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Abstract: Ceftolozane-tazobactam (CT) is used for the treatment of complicated infections and
for multidrug-resistant strains of Pseudomonas aeruginosa and extended-spectrum beta-lactamase-
producing enterobacteria. In certain cases, simultaneous administration of CT and parenteral nutrition
(PN) may be required, but compatibility of Y-site co-administration is unknown. The aim of this
study was to analyse the physicochemical compatibility of CT Y-site administered with PN. We
evaluated a protocolized PN approach for critical patients in our center. We studied both bolus
infusion (2 g ceftolozane/1 g tazobactam in 1 h) and continuous infusion (CI) (6 g ceftolozane/3 g
tazobactam) strategies. Samples were visually observed against light, microscopically inspected,
and pH was analysed using a pH meter. The mean lipid droplet diameter (MDD) was determined
via dynamic light scattering. CT concentration was quantified using HPLC–HRMS. No alterations
were observed through visual or microscopic inspection. Changes in pH were ≤0.2, and changes in
osmolarity were less than 5%. MDD remained below 500 nm (284.5 ± 2.1 for bolus CT and 286.8 ± 7.5
for CI CT). CT concentrations at t = 0 h and t = 24 h remained within prespecified parameters
in both infusion strategies. CT is physiochemically compatible with PN during simulated Y-site
administration at the tested concentration and infusion rates.

Keywords: ceftolozane-tazobactam; critical care; parenteral nutrition; PN; compatibility

1. Introduction

Ceftolozane-tazobactam (CT) is the combination of a novel cephalosporin and a beta-
lactamase inhibitor. Approved by the FDA in 2014 and by the EMA in 2015, it was initially
indicated for the treatment of complicated intra-abdominal infections, acute pyelonephritis,
and urinary tract infections in adults. Later approvals extended its use to hospital-acquired
pneumonia, including pneumonia associated with mechanical ventilation [1]. This novel
antibiotic has become an option for treating multidrug-resistant Pseudomonas aeruginosa
strains and extended-spectrum beta-lactamase-producing enterobacteria. Given the esca-
lating global health threat posed by antibiotic resistance, its use is expected to rise in the
coming years. In effect, off-label indications are frequently used in clinical practice for skin
and soft tissue infections, osteoarticular and intra-abdominal infections, and bacteremia [2].
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The recommended dosing regimen is 1 or 2 g of ceftolozane administered via intravenous
infusion for one hour every 8 h [1,3,4]. Patients who receive CT usually have infections
caused by multi-resistant microorganisms. Due to the limited alternatives available and
to avoid resistance, it is essential to ensure therapeutic effectiveness. As with other beta-
lactams, the objective in relation to efficacy is to sustain plasmatic concentrations above the
minimum inhibitory concentration (MIC) throughout the dosing interval.

In critically ill patients, treatment of bacterial infections can be particularly difficult due
to the possibility of multi-organ failure and hemodynamic, physiological, and metabolic
alterations. Numerous factors can affect pharmacokinetics, such as hyperdynamic states,
intensive pharmacotherapy, fluid overload, increased or impaired renal clearance, and
even support with continuous renal replacement therapy or extracorporeal membrane
oxygenation. Standard dosage regimens may fail to achieve therapeutic levels. For all
these reasons, especially in critically ill patients or when dealing with high MICs, it is
recommended to administer the daily dose of CT via extended infusion (over 3–4 h) or
continuous infusion (over 24 h) [5–8].

In intensive care units, decreasing the risk of medical errors is imperative, particularly
those related to the administration of incompatible drugs through the same infusion line.
Patients in these units frequently require complex therapeutic regimens, often including
multiple continuous infusions and parenteral nutrition (PN). Given the limited availability
of venous access, the Y-drug delivery strategy is often used to allow multiple concomitant
administrations. However, this approach should be avoided when possible as it poses
inherent risks. An alternative to co-administration is the temporary interruption of the
supply of the PN admixture. However, vascular manipulation may increase the risk of
infection and provoke glycaemic alterations [9].

In the critical care setting, clinical nutrition should be considered within the first
48 h. PN is indicated when enteral or oral nutrition is not feasible or does not fulfill
patient requirements [10–12]. Ensuring the appropriate use of PN is crucial to maximize
its benefits while minimizing the risk of complications. PN is a highly complex drug. It
contains more than 50 possible ingredients and carries a risk of interaction. It is a high-alert
medication that requires safety-focused policies, procedures, and practices to mitigate
potential hazards and optimize therapeutic outcomes. Additionally, PN compatibility
and stability are affected by external factors such as pH, temperature, oxygen, light, and
infusion sets or containers, which should be taken into account [13,14].

Drug Y-site compatibility fundamentally depends on a drug’s physicochemical charac-
teristics, but the concentration, temperature, and light exposure may also play an important
role. In some cases, instability between mixtures can be visualized through color changes,
phase separation, or the formation of precipitates. Precipitates of particles larger than 5 µm
can lead to complications such as reduced drug bioavailability and occlusion of blood
vessels. Such complications can be fatal, either due to a lack of therapeutic effect or by
triggering the formation of a thrombus [15–17]. It is, therefore, essential to ensure compati-
bility between solutions that will come into contact with PN at site Y. Many studies and
reviews have focused on the compatibility of antibiotics with PN [18–25], but compatibility
has not been elucidated for many other drugs. The aim of this study was to evaluate the
physicochemical stability of CT when mixed with a protocolized PN emulsion during
Y-site administration.

2. Results
2.1. Physical Stability

Visual inspection of PN emulsions did not show any macroscopic precipitates. There
were no signs of phase separation, color changes, or gas formation at t = 0 h and t = 6 h.

Microscopic inspection showed no evidence of incompatibility. No precipitates or
presence of particles >5 µm were detected.

Similarly, for PN-CT admixtures, no alterations were observed via visual inspection in
any of the CT concentration ranges at t = 0 h and t = 6 h.
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The average pH of bolus CT was 5.77 ± 0.05, and the average pH of continuous
infusion CT was 5.68 ± 0.02. The pH of PN was 6.28 ± 0.02 at t = 0 and 6.14 ± 0.01 at
t = 24 h. The average pH of the admixtures in bolus conditions was 6.18 ± 0.03 at t = 0 and
6.06 ± 0.02 at t = 24. In continuous infusion conditions, the pH was 6.23 ± 0.01 at t = 0 and
6.10 ± 0.01 at t = 24 h.

MDD was around 290 nm, which is lower than the 500 nm limit accepted by the US
Pharmacopeia in all samples. The mean MDD change was less than 5 nm and less than the
prespecified ∆10%: for PN, it was 282.3 ± 5.6 nm; for PN with bolus CT, it was 284.5 ± 2.1;
for CI CT, it was 286.8 ± 7.5 (Table 1) (Supporting Materials Figures S1–S3).

Table 1. Results of MDD in simulated admixtures.

Sample MDD

PN1 276.1 ± 7.7 nm
PN2 286.8 ± 4.7 nm
PN3 284.0 ± 6.5 nm

PN1-bolus1 286.5 ± 8.9 nm
PN2-bolus2 284.7 ± 4.6 nm
PN3-bolus3 282.3 ± 6.3 nm

PN1-IC1 279.2 ± 4.0 nm
PN2-IC2 285.4 ± 2.8 nm
PN3-IC3 294.2 ± 7.3 nm

Notes: PNx refers to the admixtures with no drug, PNx-bolusx refers to the admixture with CT administered as a
bolus infusion, and PNx-ICx refers to CT administered in a continuous infusion. MDD, Mean droplet diameter;
PN, Parenteral nutrition; CT, ceftolozane-tazobactam. Measurements were made in triplicate.

The mean osmolality of the PN solutions was 1935 ± 20 mOsm/kg at t = 0 h and
1921.6 ± 18.8 at t = 6 h. In bolus conditions, osmolality was 1103.6 ± 11.5 mOsm/kg at t = 0 h
and 1087.6 ± 5.3 at t = 6 h. In CI conditions, the osmolality was 1748.1 ± 15.6 mOsm/kg at
t = 0 h and 1722.4 ± 9.5 mOsm/kg at t = 6 h. All osmolality determinations fulfilled the
criteria of less than a 5% change. Table 2 shows the average osmolality changes at t = 0 h
and t = 6 h.

Table 2. Results of osmolality in simulated admixtures.

Sample Osmolality (mOsm/kg)
t = 0 h

Osmolality (mOsm/kg)
t = 6 h

Percentage of Initial
Osmolality

PN1 1944.3 ± 31.6 1931.7 ± 21.1 −0.7%
PN2 1940 ± 11.1 1922.7 ± 23 −0.9%
PN3 1920.3 ± 17.1 1910.3 ± 12.1 −0.5%

PN1-bolus1 1171 ± 6.6 1149 ± 2.6 −1.9%
PN2-bolus2 1063.3 ± 7.1 1053.3 ± 4.6 −0.9%
PN3-bolus3 1076.3 ± 21 1060.3 ± 8.6 −1.5%

PN1-IC1 1741 ± 23.4 1714 ± 5.3 −1.6%
PN2-IC2 1808 ± 6.6 1744.3 ± 11.2 −3.5%
PN3-IC3 1695.3 ± 16.7 1709 ± 12.1 +0.8%

Notes: PNx refers to the admixtures with no drug, PNx-bolusx refers to the admixture with CT administered as
a bolus infusion, and PNx-ICx refers to CT administered in a continuous infusion. Measurements were made
in triplicate.

2.2. Chemical Stability

The average concentration of ceftolozane in bolus administration at t = 0 h was
8.43 ± 0.34 mg/mL, and at t = 24 h, it was 9.37 ± 0.51 mg/mL. In CI administration,
the average concentration at t = 0 h was 1.57 ± 0.19 mg/mL, and at t = 24 h, it was
1.50 ± 0.26 mg/mL. In the case of tazobactam, the average concentration in bolus adminis-
tration at t = 0 h was 4.3 ± 0.13 mg/mL. At t = 24 h, it was 4.21 ± 0.24 mg/mL, and in CI
administration, at t = 0 h, it was 0.89 ± 0.16 mg/mL. At t = 24 h, it was 0.87 ± 0.15 mg/mL.
In bolus conditions, the mean changes in ceftolozane and tazobactam were +11% and −2%,
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respectively, and in CI conditions, the mean changes were −5% and −2%. Tables 3–5 show
the concentrations of CT and the ceftolozane–tazobactam ratio at t = 0 and t = 24 h.

Table 3. Changes in ceftolozane concentration according to HPLC analysis at 0 h and 24 h.

Sample Concentration (mg/mL)
t = 0 h

Concentration (mg/mL)
t = 24 h

Percentage of the Initial
Concentration

PN1-bolus1 8.64 ± 0.32 9.08 ± 0.57 +5%
PN2-bolus2 8.21 ± 0.53 9.58 ± 0.61 +17%
PN3-bolus3 8.45 ± 0.06 9.44 ± 0.44 +12%

PN1-IC1 1.46 ± 0.05 1.32 ± 0.01 −10%
PN2-IC2 1.45 ± 0.04 1.35 ± 0.01 −7%
PN3-IC3 1.81 ± 0.07 1.83 ± 0.04 +1%

Notes: PNx-bolusx refers to the admixture with CT administered as a bolus infusion, and PNx-ICx refers to CT
administered in a continuous infusion.

Table 4. Changes in the tazobactam concentration according to HPLC analysis at 0 h and 24 h.

Sample Concentration (mg/mL)
t = 0 h

Concentration (mg/mL)
t = 24 h

Percentage of the Initial
Concentration

PN1-bolus1 4.25 ± 0.10 4.16 ± 0.04 −2%
PN2-bolus2 4.33 ± 0.23 4.37 ± 0.01 +1%
PN3-bolus3 4.32 ± 0.11 4.09 ± 0.28 −5%

PN1-IC1 0.78 ± 0.01 0.78 ± 0.01 0%
PN2-IC2 0.80 ± 0.02 0.77 ± 0.04 −4%
PN3-IC3 1.09 ± 0.05 1.07 ± 0.02 −2%

Notes: PNx-bolusx refers to the admixture with CT administered as a bolus infusion, and PNx-ICx refers to CT
administered in a continuous infusion.

Table 5. Changes in the ceftolozane–tazobactam ratio according to HPLC analysis results at 0 h
and 24 h.

Sample Concentration Ratio
t = 0 h

Concentration Ratio
t = 24 h

Percentage of the Initial
Concentration Ratio

PN1-bolus1 2.03 2.18 +7%
PN2-bolus2 1.89 2.19 +16%
PN3-bolus3 1.96 2.31 +18%

PN1-IC1 1.87 1.70 −9%
PN2-IC2 1.81 1.75 −3%
PN3-IC3 1.66 1.71 +3%

Notes: PNx-bolusx refers to the admixture with CT administered as a bolus infusion, and PNx-ICx refers to CT
administered in a continuous infusion.

3. Discussion

Our results show that CT co-infusions, either as bolus or CI, are stable over time when
they are infused in a Y-site alongside PN. To the best of our knowledge, Y-site compatibility
studies have not been conducted to assess the concurrent administration of CT and PN.

When multiple IV infusions must be administered simultaneously, they should be
infused separately, if possible. However, some patients require complex prescription
regimens that can be a challenge when Y-site administration is inevitable. Drug–drug
incompatibilities should be assessed to avoid safety issues that may result in precipitation
or occlusion of infusion lines [26], which could ultimately lead to serious consequences,
such as venous thrombosis or pulmonary embolism. However, there is limited research
available regarding the stability of PN when co-administered with other drugs.

Many factors, such as PN composition, storage conditions, and administration prac-
tices (e.g., bag type, temperature, administration set, and use of filters), can affect PN
stability results. To avoid these possibilities, we simulated administration conditions
following standard protocols and the recommendations for PN and CT administration.
In the literature, two methods are described to assess compatibility [27]: static methods
combining medication in tested ratios in a test tube and dynamic methods simulating their
co-administration with automatic pumps. In the present study, we simulated the second
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method as it reflects clinical conditions and takes the influence of relevant factors such as
infusion line characteristics into account.

In our study, we used a standard PN composition protocolized in our center. This
protocol can be used both in stable and critical patients, according to guidelines [10,11,28,29].
The PN formulation included standard electrolyte concentrations as well as trace elements
and vitamins in order to resemble usual conditions that could affect stability and accelerate
the decomposition of the drug. We tested PN with fish oil (FO) containing intravenous
lipid emulsions because FO emulsions have been associated with more clinical benefits,
particularly in the critical care population [30,31]. Our PN could also be considered for use
as supplemental PN in critical patients who have high energy and protein requirements.
However, when assessing PN composition, it should be kept in mind that critical care
patients may present conditions or complications that warrant the use of individualized
PN compositions other than the tested PN.

When considering drug characteristics, various factors, such as product excipients,
carrier fluids, final drug concentration, and contact time of exposure, should be taken into
account. According to the SPC [1], reconstituted CT can be diluted in normal saline (NS)
or 5% glucose solutions. In our study, we diluted CT in NS. To our knowledge, this is the
most common infusion fluid used in the preparation of drugs in the intensive care ward.
The use of 5% glucose solutions is generally avoided so as to prevent an excessive supply
of glucose, which could lead to glycemic changes. Moreover, in a study analyzing Y-site
administration of CT and selected intravenous drugs, the authors found that compatibilities
and incompatibilities were consistent regardless of whether NS or 5% glucose was used as
a diluent [32].

The tested antibiotic concentrations in the present study may help assess the possibility
of co-administration under different therapeutic strategies, both of which can result in
different proportions of medication coexisting within the same infusion line. Although it
is not described in the SPC, the CI strategy is commonly used in critical patients because
it provides more stable concentrations of the drug. This approach has been described
previously [1,33,34]. However, such use outside the terms of its marketing authorization is
not supported by the manufacturer.

There remains a lack of consensus regarding the specific tests that should be performed
to assess compatibility between drugs and PN. The methods we selected were based
on our previous experience [17,35,36], a literature review [15,19,20,22,24,25,37], and the
instrumental techniques available in our area that could be performed without excessive
temporal delays.

The assessment of physical compatibility was based on visual inspection and measure-
ment of pH, osmolality, and lipid emulsion particle size. These parameters were assessed
immediately after preparation and again between 6 h and 24 h, depending on the avail-
ability of instrumental techniques. It must be taken into account that the contact time
between PN and the tested drug is a few minutes and that the time between the second
measurement could have been even shorter than the 6–24 h schedule. On the basis of the
ILE by European Pharmacopeia criteria, we consider our methods to detect any signs of
precipitation or emulsion destabilization [38].

One study reported incompatibility between CT and propofol, showing a phase
separation in the oil emulsion with a free layer of oil [32]. This study also reported
incompatibility with other drugs assessed with turbidity changes, a method that is not
feasible in lipid emulsion or PN. However, stability changes should not rely only on visual
inspection to define the safety of drug co-administration. Small particles cannot be detected
because of the viscosity, rheology, or opalescence of PN admixtures and the proportion and
size of the possible particles that should be detected.

The lack of pH and osmolality changes observed outside the prespecified ranges suggests
the compatibility of CT with PN. Variations in these parameters that exceed the limits could
indicate acid–base changes due to lipid hydrolysis with the release of free fatty acids or
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precipitation. It has been reported that at pH < 5.5, lipid emulsions can undergo phase
separation, depending on the composition and concentration of electrolytes [16,19,24].

Lipid droplet size is one of the most relevant parameters when considering PN admix-
ture safety [39,40]. The European Pharmacopeia does not propose size determination or
limits related to the particle size of lipid emulsion [38]. Conversely, the US Pharmacopeia
recommends two possible methods to assess this aspect: (a) light scattering and (b) light
obscuration or extinction [41]. In our study, we applied the dynamic light scattering (DLS)
method, with the MDD limit defined as 500 nm and with changes in MDD ≤ 5 nm, as
reported in previous works [17,35,36] and applied by other authors [19,21–24,42]. Both
in bolus and continuous infusion, our sample met the criteria and was within the US
Pharmacopeia requirements.

Some authors consider the PFAT-5 parameter to be more reliable than MDD as it
allows for a complete characterization of lipid droplets [43]. Several studies have assessed
compatibility using light obscuration methods, measuring the percentage of large diameter
droplets (>5 µm) that should not exceed 0.05% [27]. However, many other studies have
assessed compatibility without testing this parameter [18,20–25,42,44,45]. Unfortunately,
light obscuration was not available in our region. Nonetheless, we found a low SD and a
low polydispersity index, indicative of homogeneous preparations without precipitates.
(Supporting Information Figures S1–S3). Moreover, microscopic inspection was performed
to rule out the presence of particles invisible to the naked eye.

Consensus is also lacking regarding the determination of drug concentration changes
in Y-site administration. In our study, we simulated the co-administration of the drugs and
considered a contact time greater than the real-time between the drug and PN in real clinical
practice, which is only minutes. In bolus conditions, the mean changes of ceftolozane and
tazobactam were +11% and 2%, respectively, and in CI conditions, they were +5% and
+2%. In some samples, we observed changes in ceftolozane concentrations greater than
10% at 24 h. In the case of tazobactam concentrations, changes were less than 10%. The
relationship between the ceftolozane and tazobactam concentrations in our study remained
at a 2:1 ratio. Many studies have not assessed these changes because of the short contact
time in the case of Y-site administration [19]. Findings from studies that have evaluated the
drug in a PN admixture have suggested that the formulation should retain at least 90% of
the active substance [18,22,24]. Aeberhard et al. [15] considered a larger deviation range of
20% acceptable because of the high complexity of the samples.

In a recent review of compatibility studies of PN and drugs for pediatric patients,
Gostyńska et al. [27] proposed a grading system to assess the physicochemical compatibility
data inspired by the Stabilis 4.0 database. They categorized studies into four groups (A–D)
based on the quality and evidence provided. According to their system, our study would
be categorized as grade C, indicating medium evidence, as we did not test PFAT through
light obscuration or light extinction methods. However, we did assess chemical stability, a
criterion for the A grade.

The main limitation of our study is that the results cannot be extrapolated to the
dilution of the drug in the bag. However, we simulated the most common situation in
clinical practice, which is Y-site administration. A second limitation is the need for a
1:10,000 dilution when processing samples for HPLC–HRMS determination. This dilution
could account for the difference in concentrations of antibiotics in some of our samples,
which showed variability above 10%. A third limitation could be the many possible PN
compositions. To avoid this, we designed a PN according to ICU patient requirements. We
used the most feasible formulation available in our center, based on standard amino acids,
an omega-3 enriched lipid source, and requirements that fulfill the guidelines. Differences
in PN composition when formulating individualized PN, with specific changes adapted to
patients’ needs, should be taken into account when assessing compatibility administration
recommendations. In such cases, our compatibility results cannot be inferred for all possible
formulations. Another limitation was that droplet size was only analysed using MDD.
Evaluating droplet size with light obscuration technique would reinforce the validity of the
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results. Finally, PN administration should be performed with the use of filters in order to
increase safety by retaining possible particles >2 µm, which appear to present a higher risk
for adverse consequences [46].

4. Materials and Methods
4.1. General Procedures

Three protocolized PN emulsions with the same composition and six CT solutions
(three for bolus infusion and three for continuous infusion) were prepared in the Pharmacy
Department at our centre. The emulsions were compounded in horizontal laminar flow
hoods using ethyl vinyl-acetate (EVA) multi-layered bags (Oiarso S. Coop, Hernani, Spain).
CT solutions were prepared under non-aseptic conditions, simulating regular clinical
practice in the ICU setting. Bolus infusion and continuous infusion were simulated in Y-site
administration with PN, as previously described [17,32]. Tests were performed in triplicate
for each experiment.

4.2. Composition of PN Emulsions and CT Solutions

The three PN tested were equally compounded. The PN was designed to fulfill the re-
quirements of a critically ill adult patient weighing 60–70 kg for a 24-hour period [10,11,29].
The composition of the PN was 14 g of nitrogen, 250 g of dextrose, 50 g of lipids, 80 mmol
of sodium, 60 mmol of potassium, 60 mmol of chloride, 4.6 mmol of calcium, 5 mmol of
magnesium, 50 mmol of acetate, 23.8 mmol of phosphate, trace elements, and vitamins (PN
volume: 1615 mL). Specifically, we selected SMOFlipid® 20% (Fresenius Kabi, Barcelona,
Spain) as the lipid source and Aminoplasmal® (B.Braun, Barcelona, Spain) as the nitrogen
source (Table 6).

Table 6. Composition of the Parenteral Nutrition Emulsion.

PN

Volume (mL) 1615
Total calories (kcal) 1850

Non-protein calories (kcal) 1500
Non-protein calories/gN Ratio 107

Glucose (g) 250
Aminoacids (g) 87.5

Nitrogen (g) 14
Lipids (g) 50

Na+ (mEq) 80
K+ (mEq) 60

Ca2+ (mEq) 9.2
Mg2+ (mEq) 10

Phosphate (mEq) 20
Sulphate (mEq) 5
Chlorate (mEq) 60
Acetate (mM) 50

Multivitamin Cernevit® a 5 mL
Trace elements Supliven® b 10 mL

Notes: PN, parenteral nutrition. a Multivitamin Cernevit (5 mL): vitamin A (retinol) 3500 IU, vitamin D3 220
IU, vitamin E (α tocopherol) 11.2 IU, vitamin C 125 mg, vitamin B1 (thiamine) 3.51 mg, vitamin B2 (riboflavin)
4.14 mg, vitamin B6 (pyridoxine) 4.53 mg, vitamin B12 6 µg, folic acid 414 µg, pantothenic acid 17.25 mg, biotin
69 µg, vitamin PP (niacin) 46 mg. b Trace elements Supliven (10 mL): zinc 77 µmol, copper 6 µmol, manganese
1 µmol, selenium 1 µmol, iodine 1 µmol, chromium 0.2 µmol, molybdenum 0.2 µmol, iron 20 µmol, fluorine
50 µmol.

For the preparation of each of the three CT bolus infusion solutions, we reconstituted
two CT 1000/500 mg (Zerbaxa®, MSD, Haarlem, Holland; Series expiration dates: W019837-
03/2025 and W033928-03/2025) with 10 mL of water for injection and diluted in 100 mL
of normal saline (NS) (Fisiológico B. Braun 0.9%, B.Braun, Rubí, Spain). The predicted
ceftolozane concentration of these solutions was 16.3 mg/mL. For the preparation of each of



Pharmaceuticals 2024, 17, 896 8 of 13

the three CT continuous infusion solutions, we reconstituted six CT 1000/500 mg diluted in
250 mL of NS. The predicted ceftolozane concentration of these solutions was 18.8 mg/mL.
Reproducing daily clinical practice, we did not remove the equivalent volume of the diluted
drug from NS.

4.3. Simulation of Y-Site Administration

PN emulsions and CT solutions were infused as in clinical practice by means of
automatic pumps (Infusomat® Space, B.Braun, Rubí, Spain). The PN rate was 67 mL/h,
simulating 24-h infusion.

To select the CT infusion rates to be tested, we followed the Zerbaxa® SPC [1] and the
bibliographic review [2,3,33,34]. For bolus simulation, the diluted drug was administered
at a rate of 123 mL/h, and for continuous infusion simulation, the rate was 13.3 mL/h.

To simulate administration at the Y-site, we used opaque infusion sets. Both PN and
CT preparations were protected from light.

4.4. Sample Collection, Storage, and Analysis

We simulated Y-site administration for 30 min both for bolus and continuous infusions
and collected the final volume resulting from the admixture of CT and PN. The concen-
trations predicted in the admixtures were 9.75 mg/mL of ceftolozane and 4.85 mg/mL
for tazobactam in the bolus simulation, and 2.4 mg/mL of ceftolozane and 1.2 mg/mL of
tazobactam in the continuous infusion simulation.

Figure 1 shows the study design. Forty-eight samples with a final volume of 5 mL
were collected in polystyrene test tubes (REF 55475, Sarstedt AG & Co, Nümbrecht, Ger-
many). Twelve samples were used for the high-performance liquid chromatography–high-
resolution mass spectrometry (HPLC–HRMS) test, twelve for dynamic light scattering
(DLS), twelve for pH measurement, osmolality, and visual inspection, and twelve for mi-
croscopic inspection. One blank from each PN was collected in BD syringes (REF 2211085,
Becton Dickinson and Company, Madrid, Spain).
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Microscopy: microscopic inspection sample; PN: 3-in-1 parenteral nutrition. Doses are expressed as
doses of ceftolozane.
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Samples were stored at room temperature (18–25 ◦C) and protected from light, sim-
ulating clinical practice. pH measurements and visual and microscopic inspection were
performed at zero time and 24 h after sample collection. Osmolality was measured at zero
time and 6 h after obtaining the sample. DLS was carried out 6 h after obtaining the samples,
and HPLC–HRMS tests were performed at zero time and 24 h after sample collection.

4.5. Stability Assessment

To assess Y-site compatibility between CT and PN, we performed the following physi-
cal and chemical tests.

• The presence of macroscopic precipitates, changes in color, and phase separation
were assessed according to the European Pharmacopeia [35]. Visual inspection was
conducted against a black-and-white contrast background by two pharmacists. Visual
inspection was also performed with PN emulsions, without the drug.

• Microscopy was assessed using a LEICA DM2500 LED microscope (Leica Microsis-
temas S.L.U. L’Hospitalet de Llobregat, Spain) by two observers at t = 0 h and t = 24 h.
Ten µL of the mixture were assessed at 400× magnification (10× ocular lens and 40×
objective lens). Admixtures with CT as a bolus and as continuous infusion concen-
trations were used as negative control solutions. We also assessed PN with no drug.
PN with final unstable calcium and phosphate concentrations was used as a positive
control. Each combination of drug and PN was prepared in triplicate.

• pH measurement was made using potentiometry (senIONTM+ PH 1, Hach, Spain) at
room temperature.

• Osmolality was measured at room temperature (Osmo1, Advanced Instruments,
Tecil, Spain).

• The particle size of the lipid emulsion was measured at 25 ◦C using dynamic light
scattering (Zetasizer NanoZS90, Malvern Instruments Ltd., Malvern, UK) 6 h after the
simulation. Samples for DLS were prepared by diluting the solutions into PBS at a
final concentration of approximately 30 µg/mL. The results of particle diameter are
presented as MDD. (Figure 2 and Supplementary Materials Figure S1)

• HPLC–HRMS was used to quantify CT concentration in the admixtures. Samples
were measured in triplicate. An Infinity II LC system coupled to a 6560-ion mobility
QTOF mass spectrometer, both from Agilent Technologies (Santa Clara, CA, USA),
was used in positive ionization mode from m/z 100–1700. A Kinetex F5 150 × 2.1 mm,
2.6 µm column from Phenomenex (Torrance, CA, USA) was used with mobile phase A
(water and 0.1% formic acid and mobile phase B (Acetonitrile and 0.1% formic acid) at
0.4 mL/min, following the gradient (t(min), %B): (0, 2), (1, 2), (6, 95), (7.5, 95), (7.8, 2),
and (10, 2). Samples were diluted 1/10,000 with ultrapure water in three steps and
centrifuged at 10,000 rpm at 4 ◦C for 5 min. The injection volume was 2 µL. Trace
chromatograms were extracted with a 3 ppm error at m/z 667.1824 for ceftolozane and
m/z 301.0601 for tazobactam. (Figure 3) Calibration standards were prepared in a blank
matrix diluted 1/10,000, and the weighting of calibration curves was adjusted (1/x or
1/x2) to obtain accuracies between 80 and 120%. The matrix-matched calibration curve
was prepared in a blank sample diluted 1/10,000, which was spiked with standards
at five concentrations between 0.1 and 4.5 mg/L. The calibration curve was prepared
daily and was injected in triplicate each day of analysis. Regarding selectivity, the
ability to distinguish the analyte from other substances was indicated by an absence
of the respective peaks at the same retention time as the corresponding standards in
trace chromatograms extracted with a 5 ppm error. Accuracy was calculated at the
five spiked levels (based on the ratio between the calculated concentration and the
spiked concentration) between 90.5 and 101.2% for tazobactam and between 82.6 and
111.1% for ceftolozane. Intra-day repeatability expressed as relative standard deviation
(%) between 0.4 and 3.4% for ceftolozane and between 0.1 and 3.3% for tazobactam
was obtained. Inter-day repeatability was between 2.1 and 12.8% for ceftolozane and
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between 0.8 and 15.9% for tazobactam. The limit of detection LOD, defined as S/N = 3,
was 10 ng/mL for ceftolozane and 1 ng/mL for tazobactam.
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CT was considered compatible with PN when the following criteria were met:

• No changes in visual inspection, defined as a homogeneous admixture with no changes
in color, no phase separation, and lack of macroscopic precipitates or gas formation
altering the admixture, as assessed by two independent observers against a black-and-
white contrast background at t = 0 h and t = 6 h [35].

• No signs of precipitation, emulsion disruption, or presence of particles >5 µm at
microscopic inspection.

• No relevant pH changes at room temperature, defined as a pH between 5.5 and 7.2 in
the admixtures at t = 0 and t = 24 h and ∆pH ≤ 0.2 [16,19,24].

• No relevant osmolality changes at room temperature, defined as less than 5% of change
between t = 0 h and t = 6 h [19,23].

• No relevant CT concentration changes in the mixture, defined as <20% change at
t = 24 h (measured using HPLC–HRMS) [15].

• No relevant particle size changes, defined as MDD ≤ 500 nm in all samples (United
States Pharmacopeia), and percentage of particles greater than 5 µm < 0.05% according
to the US pharmacopeia method I [38].

Each sample was measured in triplicate, and the results were expressed as the average
± standard deviation.

4.6. Data Analysis and Statistics

The CT concentration was calculated using Analyst 1.4.2© Software (AB Sciex, Fram-
ingham, MA, USA). MDD, pH, osmolality, and CT results are presented as mean ± SD
(Excel© software; Microsoft Office, Redmond, WA, USA, 2017).

5. Conclusions

Our findings show the physicochemical compatibility between CT and our PN during
Y-site administration, whether as a bolus or continuous infusion. In light of our results,
patients with complex drug regimens could benefit from the Y-site administration of CT
with PN.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph17070896/s1, Figure S1: MDD for PN with no drug; Figure S2:
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linezolid with parenteral nutrition. Molecules 2019, 24, 1242. [CrossRef]
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