,36,37] and are easily oxidized with oxygen
to form HfOxNy on the surface. Figure 5b shows the N 1s XPS spectrum of all HfN films,
which can be used to confirm the existence of N 1s binding energy at 396 eV, with the N-Hf
bond representing the main peak, which is consistent with the literature [34,35]. As the
duty cycle increases, the ratio of the accumulated area of the Hf-O-N bond with a peak
at 397.3 eV increases. This result also matches the results shown in the Hf XPS spectra. A
greater number of Hf-O-N bonds could lead to better pH sensing performance because
the surface site composition is sensitive to H+ and OH− ions [33]. As shown in Figure 5c,
the O 1s XPS spectrum can be seen for all HfN films. The relevant binding energy peaks
include O-Hf and Hf-O-H, and their binding energies are 529.6 eV and 531.2 eV, respectively.
Pan-Gam et al. reported the results of surface oxidation for DC sputtering-deposited HfN
with high-temperature thermal annealing [37]. It is speculated that nitrogen in the HfN film
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or defects/vacancies in the crystal lattice can be easily replaced by oxygen, which has also
been shown in the other literature [34,38]. Therefore, the formation of HfOxNy compounds
on the HfN surface fabricated in an Ar/N2 mixture by DC sputtering can be confirmed.
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Figure 5. XPS spectra of (a) Hf 4f, (b) N 1s, and (c) O 1s binding energy diagrams for HfN EGs of
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3.2. pH Sensing Characterization of HfN EGs

After checking the fundamental material behavior, the pH sensing characteristics of
the fabricated HfN EGs connected to NMOS with a constant VDS of 0.5 V were verified
by collecting IDS-VGS curves measured in different pH buffer solutions using B1500A, as
shown in Figure 6a. An evident parallel shift toward a positive voltage in the IDS-VGS
curves presented with an increasing pH, which can be attributed to the increase in the
high threshold voltage (VT) contributed to by negative charges from surface-bound OH−

ions, inducing corresponding alterations in surface potential [39,40]. The VT formula of the
EGFET is given by Equation (1) [41]:

VT(EGFET) = VT(MOSFET)− ϕ

q
+ Eref + χsol −φ (1)

where VT(MOSFET) is the commercial MOSFET of the threshold voltage, ϕ is the work
function, q is the elementary charge, Eref is the potential of the reference electrode, χsol is the
surface dipole potential of the solution, and φ is the potential of the surface at the interface.
With an increasing pH, the threshold voltage notably increases by φ, which was elucidated
through the binding site theory and the double-layer theory [40]. The amount of charge
depends on the concentration of specific ions in the solution, thereby regulating the surface
charge and the formation of O−, OH2

+, or OH groups on the surface of HfOxNy with
negative, positive, and neutral charging properties, respectively. Moreover, a conventional
sensing membrane, silicon nitride (Si3N4), can have silanol (–SiOH) and amine (–SiNH2)
sites that contribute to the potential for ion binding [42–44]. Similar behavior could occur
in fabricated HfN EGs with a HfOxNy surface layer. The surface charge density can be
determined based on the surface morphology, material composition, and local hydrogen
concentration (e.g., protonation and deprotonation of surface binding sites) [44,45]. The
accumulation of OH− and H+ ions facilitates the creation of an effective negative or positive
surface potential, thereby facilitating channel formation between the source and drain at
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low and high gate voltages applied to the MOSFET, respectively. Based on the site-binding
theory [39,40], the potential built on surface can be represented by Equation (2) [40]:

φ = 2.303
kT
q

β

β+ 1
(
pHpzc − pH

)
(2)

where q is the elementary charge, k is the Boltzmann constant, T is the absolute temperature,
pHpzc represents the pH at the neutral charge, and β is a sensitive film parameter defined
as shown in Equation (3) [39,40]:

β =
2q2Ns

√
kakb

kTCDL
(3)

where Ns is the density of the surface site, ka and kb are constant values for the acid
and base points, respectively, and CDL is the capacitance of the electrical double layer.
According to site binding theory, its surface contains two different types of surface sites,
namely, silanol sites and amine sites, which could both be sensitive to hydrogen ions,
similar to conventional Si3N4 sensing membranes [42,46]. The site binding of HfN EGs
with the surface layer of HfOxNy can be described by Equations (4)–(8), which are modified
from the concept of Si3N4 with a layer of SiOxNy:[

HfOH+
2
] K+↔ [HfOH] +

[
H+

]
S; K+ =

[HfOH]
[
H+

]
S[

HfOH+
2
] (4)

[HfOH]
K−↔

[
HfO−]+ [

H+
]

S; K− =

[
HfO−][H+

]
S

[HfOH]
(5)

[
HfNH+

3
] KN+↔ [HfNH2] +

[
H+

]
S; KN+ =

[HfNH2]
[
H+

]
S[

HfNH+
3
] (6)

[
H+

]
surface =

[
H+

]
bulkexp

(
− q

kT
Φ
)

(7)

Ns =
[
HfOH+

2
]
+ [HfOH] +

[
HfO−]+ [

HfNH+
3
]
+ [HfNH2] (8)

where [H+]S is the proton concentration at the insulator surface, [HfOH] is the amphoteric
site defined as the silanol group, [HfNH2] is the amine group, q is the surface charge, Φ
is the potential of the solid-liquid interface, and Ns is the density of the surface site. XPS
analysis revealed that the HfN film is easily oxidized and hydrolyzed in air or in solution
to form HfOxNy. Therefore, surface sites can directly interact with the electrolyte to release
or combine H+ and OH− ions for corresponding surface potential charges on the insulator
surface [36,46].

To collect volume and reliable data for sensor characterization, it is crucial to have
a rapid and efficient method to obtain key parameters such as sensitivity and linearity.
Therefore, the output voltage (Vout) in the CVCC circuit is determined as the source-to-gate
voltage based on the gate connected to ground, which is opposite to the Vout collected
by the B1500A, which is defined as the gate-to-source voltage with the source connected
to ground. Therefore, a good correlation with a fitting slope of −1 and a linearity of
99.9% between the Vout of the CVCC and B1500A is observed, as shown in Figure 6b.
Figure 6c shows the Vout of each pH buffer solution of four different HfN EGs using a
self-developed four-channel CVCC system, which is matched to the output voltage of
100 µA calculated from IDS-VGS curves [47]. By means of the CVCC readout system, the
potential for interference and human errors can be minimized by simultaneously measuring
four EGs in the same pH buffer solution. As shown in Figure 6c, the Vout of each pH for
the the different duty cycle groups is shown together with the linear fitting results for pH
sensitivity and linearity. The sensitivities of the D2.5%, D3.3%, D15%, and D25% groups
are 49.8, 50.2, 59.3, and 52.4 mV/pH, respectively. Notably, a duty cycle of 15% exhibits the
highest sensitivity. Moreover, these four groups have linearities of 97.1%, 99.8%, 99.8%, and
97.9%, respectively. The lowest linearity was found for the D2.5% group, which cannot be
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used for pH sensing. For a clear comparison, the static data obtained from the four samples
of all HiPIMS duty cycles are illustrated in Figure 6d. It is evident that the D15% group
exhibits superior pH sensitivity and fitting linearity compared to the other three groups;
this is speculated to be related to D15% having the largest area in Hf-O-N, as shown in
Figure 5b. Table 1 lists the results of the HfN EG sensor detection of H+ ions compared
with the sensors of other authors.
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Figure 6. (a) Typical IDS−VGS characteristics of HfN EGs of D15% with the NMOS configuration in
different pH buffer solutions, (b) the Vout correlation between B1500A and CVCC for HfN EGs in the
D15% group, (c) the pH sensing performance calculated by linearly fitting between the Vout from the
CVCC system and the pH obtained, and (d) pH sensitivity and linearity statistics for all 4 groups of
HfN EGs sensor.

Table 1. Comparison of sensor data for various materials in pH buffer solutions, including sensitivity
and linearity.

Sensing Film Device Substrate Method Background
Solution

Sensitivity
(mV/pH)

Linearity
(%) Ref.

IrOx EGFET Polyimide Sol-gel pH 1.5–12 51.1 95.3 [15]

Si3N4 ISFET Undoped silicate
glass (USG) Sputter pH 4–7–9 46 N/A [18]

ITO EGFET PET Sputter pH 2–12 50.1 99 [26]
RuN EGFET Si Sputter pH 1–13 58.03 N/A [48]

CuS EGFET Glass Spray pyrolysis
deposition pH 2–12 24 98.18 [49]

HfN EGFET ITO/PET HiPIMS pH 2–12 59.3 99.8 This
work

To evaluate the stability of pH sensors, a time-dependent measurement performed in
the same buffer solution is commonly used, which is referred to as a drift measurement.
According to the physical model of gate voltage drift proposed by Jamasb et al. [50], the
surface of the sensing film will be slowly transformed to form a hydration layer over time,
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resulting in gradual changes in the output voltage. The change in the output voltage at
different times is defined as Equation (9) [50]:

∆Vout = Vout(t)− Vout(0) (9)

Figure 7a shows the time-dependent Vout of HfN EGs fabricated with four different
duty cycles simultaneously collected in the pH 7 buffer solution using the four-channel
CVCC system. The drift coefficient in the pH 7 solution is calculated by linear fitting
through the relationship between the Vout and time within 5 to 12 h [51]. It is approximately
0.7, 0.6, 0.5, and 2 mV/h for the D2.5%, D3.3%, D15%, and D25% groups, respectively.
This behavior suggests that all HfN EGs exhibit good stability with a small drift effect,
which is comparable to that of HfO2 [47], RuN [48], and Ta2O5 [52] and better than that of
Si3N4 [53] and SnO2 [54]. To test the memory effect of the previous electrolyte, hysteresis
measurements can be performed in a solution cycle at a pH of 7-4-7-10-7. As shown in
Figure 7b, the ∆Vout of four different HfN EGs were collected every minute five times
in each pH solution. By subtracting the Vout of the last point of the last pH 7 solution
from that of the first, hysteresis widths of −4, 5, −1, and 14 mV were obtained for the
D2.5%, D3.3%, D15%, and D25% groups, respectively. The hysteresis phenomenon can
be attributed to slow-reacting surface defects and surface sites in the electrolyte solution,
involving chemical interactions between OH− and H+ions [49]. A low hysteresis width may
indicate fewer defects in the sensing membrane [49], suggesting that the D15% group owns
a superior pH sensing quality. This is consistent with the results shown in Figure 6c, where
the D15% group demonstrates the highest pH sensitivity and the lowest hysteresis width.
Figure 7c presents a statistical comparison of the drift coefficient and hysteresis width for
four different duty cycle groups. It is evident that the D15% group achieves a relatively low
drift coefficient and hysteresis width due to its high stability and fewer defects. Among
all experimental conditions, a low hysteresis width could refer to a rapid surface response
and minimal memory effect, indicative of a high-quality pH-sensing membrane. On the
other hand, a high hysteresis width suggests more defects on the film surface, resulting in a
delayed response and memory effect, thereby the practical applications of the sensor [49].
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Figure 7. (a) Time−dependent behavior obtained by continuously measuring the Vout for 12 h in a
pH 7 buffer solution, (b) the hysteresis response of the loop of pH solutions by collecting the Vout per
minute five times in each pH solution step using a CVCC system, and (c) the statistical comparison of
the calculated drift behavior and hysteresis response for HfN EGs of D2.5%, D3.3%, D15%, and D25%.

3.3. Reliability Analysis of the Bending Cycles

To evaluate the bendability of the flexible pH sensor, the fabricated flexible HfN EG
sensor was subjected to automatic mechanical bending cycle tests, as shown in the inset of
Figure 8a. As shown in Figure 8a, the pH sensitivity was determined after bending the HfN
EGs of the D15% group with tensile torsion for 500, 1000, 1500, 2000, and 2500 cycles. The
sensitivity decreased significantly to only 49.3 mV/pH, and the linearity decreased slightly
to 99.4% at 2500 cycles. Figure 8b shows that the hysteresis width begins to increase after
2000 bending cycles. Figure 8c shows that the drift effect after bending is comparable to
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or slightly lower than that before bending. It is speculated that pores are created on the
surface of the film after bending, and ions run into the pores on the surface of the film,
compensating for the original drift caused by the hydration effect. To verify the impact
of the decreased sensitivity caused by bending, the surface morphology of the bending
area was analyzed using SEM. As shown in Figure 9a, the surface of the HfN EGs is flat.
Many cracks were found on the surface that was bent 2500 times, as shown in Figure 9b,
which can be used to properly explain the changes in sensing performance. Currently, the
maximum number of bending cycles is suggested to be less than 2000, which is suitable for
disposable sensors.
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4. Conclusions

To have a high-performance extended gate field-effect transistor for pH detection, this
study presents an investigation of the sensing characteristics of HfN thin films deposited
by adjusting the duty cycle through a HiPIMS from 2.5% to 25% throughout a whole
low-temperature process. The electrical measurement results indicate that the superior pH
sensitivity and linearity of HfN EGs with D15% are 59.3 mV/pH and 99.8%, respectively.
The drift behavior and hysteresis response were 0.5 mV/h and -1 mV, respectively, which
are stable for real applications. The pH sensing performance of HfN EGs could be explained
by the high density of Hf-O-N binding sites on the HfOxNy surface, as illustrated by the
XPS spectra. Furthermore, HfN EGs with D15% retained stable sensing behavior within
2000 cycles in the bending test. The SEM image shows that cracks appeared on the surface
of the specimen after bending for 2500 cycles, leading to a decrease in the HfN EG sensing
performance. This fabricated HfN EG on ITO/PET at low temperatures has acceptable pH
sensing performance, and bending durability could be suggested for wearable or disposable
devices to detect various biomarkers for use in medical diagnostics.
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