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Abstract: Chitosan was used as the raw material. A quaternization reaction was carried out between
2,3-epoxypropyltrimethylammonium chloride and water-soluble chitosan to prepare quaternary
ammonium salt water-soluble chitosan (QWSC), and its corrosion inhibition performance against the
corrosion of carbon steel in stone processing wastewater was evaluated. The corrosion inhibition
efficiencies of QWSC on carbon steel in stone processing wastewater were investigated through
weight loss, as well as electrochemical and surface morphology characterization techniques. The
results show that QWSC has superior corrosion inhibition performance for A3 carbon steel. When an
amount of 60 mL·L−1 is added, the corrosion inhibition efficiency can reach 59.51%. Electrochemical
research has shown that a QWSC inhibitor is a mixed-type corrosion inhibitor. The inhibition
mechanisms of the QWSC inhibitor revealed that the positive charge on the surface of carbon steel
in stone wastewater was conducive to the adsorption of Cl− in the medium, which produced an
excessive negative charge on the metal’s surface. At the same time, the quaternary ammonium cation
and amino cation formed in QWSC in stone processing wastewater can be physically absorbed on
the surface of A3 carbon steel, forming a thin-film inhibitor to prevent metal corrosion.

Keywords: corrosion inhibitor; QWSC; stone processing wastewater; electrochemistry; corrosion
mechanism

1. Introduction

Using a corrosion inhibitor is an effective method to prevent the corrosion of metal
materials. Inorganic corrosion inhibitors have been gradually banned due to their large
dosage and high toxicity. On the other hand, green and highly efficient natural macromolec-
ular organic corrosion inhibitors have the advantages of being renewable, non-toxic, and
biodegradable, and they have attracted much attention. Most organic inhibitors contain
heteroatoms like N, O, S, and P, with the most effective inhibitors often being compounds
containing π bonds [1]. These atoms are able to react with active sites on the surface of car-
bon steel and display excellent anti-corrosion effects [2]. Chitosan (CS), as an effective metal
substrate inhibitor, has the advantages of low toxicity, abundance, environmental friendli-
ness, affordability, and biodegradability, making it a promising corrosion inhibitor [1,3].
CS is protonated in dilute acidic media and exhibits polyelectrolyte-like behavior, giving it
a good membrane-forming capacity and adhesivity to metal surfaces, thus allowing it to
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form a protective barrier. Moreover, the corrosion resistance of CS is mainly due to OH (hy-
droxyl) and NH2 (amino), along with solitary electron pairs, being able to coordinate with
the metal surface. However, CS itself has low solubility and low surface adhesion, limiting
its application in the field of corrosion inhibitors. Therefore, researchers have modified CS
to maximize its application potential in this field [4–7]. Quaternary ammonium-modified
chitosan not only increases its solubility but also improves its corrosion inhibition, which
has become a popular research topic regarding modified chitosan [8].

Previously, we synthesized a series of organic and inorganic corrosion inhibitors
and achieved superior results in inhibiting carbon steel corrosion in stone processing
wastewater [9,10]. Herein, a quaternary ammonium salt water-soluble chitosan (QWSC)
inhibitor was synthesized by modifying chitosan. The corrosion inhibition performance of
QWSC on carbon steel in stone processing wastewater was investigated systematically via
weight loss measurements, scanning electron microscopy (SEM), atomic force microscopy
(AFM), and electrochemical methods. The adsorption type of the QWSC inhibitor on the
steel specimen surface was analyzed using XPS; further, the inhibition mechanism was
also described.

2. Results
2.1. Measurement of Weight Loss

The effect of adding different concentrations of the QWSC inhibitor on a corrosive
material in stone processing wastewater was measured as shown in Figure 1. As the
QWSC concentration increased, the corrosion inhibition efficiency increased and then
decreased. A maximum inhibition efficiency of 59.51% was obtained for the QWSC inhibitor
at 60 mg·L−1.
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Figure 1. Effect of composite inhibitor concentrations on inhibition effect.

2.2. Electrochemical Measurements
2.2.1. Open-Circuit Potential

The alteration in the OCP, that is, the potential generated on a working electrode (A3
carbon steel) in stone processing wastewater versus Ag/AgCl potential, with a time of
(2100 s) for the composite inhibitor, is shown in Figure 2. Generally, the curves of all the
examined samples have almost similar features. It can be seen that increasing the amount
of the QWSC inhibitor promotes the passivation of the carbon steel electrode in stone
processing wastewater. The OCP of the samples decreased significantly in the uninhibited
solution. In the presence of the QWSC inhibitor, the OCP moved in the positive direction,
indicating that the QWSC inhibitor was more inclined to inhibit the corrosion reaction at
the anode.
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Figure 2. OCP evolution vs. time of the A3 carbon steel in stone processing wastewater containing
different concentrations of QWSC inhibitor.

2.2.2. Potentiodynamic Polarization Tests

The polarization curves and electrochemical parameters for A3 carbon steel electrodes
at different concentrations of the QWSC inhibitor in stone processing wastewater are shown
in Figure 3. As shown in Figure 3, comparing the polarization curves in stone processing
wastewater, the corrosion current densities corresponding to the cathodic and anodic
reaction decrease with the addition of the QWSC inhibitor, and also, the self-corrosion
potentials of the Tafel polarization curves shifted in the direction of negative potentials,
indicating the relatively high inhibition efficiency.
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The degree of surface coverage (θ) was calculated using the following Equation (1) [11,12]:

θ = 1 − icorr

i0corr
(1)

where icorr and i0corr are the corrosion current density for the specimens in corrosive media
with and without the QWSC inhibitor. The corresponding values of the corrosion potential
(Ecorr), corrosion current density (icorr), and the degree of surface coverage θ are listed in
Table 1. θ is used to indicate the passivation degree of the QWSC inhibitor on metals [11].
The θ values were gradually enhanced and reduced with the increasing concentrations of
the QWSC inhibitor, which were consistent with the inhibition efficiencies (See Figure 1).
Furthermore, the corrosion potential (Ecorr) moved about 45~50 mV in the cathodic potential
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direction after the addition of the QWSC inhibitor—as shown in Table 1—and the difference
was less than ±85 mV, indicating that QWSC was a mixed-type corrosion inhibitor with
predominantly cathodic action [13,14].

Table 1. The polarization curve parameters of A3 carbon steel in stone processing wastewater with
different concentrations of QWSC inhibitor.

C mg·L−1 Ecorr mV icorr µA·cm−2 θ

0 −944 0.448 —
20 −989 0.387 0.136
40 −994 0.265 0.409
60 −994 0.180 0.598
80 −994 0.215 0.520

2.2.3. Electrochemical Impedance

Figure 4 shows the electrochemical impedance spectra of A3 carbon steel in stone pro-
cessing wastewater containing different concentrations of the QWSC inhibitor. Figure 4a–c
correspond to the Nyquist plot, Bode impedance modulus plot, and Bode phase angle
plot, respectively. Generally speaking, the larger diameters of Nyquist semi-circles are
attributes of the higher corrosion resistance systems of inhibitors compared to the blank
solution [15]. As shown in Figure 4a, the size of the diameters of the impedance arc with the
addition of the corrosion inhibitor was larger compared to the curve without the addition
of QWSC, indicating the better inhibition performance of the QWSC inhibitor. The best
corrosion inhibition efficiency was obtained at the QWSC concentration of 60 mg·L−1,
which was consistent with the polarization curve results. In Figure 4b, it can be seen that
|Z|0.01Hz showed a tendency to increase and then decrease with the increase in QWSC
concentration. The value of |Z|0.01Hz was at its maximum when the concentration of
QWSC was 60 mg·L−1. The phase angle plots had the same trends as shown in Figure 4c.

Figure 5 shows the EIS equivalent circuit diagram of A3 carbon steel in stone process-
ing wastewater containing different concentrations of the QWSC inhibitor, and the results
of the EIS curve parameter fitting are shown in Table 2. In Figure 5, Rs is the solution
resistance; CPE is the capacitance of the double electric layer at the interface between carbon
steel and solution; and Rct is the charge-transfer resistance [12]. The corrosion inhibition
efficiency (IEEIS) was calculated using the following Equation (2) [15]:

IEEIS% = (R ct − R0
ct)/Rct × 100 (2)

where Rct and R0
ct are the charge-transfer resistance for the specimens in corrosive media

with and without the QWSC inhibitor. The values of Rct can be used to evaluate the
electrochemical corrosion rate, the lower the value of Rct, the faster the corrosion reaction
rates [16,17]. As shown in Table 2, it can be seen that the Rct value reached its maximum
when the QWSC inhibitor concentration was 60 mg·L−1, showing superior protection for
the A3 carbon steel. Increased Rct values with the QWSC inhibitor concentration were
based on the increase in inhibitor surface coverage, which led to an increase in inhibitor
efficiency. The observed increment in the values of the Rct at 60 mg·L−1 could be due to the
formation of a precipitate of corrosion products as well as a Fe-inhibitor-type complex that
further protected the metal surface. From the fitting parameters in Table 2, the corrosion
inhibition efficiency was 59.15% when the QWSC concentration reached 60 mg·L−1.
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Table 2. Fitting results of EIS parameters.

c mg·L−1 Rs Ω·cm2 Rct Ω·cm2 IEEIS%

0 169.5 675.7 -
20 191.3 757.9 10.85
40 193.2 1052 35.77
60 193.0 1654 59.15
80 189.8 1568 56.91

2.3. Surface Topography Analysis
2.3.1. SEM Measurement

Scanning electron microscopy was utilized to observe the morphology of A3 carbon
steel before and after corrosion. As shown in Figure 6, the SEM images presented depict
(a) polished metal samples; (b) blank samples (without the added corrosion inhibitor and
immersed for 7 days); and (c) A3 carbon steel samples immersed for 7 days in the presence
of 60 mg·L−1 of the QWSC inhibitor, respectively. The observation in Figure 6a shows a
flat surface with a deep and clear grain, whereas Figure 6b displays that the steel surface is
highly corroded and reveals a mountain-like appearance [12]. Figure 6c shows the surface
covered with a thick layer of corrosive material and unevenness when 60 mg·L−1 of the
QWSC inhibitor was added, which could be due to the localized corrosion caused by the
incomplete coverage of QWSC molecules on the carbon steel surface.
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2.3.2. AFM Analysis

To further illustrate the changes in the surface of carbon steel after the addition of the
QWSC inhibitor, atomic force microscopy was utilized to observe the morphology of the
carbon steel surface and the obtained images are shown in Figure 7. As can be seen from
Figure 7a, after polishing, the maximum height difference in the sample surface was 414 nm.
Figure 7b shows the carbon steel was seriously corroded in stone processing wastewater for
7 days; the maximum height difference in the surface was 2.5 µm. After corrosion inhibitors
are added, it can be seen that the surface roughness of Figure 7c is significantly lower than
that of Figure 7b, and the surface height difference also decreased from 2.5 µm to 322.3 nm,
indicating that the QWSC inhibitor can be used to protect the A3 carbon steel surface.
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2.3.3. Contact Angle Measurement

The contact angles presented in Figure 8 are (a) polished A3 carbon steel samples,
(b) A3 carbon steel after 7 days of immersion in stone processing wastewater without
the corrosion inhibitor, and (c) A3 carbon steel immersed in stone processing wastewater
containing 60 mg L−1 of the QWSC corrosion inhibitor for 7 days, respectively. The stronger
the hydrophobicity that the formed films have, the better their protective ability. For the
blank sample, the contact angle of A3 carbon steel in stone processing wastewater after
polishing was 33.2◦. After adding 60 mg L−1 of the QWSC inhibitor, the contact angle
increased to 67.2◦, indicating that the corrosion inhibitor formed an adsorption film on the
surface of carbon steel, which enhanced the hydrophobicity of the carbon steel surface,
thus producing a corrosion inhibition effect.
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2.4. Inhibition Mechanism
2.4.1. XPS Analysis

A3 carbon steel after corrosion in stone processing wastewater containing 60 mg L−1

of the QWSC inhibitor for 7 days was selected for XPS testing. The results are shown in
Figure 9. The peaks of Na 1s, Fe 2p, C 1s, N 1s, O 1s, Ca 2p, and Cl 2p are shown in Figure 9a.
The appearance of the O 1s peak was caused by the corrosion of oxygen and the peaks of
Na 1s, C 1s, and N 1s provided evidence for the adsorption of the investigated inhibitors on
the steel surface [7]. The appearance of Ca 2p peaks indicated that the corrosion inhibitor
molecules were attractive to Ca2+ in the stone processing wastewater and these corrosion
inhibitor molecules were also adsorbed onto the carbon steel surface [18]. Figure 9b
presents the Fe 2p curve obtained from a steel surface that was immersed in the QWSC
inhibitor solution. The peaks at binding energies 710.7 eV, 713.5 eV, 719.1 eV, 724.3 eV, and
726.9 eV were attributed to Fe2O3, FeCl2, FeO, FeOOH, and Fe(H2O) [2,12,19]. There are
four chief peaks in the spectrum of C 1s in Figure 9c, which can be ascribed to C-H/C-C
(284.8 eV), C-O/C-N (286.3 eV), O-C-O (288.1 eV), and O-C=O (289.6 eV), respectively [2,20].
Figure 9d shows the deconvoluted N 1s spectra at 399.9 eV and 401.9 eV, which could
be assigned to C-N and protonated N atoms (-N+), respectively [21]. Due to the lack
of a pair of electrons on the N atom, the QWSC inhibitors cannot form chemical bonds
between quaternary ammonium compounds and steel surfaces. The adsorption between
the corrosion inhibitor and the carbon steel surface was formed through the electrostatic
gravitational force between the N atoms in the corrosion inhibitor and the molecules with
different orientations on the carbon steel surface [20,22]. Figure 9e shows that the two
peaks in the O 1s spectrum located at 529.2 eV and 531.5 eV are attributable to FeOOH
and Fe-O, respectively [2,23,24]. There are two absorption peaks in the Cl 2p spectrum in
Figure 9f, which are Cl 2p3/2 (198.2 eV) and Cl 2p1/2 (199.7 eV), which may be assigned
to FeCl2 and FeCl3 produced via the corrosion reaction of the carbon steel in the stone
processing wastewater [25,26].
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2.4.2. Quantum Chemical Computing

Quantum calculations were performed to study the relationship between molecular
structure and inhibitory properties [27]. Figure 10 shows the geometrically optimized
structures of WSC and QWSC molecules and their HOMO–LUMO distribution. The
arrangement of the HOMO and LUMO orbitals reveals the high reactivity of these molecules
with the metal surface [25]. An electrostatic potential (ESP) map can directly reveal the
distribution of the electrostatic potential of the inhibitor molecule in space and help to
quickly locate the position of the lone electron pair, i.e., potential reaction sites [28,29]. In
the ESP map, the minimum point (blue sphere) represents the most active reaction sites,
and the lone electron pair (red area) is attributed to the O and N atoms’ unoccupied electron
orbitals. Table 3 shows the quantum chemical parameters obtained from the calculations.
As shown in Figure 10, it can be found that the HOMO of WSC was mainly distributed
on the hydroxymethyl and amino groups of the second ring; and the LUMO was mainly
distributed at the amino group of the first ring, the amino group of the second ring, and
the hydroxyl group; the HOMO of QWSC was mainly distributed on chloride ion and
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its surrounding N and O atoms; and the HOMO was mainly distributed on the grafted
quaternary ammonium salt.

Molecules 2024, 29, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 10. The optimized structure, HOMO, and LUMO of WSC and QWSC. 

Table 3. Calculated quantum chemical parameters of the compounds. 

Inhibitors WSC QWSC 
EHOMO −6.6439 −5.8540 
ELUMO 0.0521 0.0229 
ΔE 6.6961 5.8769 
χ 3.2959 2.9156 
ω 1.6222 1.4464 
ɛ 0.6164 0.6914 
η 3.3481 2.9385 
σ 0.2987 0.3403 
µ −3.2959 −2.9156 
ΔN 0.5532 0.6950 

3. Discussion 
In general, the mechanism of action of corrosion inhibitors on metal surfaces in Cl− 

solutions may be influenced by the chemical structure of the inhibitor molecule, the nature 
of the metal, and the charge [30]. The high content of chloride ions in stone processing 
wastewater destroyed the passivation film and promoted anodic reactions. At the same 
time, pitting corrosion tended to occur where the passivation film was destabilized. On 
the basis of the above analysis, the possible corrosion inhibition mechanism of the QWSC 
inhibitor was proposed. Figure 11 shows the schematic illustration of the inhibition mech-
anism of the QWSC inhibitor in stone processing wastewater. The inhibition approach of 
the QWSC inhibitor could be explained as the following process. First, the aggressive chlo-
ride ions in stone processing wastewater were adsorbed on carbon steel surfaces, thereby 
accelerating the dissolution of Fe2+ ions on the surface of carbon steel. Then, the quaternary 
ammonium cations and amino positive ions formed by the QWSC in stone processing 
wastewater migrated to the surface of the carbon steel covering a large amount of Cl− on 
the surface of A3carbon steel, and QWSC molecules could also be attached to carbon steel 
surface via chemisorption through the adsorption center and the formation of coordina-
tion bonds with the empty orbitals of the Fe atoms of carbon steel. Eventually, a protective 
layer was formed, which not only effectively isolated direct contact from the corrosive 
medium to the metal surface but also inhibited the cathode and anode electrochemical 
reactions [31,32]. 

Figure 10. The optimized structure, HOMO, and LUMO of WSC and QWSC.

Table 3. Calculated quantum chemical parameters of the compounds.

Inhibitors WSC QWSC

EHOMO −6.6439 −5.8540
ELUMO 0.0521 0.0229

∆E 6.6961 5.8769
χ 3.2959 2.9156
ω 1.6222 1.4464
ε 0.6164 0.6914
η 3.3481 2.9385
σ 0.2987 0.3403
µ −3.2959 −2.9156

∆N 0.5532 0.6950

Table 3 provides a list of several quantum chemical parameters for the WSC and
QWSC molecules. The computed gap energies ∆E were used to predict the adsorption
abilities of the WSC and QWSC molecules on the carbon steel surface. The ∆E value of
WSC was greater than that of QWSC, indicating that the adsorption of QWSC on the
surface of carbon steel is greater than that of WSC. The ∆N values of WSC and QWSC were
calculated to be less than 3.6, which indicated that both were able to provide electrons to
the metal surface [27]. The electronegativity (χ) and transferred electrons (∆N) obtained
from quantum chemical calculations suggested that QWSC exhibited higher inhibition
performance [2].

3. Discussion

In general, the mechanism of action of corrosion inhibitors on metal surfaces in
Cl− solutions may be influenced by the chemical structure of the inhibitor molecule,
the nature of the metal, and the charge [30]. The high content of chloride ions in stone
processing wastewater destroyed the passivation film and promoted anodic reactions. At
the same time, pitting corrosion tended to occur where the passivation film was destabilized.
On the basis of the above analysis, the possible corrosion inhibition mechanism of the
QWSC inhibitor was proposed. Figure 11 shows the schematic illustration of the inhibition
mechanism of the QWSC inhibitor in stone processing wastewater. The inhibition approach
of the QWSC inhibitor could be explained as the following process. First, the aggressive
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chloride ions in stone processing wastewater were adsorbed on carbon steel surfaces,
thereby accelerating the dissolution of Fe2+ ions on the surface of carbon steel. Then, the
quaternary ammonium cations and amino positive ions formed by the QWSC in stone
processing wastewater migrated to the surface of the carbon steel covering a large amount
of Cl− on the surface of A3carbon steel, and QWSC molecules could also be attached to
carbon steel surface via chemisorption through the adsorption center and the formation
of coordination bonds with the empty orbitals of the Fe atoms of carbon steel. Eventually,
a protective layer was formed, which not only effectively isolated direct contact from
the corrosive medium to the metal surface but also inhibited the cathode and anode
electrochemical reactions [31,32].
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Figure 11. Schematic illustration of the inhibition mechanisms of QWSC inhibitor in stone processing
wastewater. (Left) without QWSC inhibitor; (Right) with QWSC inhibitor.

4. Materials and Methods
4.1. Materials

Commercial A3 carbon steels with dimensions of 50 mm × 25 mm × 2 mm were used
as the corrosive materials. The chemical compositions (wt%) of the corrosive materials are
C (0.24), Si (0.12), Mn (0.64), S (0.012), and P (0.16), and the balance is Fe. Before testing,
corrosive material specimens were polished and cleaned. This was finished by burnishing
them sequentially using silicon carbide paper with sand particles of 150, 220, 400, 800, and
1500 and washing them with ethanol and deionized water.

The following chemicals were used for the preparation of the QWSC inhibitor: chitosan
(deacetylation degree ≥ 95%, viscosity 100–200 mPa.s) and glycidyl trimethyl ammonium
chloride (C6H14ClNO, >95%) were purchased from Shanghai Aladdin Biochemical Tech-
nology Co., Ltd. (Shanghai, China). The other chemical reagents, such as C2H4O2, H2O2
(30%), CH3CH2OH, and CH3COCH3, were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). All chemical reagents are analytically pure. Deionized water
(18.2 MΩ cm) was used throughout the experiments.

Stone processing wastewater was used as a corrosive medium, which was provided
by a factory in Hubei (China). Several parameters of stone processing wastewater and the
ionic composition of the solution can be referred to in our previous study [9,10].
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4.2. Synthesis
4.2.1. Synthesis of the Water-Soluble Chitosan

First, chitosan (2 g) and 2 wt% acetic acid (60 mL) were dissolved and mixed in a
beaker containing 250 mL of water. Then, 60 mL of 30% H2O2 was added into the beaker
and reacted for 4 h at 50 ◦C, and then the mixture was cooled at room temperature for 12 h.
Second, 60~80 mL of anhydrous ethanol was added into the beaker, followed by stirring for
1 h, and then the mixture was cooled and let to stand for 12 h at 4 ◦C. Finally, the mixture
was centrifuged at 6000 rmp for 4 min in a centrifuge. The precipitate was heated in a 60 ◦C
oven to evaporate ethanol, thus grounding it to obtain a pale yellow powder, which was
water-soluble chitosan (WSC, 89.5% yield).

4.2.2. Synthesis of Water-Soluble Chitosan from Quaternary Ammonium Salts (QWSC)

First, 1 g of WSC was added to a 250 mL round-bottom flask containing 100mL of water.
After the WSC was completely dissolved, 3 g of 2,3-epoxypropyltrimethylammonium
chloride was added and reacted at 75 ◦C for 48 h. Then, the mixture was cooled at room
temperature. Second, 30 mL of anhydrous ethanol was added into the beaker, followed by
stirring for 1h, and then the mixture was cooled and let to stand for 12 h at 4 ◦C. Finally, the
mixture was filtered, and the obtained precipitate was dried in a 60 ◦C oven and grounded
into a fine powder. The prepared product was quaternary ammonium salt water-soluble
chitosan (QWSC, 81.2% yield).

4.3. Methods
4.3.1. Weight Loss Method

A3 carbon steel coupons (50 mm × 25 mm × 2 mm) were burnished using silicon
carbide paper and sonicated in absolute ethanol and deionized water for 5 min, respectively,
and dried with a clean tissue. Then, they were weighed using an electronic balance and
dried with a blowing machine. Finally, the materials were completely dipped in 1 L of
corrosive media without and with QWSC inhibitor. The coupons were immersed under
specific conditions of QWSC inhibitor concentrations (20, 40, 60, and 80 mg·L−1) and at
the speed of 250 rpm for 7 d. After testing, the corrosion products were removed through
deionized water, absolute ethanol, and ultrasonic cleaner and dried with tissue. After being
dried, all the coupons were weighed again and the change in their weight was recorded.
The rates of corrosion (CR, g·cm−2 h−1) and corrosion inhibition efficiency (IEw) were
calculated using Equations (3) and (4) [12]:

CR = ∆W/(At) (3)

where ∆W is the weight differences (g) of the corresponding coupons before and after
the experiment, A is the superficial area (cm2), and t is the soaking time (h) in the corro-
sion medium.

IEw% =
(

C0
R − CR

)
/C0

R × 100 (4)

where C0
R and CR are the corrosion rate (g·cm−2 h−1) of the samples in uninhibited and

inhibited solutions, respectively.

4.3.2. Electrochemical Test Method

Electrochemical tests were conducted using a CHI604E electrochemical analyzer in
a conventional three-electrode system, which was used for open-circuit potential (OCP),
potentiodynamic polarization curves measurements, and electrochemical impedance spec-
troscopy (EIS). In the three-electrode system, the burnished coupon samples with an ex-
posed area of 1 cm2 were used as the working electrode, a platinum electrode was utilized
as the auxiliary electrode, and Ag/AgCl served as the reference electrode. Electrochemical
experiments were performed in stone processing wastewater corrosive media without the
QWSC inhibitor (blank) and with concentrations of the QWSC inhibitor ranging from 20 to



Molecules 2024, 29, 3401 13 of 16

80 mg·L−1. Potentiodynamic polarization curves were recorded in the potential range from
−700 to 300 mV versus OCP at the scan rate of 10 mV·s−1. EIS tests were conducted under
OCP with an amplitude of 10 mV by changing the frequency from 100 kHz to 0.01 Hz [9,10].
EIS spectra were fitted utilizing ZSimpWin 3.6 software. The inhibition efficiency in this
case was calculated according to the following Equation (5) [10]:

IE% = (i 0
corr − icorr)/i0corr × 100 (5)

where i0corr and icorr are corrosion current densities in the absence and presence of the
QWSC inhibitor, respectively.

4.3.3. Quantum Chemical Calculations Method

Quantum chemical calculations were performed using Gaussian 09W software based
on Density Functional Theory (DFT) and the B3LYPF method to calculate the optimal
geometrical distribution of the single corrosion inhibitor molecules under study and vari-
ous quantum chemical parameters, including highest occupied molecular orbital energy
(EHOMO), lowest unoccupied molecular orbital energy (ELUMO), energy gap value (∆E),
dipole moment (µ), electronegativity (χ), hardness (η), softness (σ), electrophilicity power
(ω), nucleophilicity (ε), and the fractional transfer of electrons from the corrosion inhibitor
molecule to the metal surface (∆N). The various performance indicators of the quantum
chemical reaction were calculated as follows [33,34].

∆E = ELUMO − EHOMO (6)

χ = −µ = −ELUMO + EHOMO

2
(7)

η =
∆E
2

(8)

σ =
1
η

(9)

ω =
χ2

2η
(10)

ε =
1
ω

(11)

∆N =
χFe−χ

2(ηFe + η)
(12)

where χFe and χ represent the electronegativity of the iron matrix and the corrosion inhibitor,
respectively; ηFe and η represent the chemical hardness of the iron matrix and the corrosion
inhibitor, respectively. The theoretical value of χFe = 7 eV was used, assuming that in
the iron matrix, EHOMO = ELUMO; therefore, ηFe = 0. A positive value of the calculated
∆N indicates that the molecule behaves as an electron acceptor during adsorption, and a
negative value of ∆N indicates that the molecule is an electron donor, where the corrosion
inhibition efficiency of the corrosion inhibitor increases with the electron supplying capacity
if ∆N < 3.6 [35,36].

4.4. Surface Analysis

The carbon steel coupons were immersed in the solution for 6 h with and without
QWSC corrosion inhibitors. After that, they underwent a rinse with deionized water and
drying, and then the morphology of the corrosive material surface was observed using a
scanning electron microscope (SEM, TESCAN MIRA LMS, Tescan, Brno, Czech Republic)
with an accelerating voltage of 15 kV. An atomic force microscope (AFM, Bruker Dimension
Icon, Billerica, MA, USA) was adopted to illustrate the roughness of the corrosive material
surfaces that were dipped in stone processing wastewater without and with the QWSC
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inhibitor for 7 d. For the X-ray photoelectron spectroscopy analysis (XPS, Thermo Scientific
Nexsa, Madison, WI, USA), Al Kα (1486.6 eV) was adopted as the excitation source. For the
calibration, all of the spectra were referenced to the binding energy of C 1s (284.8 eV). The
hydrophilicity and hydrophobicity of the corrosive material surface before and after the
QWSC inhibitor handling were analyzed using a contact angle instrument (Dataphysics,
OCA 25, Filderstadt, Germany).

5. Conclusions

In this work, the QWSC inhibitors were synthesized and evaluated as corrosion
inhibitors for A3 carbon steel in stone processing wastewater. Electrochemical techniques,
a surface analysis, and quantum chemical calculations were employed to elucidate the
corrosion inhibition performance. More importantly, the corrosion inhibition mechanism
of corrosion inhibitors was revealed. The main results are as follows:

(1) The QWSC inhibitor exhibited slightly superior performance, reaching a maximum
efficiency of 59.51% when its addition amount was 60 mg·L−1. Electrochemical research
showed that QWSC was a mixed-type corrosion inhibitor.

(2) Surface analysis techniques (SEM, AFM, and XPS) and contact angle measurements
indicated that the corrosion inhibitor formed an adsorption film on the surface of carbon
steel, which generated a corrosion inhibition effect.

(3) Quantum chemical calculations and a corrosion inhibition mechanism revealed
that QWSC can also be attached to carbon steel surface via chemisorption through the
adsorption center and the formation of coordination bonds with the empty orbitals of the
Fe atoms of carbon steel, providing an effective barrier against corrosive environment.
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