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Abstract: Inflammatory bowel disease (IBD), a complex chronic inflammatory bowel disorder that
includes Crohn’s disease (CD) and Ulcerative Colitis (UC), has become a globally increasing health
concern. Nutrition, as an important factor influencing the occurrence and development of IBD, has
attracted more and more attention. As the most important nutrient, protein can not only provide
energy and nutrition required by patients, but also help repair damaged intestinal tissue, enhance
immunity, and thus alleviate inflammation. Numerous studies have shown that protein nutritional
support plays a significant role in the treatment and remission of IBD. This article presents a compre-
hensive review of the pathogenesis of IBD and analyzes and summarizes the potential mechanisms
of protein nutritional support in IBD. Additionally, it provides an overview of the clinical effects of
protein nutritional support in IBD and its impact on clinical complications. Research findings reveal
that protein nutritional support demonstrates significant benefits in improving clinical symptoms,
reducing the risk of complications, and improving quality of life in IBD patients. Therefore, protein
nutritional support is expected to provide a new approach for the treatment of IBD.

Keywords: protein nutritional support; inflammatory bowel disease; mechanisms of action; clinical
application; IBD complications

1. Introduction

Inflammatory bowel disease (IBD) is a group of diseases characterized by chronic
inflammation of the bowel, mainly divided into Crohn’s disease (CD) and Ulcerative Colitis
(UC) [1]. IBD manifests as chronic inflammation of the intestinal mucosa, accompanied by
abdominal pain, diarrhea, anemia, and other symptoms, which seriously affects the quality
of life of patients [2]. Globally, the prevalence of IBD is on the rise, making it one of the
focal points in public health. As of 2019, there were 4.89 million cases of IBD worldwide,
with an estimated 400,000 new cases of IBD in that year alone [3,4]. Developed countries
have consistently been the primary regions with high prevalence of IBD, especially North
America, Europe, and Australia [3]. However, in recent years, developing countries have
also experienced a rise in IBD prevalence, a trend that has attracted considerable attention
from researchers because it may be related to changes in lifestyle, dietary patterns, and
environmental factors [5].

The pathogenesis of IBD involves multiple factors such as genetics, immunology,
environment, and gut microbiota [6]. Early studies primarily focused on exploring the
association of genes and immune system abnormalities with IBD. However, recent studies
suggest that environmental factors (such as diet and lifestyle) and changes in the microbial
community are also considered closely related to the occurrence of IBD [7,8]. Clinically, the
treatment of IBD primarily focuses on medication, with surgery as a necessary option in
certain cases. Anti-inflammatory drugs such as 5-aminosalicylic acid and glucocorticoids
are used to alleviate acute symptoms [9]. Immunomodulatory drugs such as azathioprine
can be employed to maintain long-term remission [10–12]. Biologics, including anti-TNF
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drugs and other drugs targeting immune pathways, have become crucial therapeutic
methods in IBD treatment by modulating the immune response and targeting inflammatory
factors [13–15]. Surgical treatment is primarily utilized to address severe complications
or cases where medical therapy is ineffective. Although drug treatment can effectively
control disease symptoms and improve patients’ quality of life, it also presents a series of
problems such as significant side effects, drug resistance, high costs, drug dependence, and
suppression of the immune system [16,17].

In recent years, people have gradually realized the importance of nutrition to health,
and nutritional intervention plays a crucial role in disease prevention, treatment, and
postoperative recovery [18–21]. With protein as the most essential nutritional component,
studies have found that high-quality animal and plant proteins in the diet, especially whey
protein and soy protein, have the role of regulating the body’s immune system, reducing
inflammatory reactions, antioxidant properties, and so on [22–25]. Animal and clinical
studies have revealed that high-quality protein plays a significant role in the treatment
of IBD [26–29]. Protein nutritional support in IBD patients can improve the nutritional
status of the body, reduce inflammatory indicators, mitigate intestinal mucosal damage,
and improve clinical outcome indicators [30–32]. This article reviews the pathogenesis
of IBD, the impact of protein nutritional support on IBD, and its potential mechanisms.
Additionally, this article comprehensively analyzes the application of protein nutritional
support in clinical practice and its impact on IBD complications. We hope that this review
will provide new theoretical perspectives and practical references for the subsequent
application of protein nutritional support in the clinical treatment of IBD.

2. Pathogenesis

The pathogenesis of IBD is a complex process that has not been fully elucidated
despite extensive research. Currently, it is known that multiple factors, including genetics,
immunity, environment, and intestinal microbiota all play indispensable roles in IBD, and
they influence each other to constitute the pathogenesis of this disease [33].

2.1. Genetics

Genetic factors play a significant role in the pathogenesis of IBD. One important phe-
nomenon observed in IBD is the significantly higher incidence rate among first-degree
relatives of IBD patients compared to the general population [34–39]. Through analytical
methods such as genome-wide association studies (GWASs) and next-generation sequenc-
ing, researchers have identified over 240 non-overlapping IBD genetic risk loci, with
approximately 30 gene loci associated with both CD and UC [40–42]. Analysis shows these
genes are involved in pathways crucial for intestinal homeostasis [43–45]. However, the
heritability estimated through GWASs is significantly lower than those obtained from twin
studies, and this discrepancy can be attributed to the complex role of epigenetics [43,46].
Epigenetics has a profound impact on gene phenotypes through multiple factors such
as the environment and gut microbiota, thereby participating in the pathogenesis of IBD.
Data from the UK Biobank indicate that, among adult IBD patients with a high genetic
risk, maintaining a healthy lifestyle can potentially reduce the risk by half [47]. By delving
deeper into the genetic background and pathogenesis of IBD, we can actively and effectively
prevent and manage IBD, thereby providing better health management for patients.

2.2. Immune Response

Some studies have shown that innate and adaptive immune responses play a crucial
role in the development of IBD. Innate immunity is the first line of defense, providing
a rapid, non-specific immune response, while the adaptive immune system enhances
defenses through specific responses, such as T and B cell activation, producing targeted
immune reactions against specific pathogens or antigens [48]. Under normal conditions,
the immune system can recognize and distinguish between its own tissues and foreign
pathogens, maintaining immune tolerance. However, when the intestinal mucosal barrier
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is damaged, the intestinal flora is disturbed, immune regulatory cells are abnormal, or
autophagy is dysfunctional, it can lead to abnormal immune responses and trigger the
development of intestinal inflammation [49]. The impairment of the intestinal mucosal
barrier is a significant contributing factor to the occurrence of IBD [50,51]. When the intesti-
nal mucosal barrier is damaged, the increased mucosal permeability exposes the intestinal
tissues to a large number of antigens, leading to an overreaction and misidentification
by the intestinal immune system, activating macrophages and lymphocytes to release a
significant amount of cytokines and inflammatory mediators, ultimately leading to tissue
damage through the progressive amplification of inflammatory immune responses [52].

2.3. Intestinal Microbiota

Intestinal microbiota are often influenced by environmental factors such as diet, an-
tibiotics, mental factors, and trauma [53]. Changes in these factors may disrupt the balance
of intestinal microbiota, leading to damage to the intestinal mucosal barrier, triggering the
release of inflammatory mediators, and resulting in abnormal activation of immune cells,
thereby exacerbating the development of intestinal inflammation [54,55]. Animal studies
have shown that the intestinal microbiota is an indispensable factor driving the pathogene-
sis of IBD [53]. However, it is challenging to establish a clear causal relationship between
the intestinal microbiota and IBD in humans, as a single infection is unlikely to cause or
trigger IBD, but the intestinal microbiota clearly promotes the development of IBD [56,57].
Compared with healthy individuals, a significant decrease in gut microbial diversity was
observed in IBD patients, with a decrease in bacteria with anti-inflammatory effects and
an increase in bacteria with pro-inflammatory effects [58–62]. In addition, an increase in
the number of mucus-degrading bacteria was also observed in IBD patients, leading to
the erosion of the intestinal mucus barrier, prompting more pathogens and microbiota
products (such as toxins and lipopolysaccharides) to enter the intestinal epithelium and
trigger intestinal inflammation [63,64]. It is noteworthy that the number of certain bacteria
capable of producing short-chain fatty acids, such as Faecalibacterium prausnitzii, has also
been shown to decrease in IBD patients, and these short-chain fatty acids play crucial roles
in regulating cytokine release, modulating intestinal immunity, and providing energy to
intestinal epithelial cells [65]. In addition to bacterial changes, there were also significant
changes in the fungal community within the gut microbiota of IBD patients, including
an increase in fungal diversity and fungal dysbiosis [66]. A higher fungal diversity was
positively correlated with the severity of inflammation and the levels of inflammatory
markers such as TNF-α and IL-10 [67]. In summary, changes in the intestinal microbiota
are closely linked to the pathogenesis of IBD. A deeper understanding of the relationship
between the intestinal microbiota and IBD will help us find more effective prevention and
treatment strategies to maintain intestinal health and alleviate patient suffering.

2.4. Environment

The incidence of IBD in developing countries has significantly increased in the past
decade, and it has gradually become one of the common diseases of the digestive system
from the past state of being a rare disease [4]. This trend indicates that environmental
factors have a significant impact on the onset of IBD, especially for genetically susceptible
individuals, where environmental changes may be one of the important factors trigger-
ing intestinal inflammation [8,68]. Among these, some specific environmental factors
have been confirmed to be related to the occurrence of IBD. For example, ultra-processed
foods, smoking, antibiotic exposure, appendectomy, tonsillectomy, oral contraceptives,
environment pollution, and infant feeding patterns can all increase the risk of IBD occur-
rence [69–73]. Diet is a significant environmental factor influencing the occurrence and
severity of IBD. The rise in global IBD incidence can be partially attributed to the shift
towards Western dietary patterns and excessive consumption of processed foods in newly
industrialized countries [33,74]. The modern Western diet is characterized by excessive
intake of animal-derived proteins, refined grains, hydrogenated fats, and processed foods,
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with a decrease in the consumption of fruits and vegetables [33]. Changes in dietary pat-
terns lead to alterations in the quality and proportion of nutrition, resulting in intestinal
dysbiosis and subsequently triggering intestinal inflammation. Clinical trials have shown
that IBD patients who adopt an exclusionary diet (reducing refined sugar, saturated fats,
emulsifiers, red meat, and ultra-processed meat) can better maintain clinical remission and
improve intestinal inflammatory responses [75]. Smoking is one of the most extensively
studied factors in the pathogenesis of IBD. Clinically, smoking has been proven to be
harmful to patients with CD, while it appears to have a protective effect on those with
UC [43]. The use of drugs, especially antibiotics, is also associated with an increased risk of
IBD [76,77]. This correlation is often attributed to the long-term use of antibiotics, which
can cause changes in bacterial flora, increasing the risk of infection by potential pathogenic
bacteria and consequently leading to intestinal inflammation [78]. Long-term exposure to
certain pesticides, heavy metals, or other harmful chemicals can disrupt intestinal barrier
function, leading to the occurrence of intestinal inflammation [79,80]. At the same time,
environmental issues such as air pollution and water pollution also have negative impacts
on intestinal health [81,82]. Overall, the impact of environmental factors on IBD is multi-
faceted, including lifestyle, dietary habits, and exposure to certain environments. However,
the specific mechanisms of these environmental factors are not fully understood at present
and require further research for deeper exploration. Moreover, modifying environmental
factors such as lifestyle and dietary habits may help reduce the risk of developing IBD or
improve disease symptoms.

3. Mechanisms of Protein Nutritional Support in Alleviating IBD

Protein nutritional support has gradually shown its unique advantages in the treat-
ment of IBD. Through animal experiments and clinical studies, we found that protein not
only provides the necessary energy and nutrition for the human body as the cornerstone
of life activities, but also participates in the remission process of IBD through a series of
complex mechanisms (Table 1). Analyzing its possible mechanisms, specifically, protein nu-
tritional support can effectively promote the secretion of intestinal mucin, enhance intestinal
barrier function, and thereby resist the invasion of harmful substances; regulate the expres-
sion of intestinal tight junction proteins, maintain the stability of intestinal structure, and
reduce the penetration of inflammatory substances; regulate intestinal microbiota, maintain
intestinal microecological balance, and promotes intestinal health. In addition, the protein
also affects the activity of key signaling pathways, such as NF-κB and Keap1/Nrf2/HO-1,
further alleviating IBD symptoms by inhibiting inflammatory responses and enhancing
antioxidant capacity (Figure 1). Therefore, delving deeper into the mechanisms of how pro-
tein nutritional support alleviates IBD is of significant importance for optimizing nutrition
treatment plans for IBD patients and improving treatment outcomes.
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Table 1. The amelioration effect of high-quality animal and plant proteins on experimental IBD.

Dietary Protein Sources Dosage Model Intervention Time Conclusion Reference

Soy protein 35% energy-providing
protein intake

TNBS-induced
colitis in SD rats 4 weeks

Soy protein improved podoplanin + infiltration of colonic mucosal
structure; inhibited the proliferation of colon tumor necrosis

factor-α + cells and RANKL expression; suppressed the expression
of pro-inflammatory tumor necrosis factor-α and interleukin-6 in

bone proteins; and mitigated the high osteoclast surface and
depressed bone formation rate in TNBS rats.

[83]

Soy–Pea Protein 17.2% energy-providing
protein intake

DSS-induced colitis
in SAMP mice 6 weeks

Fecal myeloperoxidase (MPO) and FITC-glucan permeability
scores were significantly decreased; the severity of cobblestone

lesions decreased; the abundance of Lactobacillaceae and
Leuconostraceae increased; and the concentration of metabolites
glutamine and butyric acid increased, while the concentration of

plasma linoleic acid decreased.

[28]

Soy protein 20% energy-providing
protein intake

DSS-induced colitis
in C57BL/6 mice 12 days

Soy protein reduced the content of mucin MUC1 and trefoil factor
TFF-3 in the colon; inhibited the DSS-induced reduction in colon
length; lowered the colon inflammation score; and reduced the
expression of tumor necrosis factor-α in the colon and cecum.

[84]

Casein and whey protein
concentrate

10% energy-providing
casein + 10%

energy-providing whey
protein concentrate

DSS-induced colitis
in BALB/c mice 3 weeks

Whey protein concentration can improve the loss of body mass in
mice, and the effect of low-temperature treatment is more

significant; low-temperature treatment of concentrated whey
protein significantly reduced colonic inflammation and improved

mucosal results; both low-temperature and high-temperature
treatment of concentrated whey protein can increase the colonic

mucin level; the level of myeloperoxidase in the colon of
low-temperature whey protein concentration decreased; and

low-temperature whey protein concentration down-regulated the
expression of Gbp1, Gbp2, Gbp6 and Cxcl9.

[85]

Whey protein 18% energy-providing
protein intake

DSS-induced colitis
in Wistar rats 19 days

Whey protein reduced the expression of interleukin-1β,
calprotectin, and inducible nitric oxide synthase; alleviated the

clinical symptoms of diarrhea and fecal blood loss; increased the
secretion of fecal mucin; and increased the expression of

Lactobacillus and Bifidobacterium.

[86]
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Table 1. Cont.

Dietary Protein Sources Dosage Model Intervention Time Conclusion Reference

Whey protein 2.39 or 4.78 g/kg·body
weight/day

Acetic acid-induced
colitis in Wistar rats 7 days

Whey protein decreased the levels of inflammatory markers AP-1,
COX-2, interleukin-6, interleukin-10, NF-κB, and tumor necrosis
factor-α; up-regulated Nrf2 and HO-1 expression; and activated

Nrf2/HO-1 pathway.

[87]

Acid casein and
whey protein

14%, 30%, and 53%
energy-providing protein
intake (acid casein:whey

protein = 5:1)

DSS-induced colitis
in C57BL/6 mice 21 days

Compared with a dietary protein level of 14%, a 30% dietary
protein diet increased epithelial repair by accelerating

inflammation resolution, reducing colon permeability; 53% dietary
protein diet aggravated DSS-induced inflammation.

[88]

Casein, whey protein, soy
protein, white meat, and

red meat

40% energy-providing
protein intake

DSS-induced colitis
in BALB/c mice 28 days 40% casein and red meat can exacerbate colitis; 40% whey protein

can effectively alleviate colitis. [26]

Casein or wheat gluten
20% and 60%

energy-providing
protein intake

DSS-induced colitis
in BALB/c mice 35 days

The increase in animal protein resulted in a significant increase in
colon Ly-6Chigh monocytes and their activation; intestinal
inflammation associated with anti-inflammatory TGF-β,

pro-inflammatory cytokines (TNF-α and IL-1β), and inducible NO
synthetase increased in mice fed a diet rich in animal protein,

while plant-protein-rich diets generally decreased their expression.

[89]

Milk protein 53% energy-providing
protein intake

DSS-induced colitis
in C57BL/6 mice 14 days

Compared with the control group of animals that received DSS
treatment, a high-protein diet is harmful in the later stages of
induction, but it helps with the repair of colonic crypts after

acute inflammation.

[90]

Whey proteins or donkey
Whey proteins

0.2 g/d whey proteins or
donkey whey proteins

DSS-induced colitis
in C57BL/6 mice 21 days

Compared with the control group, both whey protein and donkey
whey protein had the ability to inhibit the expression of

proinflammatory protein and inflammatory secretion, and
significantly decreased the levels of NF-κB and CD86; donkey

whey protein is more effective than bovine whey protein in
improving DSS induced colitis.

[91]

Dietary protein levels
14%, 30%, and 53%
energy-providing

protein intake

DSS-induced colitis
in C57BL/6 mice 28 days

Compared with the other two diets, the diet with 30% protein
content is associated with a lower protein synthesis rate, which can
restore the initial level of the colon; it can restore colitis-induced
changes such as body weight, cecal protein content, and spleen
and muscle protein synthesis rates earlier; reduce inflammation

and bacterial translocation in mice.

[92]
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Table 1. Cont.

Dietary Protein Sources Dosage Model Intervention Time Conclusion Reference

Whey protein hydrolysate 300 or 600 mg/kg·body
weight/day

DSS-induced colitis
in C57BL/6 mice 37 days

High doses of whey protein hydrolysate can significantly inhibit
weight loss in mice with colitis, protect the colonic mucosal layer,
significantly reduce the levels of inflammatory factors TNF-α, IL-6,
and IL-1β in colitis mice; upregulate the secretion of short-chain

fatty acids in colitis mice, and restore the imbalance
of intestinal flora.

[27]

Alaska Pollock
protein (APP)

20% energy-providing
protein intake

DSS-induced colitis
in C57BL/6 mice 51 days

APP intake inhibited DSS-induced weight loss, increased the
disease activity index, increased spleen weight, shortened colon

length, alleviated colonic tissue injury, and changed the structure
and composition of fecal microbiota and short-chain fatty acids.

[93]

Quinoa protein or
quinoa peptide

quinoa protein
(1 g/kg·body

weight/day) or quinoa
peptide (500 or

1000 mg/kg·body
weight/day)

DSS-induced colitis
in C57BL/6 mice 35 days

Quinoa protein and quinoa peptide effectively relieve colitis
symptoms: diarrhea, abdominal pain, bloody stool, weight loss,

colon shortening, inflammatory factor release, and intestinal
barrier damage. They also regulate gut microbiota, boost

short-chain fatty acid production, and inhibit I-κB-α and NF-κB
phosphorylation in colon tissues.

[94]

Abbreviations used: AP-1, active protein kinase-1; BALB/c, BALB/c mouse line; C57BL/6, C57BL/6 mouse line; CD86, cluster of differentiation 86; COX-2, cyclooxygenase-2; Cxcl,C-X-C
motif chemokine ligand; DSS, dextran sulfate sodium; FITC, fluorescein isothiocyanate; Gbp, guanylate binding protein; HO-1, haem oxygenase-1; IL-1β, interleukin—1β; Ly-6Chigh,
high expression of lymphocyte antigen 6 complex; MUC1, mucin 1; NF-κB, nuclear factor kappa-B; NO, nitric oxide; Nrf-2, nuclear-related factor-2; RANKL, receptor activator of nuclear
factor-κ B ligand; SAMP, SAMP1/YitFC mouse line; SD, sprague–dawley; TFF-3, trefoil factors 3; TGF-β, transforming growth factor-β; TNBS, 2,4,6-trinitrobenzene sulfonic acid; TNF-α,
tumor necrosis factor-α.
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3.1. Promote Mucin Secretion

Mucins are huge and highly negatively charged glycoprotein secreted by goblet cells
of intestinal epithelium [95]. They are an important part of the intestinal mucus layer,
which acts as a barrier between bacteria and the intestinal epithelium [96]. The mucins
can be classified into two types: gel-forming mucins and transmembrane mucins [97].
At present, 20 different mucins have been identified [98]. Mucin 2 (MUC2), known as
gel-forming mucin, is the main component of the intestinal mucus, and forms the skeleton
of the intestinal mucus layer through the connection of disulfide bonds [99,100]. Mucin
production is critical as reports suggested an increased risk of colitis and inflammation-
induced colorectal cancer in MUC2 deficient mice [101]. Clinical studies have found that
the expression of MUC2 in the colon of patients with UC is significantly reduced, and the
expression of MUC2 was negatively correlated with the severity of UC [102]. However,
MUC2 expression in Crohn’s patients fluctuates irregularly with clinical activity of the
disease [103,104].

Regarding the relationship between dietary protein and mucin, the initial study found
that milk protein hydrolysates can induce a large amount of mucin release from intestinal
goblet cells by activating the enteric nervous system and opioid receptors [105,106]. The
presence of opioid receptors on intestinal cells suggests that food-derived peptides with the
structure of opioid receptor agonists, which can be produced in the intestinal lumen during
gastrointestinal digestion, might regulate mucin production via a direct action on epithelial
goblet cells [107]. Studies in animal experimental models of colitis have also found that
whey protein and soy protein as dietary protein sources can increase the secretion of colonic
MUC2 to reduce intestinal mucosal damage [84,85]. However, some researchers support
the view that the protective effect of whey protein against colitis induced in rats is due
to its high levels of threonine and cysteine, which stimulate MUC2 synthesis [86,108].
Zeng et al. found that feeding soy protein isolate to weanling mice reduced intestinal
MUC2 production and weakened intestinal immune function in mice, which should be

https://www.figdraw.com/static/index.html#/
https://www.figdraw.com/static/index.html#/


Nutrients 2024, 16, 2302 9 of 26

take into account when using soy protein as a dietary protein source in children or young
animals [109]. Therefore, it is still needed to further explore the mechanism of dietary
protein regulation of MUC2.

3.2. Regulate Intestinal Tight Junction Proteins

Intestinal tight junction proteins are important molecules that form tight connections
between intestinal cells and play a key role in maintaining the integrity and permeability
of the intestinal mucosal barrier [110]. Studies show that Occludin, Claudins, and Zonula
Occluden 1 (ZO-1) are the most important three types of tight junction proteins [111,112].
When the expression or distribution of intestinal tight junction proteins are abnormal, the
integrity of the intestinal mucosal barrier is damaged, and the permeability is increased,
which may lead to intestinal inflammation, allergy, and other problems [113,114]. All IBD
patients were accompanied by intestinal mucosal barrier impairment to varying degrees. Tu-
mor necrosis factor-α (TNF-α) is a key inflammatory factor that leads to impaired intestinal
mucosal barrier function [115]. In IBD, TNF-α increases the expression/phosphorylation
of myosin light chain kinase (MLCK) by inducing NF-κB activation, which subsequently
leads to the delocalization of tight junction proteins on intestinal epithelial cell membranes,
ultimately resulting in increased intestinal permeability [116–119]. Many experimental
studies have shown that whey protein and soy protein can significantly inhibit the ex-
pression of TNF-α in the colon of colitis animals, improve intestinal mucosal permeability,
and reduce the score of colon inflammation [28,83–87]. Given the importance of protein,
in recent years, clinical researchers have begun to consider the use of protein nutritional
support in IBD. One of the clinical studies observed that a daily dose of whey protein could
significantly relieve intestinal epithelial inflammation and improve intestinal permeability
and intestinal mucosal morphology [30]. This evidence suggests that protein nutritional
support regulates the distribution of tight junction proteins in intestinal epithelial cells by
reducing TNF-α expression, thereby improving intestinal mucosal permeability.

3.3. Regulation of Intestinal Microbiota

High-quality protein, as one of the essential nutrients for the human body, plays
a pivotal role in maintaining the balance of intestinal microbiota. In recent years, with
the continuous deepening of research, more and more evidence has shown that high-
quality protein has a positive impact on intestinal microbiota [120–123]. As one of the main
nutritional components in food, the quality and quantity of protein intake directly affect
the nutritional status of intestinal microbiota. When the human body consumes adequate
high-quality protein, these proteins are digested into small molecules in the stomach and
small intestine, including small peptides and amino acids, which then enter the colon to
become a food source for intestinal microbiota. Intestinal microbiota utilizes these amino
acids for growth and reproduction, thereby maintaining the diversity and activity of the
intestinal microbiota. Studies have found that consuming appropriate amounts of high-
quality protein can improve the structure of the intestinal microbiota by increasing the
proportion of beneficial bacteria and reducing the number of harmful bacteria [124,125]. In
addition, high-quality protein also affects the production of intestinal microbial metabolites.
Intestinal microbiota produce a series of compounds, such as short-chain fatty acids,
through the metabolism of amino acids. Short-chain fatty acids play important roles in
maintaining intestinal mucosal barrier function, providing energy, regulating the immune
response, and having anti-inflammation effects [126–128]. Multiple studies have shown
that moderate intake of high-quality protein can promote the production of short-chain
fatty acids, thereby contributing to maintaining intestinal health [27,129].

Previous discussions have addressed the significance of intestinal microbiota in the
onset and progression of IBD. Given the positive impact of high-quality protein nutritional
support on intestinal microbiota, an increasing number of studies have begun to focus on the
application of protein nutritional support in IBD. It was found that replacing animal protein
in a regular diet with a mixture of soy protein and pea protein can alter the composition
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of intestinal microbiota in mice with DSS-induced colitis, increasing Lactobacillaceae
abundance and promoting an increase in the concentration of the metabolites glutamine
and butyric acid, thereby reducing the severity of experimental IBD [28]. In another trial
that replaced casein in the diet of colitis rats with whey protein, it was found that whey
protein increased fecal counts of Lactobacillus and Bifidobacterium, both of which have
been shown to benefit gut health [86]. A recent trial with daily supplementation of a
certain amount of whey protein hydrolysate has demonstrated that it can promote the
growth of beneficial bacteria norank_f_Muribaculaceae in DSS-induced mice, which utilizes
intestinal mucus polysaccharides as a growth nutrient, thereby inhibiting the growth and
colonization of pathogenic bacteria such as Romboutsia and Enterobacter in the intestine
and improving intestinal mucosal damage [27]. Other proteins, such as quinoa protein and
Alaska pollack protein have also been shown to alleviate experimental colitis by adjusting
intestinal microbiota structure [97,98].

3.4. Regulation of Key Signaling Pathways
3.4.1. NF-κB

NF-κB is an inducible transcription factor that regulates many different genes involved
in regulating inflammatory processes. The NF-κB family includes five members, NF-κB1
(p50), NF-κB2 (p52), ReIA (p65), ReIB, and c-ReI. The different NF-κB members mediate
the transcription of mainly inflammatory factors by binding to specific DNA sequences
and forming homo- or heterodimers [130,131]. NF-κB pathways are activated by a variety
of stimuli such as ligands of various pro-inflammatory cytokines receptors. NF-κB not
only increases the production of pro-inflammatory cytokine, adhesion molecules, and
chemokines, but also induces the survival and proliferation of inflammatory cells through
the production of anti-apoptotic factors and has been shown to be the primary regulatory
component of the inflammatory burden in intestinal inflammation during UC and CD [132].
The activation of NF-κB in the intestinal lumen is predominant in the intestinal macrophages
and epithelial cells of the intestinal lumen mucosa, and the higher the number of cells with
activated NF-κB stain, the worse the severity of the intestinal inflammation. The expression
of NF-κB is accompanied by increased production of pro-inflammatory cytokines such
as TNF-α, IL-1, and IL-6, which mediates intestinal mucosal tissue injury [133]. Many
clinical therapeutic agents for IBD, such as glucocorticoids and 5-aminosalicylic acid, have
mechanisms of action that are related to the inhibition of NF-κB [134–136]. Currently,
inhibition of NF-κB activation during IBD is also a direction of clinical research. Animal
studies have found that feeding a certain amount of whey protein or quinoa protein daily
can significantly reduce the expression level of NF-κB in the colon of IBD rats [87,91,94].
Further research is needed on how high-quality proteins inhibit the NF-κB pathway in IBD.

3.4.2. Keap1/Nrf2/HO-1

Kelch-like ECH-associated protein 1 (Keap1), Nuclear factor erythroid-2-related factor
2 (Nrf2), and Heme oxygenase-1 (HO-1) are important antioxidative signaling molecules
that possess antioxidant properties and maintain cell integrity. The Keap1/Nrf2/HO-1
signaling pathway plays an important role in protecting intestinal cells against oxidative
stress and inflammatory injury [137,138]. HO-1 as a stress-induced protein is induced by
various oxidative and inflammatory signals, subsequently inducing anti-inflammatory
activity. HO-1 mRNA and protein levels are up-regulated after oxidative stress and cell
damage, and Nrf2 can also directly regulate HO-1 promoter activity [139]. Nevertheless,
the activity of Nrf2 is precisely regulated by the negative regulator Keap1. Under the
basal state, Nrf2 is sequestered in the cytoplasm by Keap1. When the cell experiences
conditions of oxidative stress, electrophiles, or chemopreventive agents, Nrf2 dissociates
from the Keap1-mediated inhibition state and activates the expression of genes mediated
by antioxidant response element.

An experiment on colitis rates found that supplementation of whey protein could
significantly increase the expression levels of Nrf2 and HO-1, and decreased the expression
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levels of inflammatory markers [87]. In addition, the supplementation of soy protein can
also reduce the level of inflammation or oxidative stress in the body by regulating the
expression levels of Nrf2 and HO-1 [140,141]. It is speculated that high-quality proteins
produce peptides with antioxidant activity after digestion in vivo, which promote the
transfer of Nrf2 from the cytoplasm to the nucleus by binding to Keap1 or blocking the
binding of Keap1 and Nrf2 and then promote the transcription and expression of the
downstream gene HO-1, thus reducing the level of inflammation in the body [142–149].

4. The Clinical Application of Protein Nutritional Support in IBD

With the in-depth development of medical research, the application of protein nutri-
tional support in the clinical treatment of IBD has gradually received widespread attention
(Table 2). As the basic substance of human life activities, protein is of great significance
for maintaining normal physiological functions. In particular, the intake of high-quality
protein can not only provide essential amino acids for the body but also strengthen the
intestinal barrier function by adjusting the ecological balance of intestinal microorgan-
isms, thereby reducing inflammation [122,150–153]. The intestinal mucosa of IBD patients
is often damaged by inflammation, leading to nutrient malabsorption and affecting the
overall nutritional status of patients [154]. The core of protein nutritional support is to
improve the nutritional status of patients and promote the repair of intestinal mucosa
by optimizing the dietary structure of patients and increasing the intake of high-quality
protein. In addition, high-quality protein can also adjust the ecological balance of gut
microbes, enhance intestinal barrier function, thereby reducing inflammation and relieving
the symptoms of IBD (Figure 2).
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Table 2. The application of protein nutritional intervention in the clinical treatment of patients with IBD.

Intervention Factors Dosage Age
(Years) Model Intervention

Time Conclusion Reference

Whey protein concentrate 0.5 g/kg·body weight/d 24~46 CD 8 weeks

Intestinal permeability and intestinal morphology were
significantly improved; the villous crypt ratio was

significantly increased. Inflammatory markers (intestinal
epithelial lymphocytes, IELs) were reduced.

[30]

A diet rich in plant protein - 26~41 Inactive CD 4 weeks
Significantly improved body composition in inactive and

lactose intolerant CD patients; improved the treatment
compliance of lactose intolerant patients.

[155]

Whey protein + resistance
training (3 times weekly)

10 g/d whey protein + resistance
training (3 times weekly) 30~58 IBD 8 weeks

Skeletal muscle mass was significantly higher than that of
placebo group. Albumin, hemoglobin, and creatinine were

significantly increased.
[31]

Whey protein + transforming
growth factor(TGF) - 16~62 CD 16 weeks Lean body mass increased, while fat decreased. [156]

Whey protein or soy
protein isolate

30 g/d whey protein or 24 g/d
soy protein isolate - CD 16 weeks

Both whey protein and soy protein isolate can reduce the
triceps skinfold thickness and body fat percentage, while
increasing the mid-arm circumference, correcting the arm

muscle area, and increasing the percentage of lean body mass.

[29]

Hydrolyzed whey protein Hydrolyzed whey protein
(9.3–27.9 g/d) - CD 12 weeks

The improvement of nutritional status was related to the
number of nutritional supplements; average albumin levels
and body mass index improved; the index of disease activity

decreased significantly; the average number of bowel
movements per day decreased.

[32]

Dietary protein 20.7–152.5 g/d 27~45 CD - Protein intake was positively correlated with spinal
bone density. [157]

Casein glycomacropeptide 30 g/d 23~76 UC 8 weeks

A similar proportion of patients receiving casein
glycomacropeptide or mesalamide dose escalation had a

clinical response; colitis activity index and endoscopic lesion
degree decreased; casein glycomacropeptide had good

tolerance and acceptability.

[158]
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Table 2. Cont.

Intervention Factors Dosage Age
(Years) Model Intervention

Time Conclusion Reference

Bovine lactoferrin 1 g/d 22 CD 42 months

After about 9 months, the disease activity index dropped from
50 to 35. After approximately 3 years and 5 months, blood
tests showed no signs of disease relapse. The colonoscopy

conducted at 3 years and 6 months revealed almost complete
mucosal healing.

[159]

Lactoferrin 100 mg/d 9~14 IBD 3 months

Compared to ferrous sulfate, lactoferrin significantly increases
hemoglobin, serum iron, and serum ferritin; lactoferrin

significantly decreased interleukin 6 (IL-6) and
hepcidin levels.

[160]
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In clinical practice, whey protein and soy protein, as high-quality protein sources,
have shown promising applications in the treatment of IBD. In the treatment of patients
with CD, the intervention of a regular diet combined with concentrated whey protein
can significantly improve intestinal permeability and intestinal morphology, increase the
villous crypt ratio, and reduce inflammation marker levels [30]. Another study showed
that daily supplementation with whey protein or soy protein isolate can also reduce body
fat percentage, increase upper arm muscle circumference, and correct upper arm muscle
area in patients with CD, further improving the patient’s body composition [29]. A similar
experimental study has shown that daily whey protein supplementation combined with
resistance training can significantly increase skeletal muscle mass and improve hemoglobin
and creatinine levels in patients with IBD [31]. In addition to oral supplementation of
high-quality protein, adjusting dietary structure is also a commonly used method in IBD
treatment. A study has shown that a diet rich in soy protein can effectively improve
the body composition of patients with inactive and lactose-intolerant CD and increase
treatment compliance [155].

In addition to whey protein and soy protein, other forms of protein nutritional support
also play an important role in IBD treatment. Casein glycomacropeptide, as a milk-derived
polypeptide, has a similar clinical remission rate to medications in the treatment of patients
with UC and has shown good tolerance and acceptability [158]. Lactoferrin, a protein iso-
lated from milk with anti-inflammatory and immunomodulatory effects, can significantly
reduce inflammation marker levels and improve biochemical indicators such as hemoglobin
and serum iron in IBD patients [160]. Furthermore, a semi-elemental diet containing hy-
drolyzed whey protein not only improves the nutritional status of IBD patients but also
reduces the disease activity index and decreases the frequency of defecation [32]. It is
worth mentioning that an amino acid-based elemental diet has also shown similar positive
effects in the treatment of CD [161–163]. Elemental diets are not only easily absorbed by the
intestines but also have the advantage of low antigenicity, which is significant for reducing
intestinal burden and promoting intestinal repair. However, studies on patients with active
CD have conducted a comprehensive comparison of the efficacy of different enteral formu-
lations, and the results show that there is no statistically significant difference in treatment
effect between elemental diets and non-elemental diets [164–166]. This indicates that the
specific composition of proteins may not directly affect the overall therapeutic potential
of enteral nutrition. In light of this, the European organizations for IBD and for pediatric
gastroenterology and nutrition, ECCO and ESPGHAN, recommend the use of polymeric
diets that are closer to daily dietary habits for patients with relatively mild disease or lower
risk of relapse, in order to enhance patient acceptance and quality of life. Only in special
cases where patients have milk protein allergy, a switch to elemental diets is recommended
to ensure the safety and effectiveness of nutritional intake [167]. In addition, the infusion
of amino acids through parenteral nutrition is also one of the important clinical pathways
for protein supplementation. As a form of nutritional support, parenteral nutrition is
primarily used for IBD patients who are unable to digest and absorb food normally due
to severe intestinal inflammation or impaired function, as well as for patients who have
not responded to other treatments [168,169]. However, long-term reliance on parenteral
nutrition may lead to intestinal functional degeneration, increased risk of infection and
catheter-related complications [170,171]. Therefore, parenteral nutrition is usually used as
a supplement to enteral nutrition.

In summary, the application of protein nutritional support in the clinical treatment of
IBD has achieved remarkable results. By adjusting the diet structure of patients, increasing
the intake of high-quality protein and using specific protein interventions not only can
improve the nutritional status of patients but can also reduce the symptoms of disease,
control the inflammatory response, and reduce the occurrence of clinical complications. In
the future, with the continuous deepening of research and technological advancements,
the application of protein nutritional support in IBD treatment will become more extensive
and precise, bringing benefits to more patients.
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5. Protein Nutritional Support on IBD Complications
5.1. Malnutrition Associated with IBD

IBD patients are at risk of malnutrition due to reduced food intake, malabsorption,
increased gastrointestinal loss, increased energy requirements due to hypercatabolism,
and occasionally from drug–nutrient interactions [172]. Clinical studies have shown that
IBD patients are often accompanied by varying degrees of malnutrition, and the severity
of malnutrition in IBD is influenced by the activity, duration, and the magnitude of the
inflammatory response [168]. Malnutrition in IBD patients should be treated appropriately,
as it can worsen the prognosis, complication rates, mortality, and quality of life. When
IBD patients are diagnosed, they should be screened for malnutrition and thereafter on
a regular basis. Several standard nutritional risk screening tools have been used to ade-
quately screen and assess malnutrition, including the Subjective Global Assessment (SGA),
Nutritional Risk Score 2002 (NRS 2002), and Malnutrition Universal Screening Tool (MUST).
In addition, there are several specific nutritional risk screening tools for IBD patients, such
as Saskatchewan Inflammatory Bowel Disease–Nutrition Risk Tool (SaskIBD-NR Tool), the
IBD Specific Nutrition Self-Screening Tool (IBD-NST), and the Malnutrition Inflammation
Risk Tool (MIRT) for CD patients [173,174].

The most common type of malnutrition in IBD patients is protein-energy malnutrition.
Malnutrition can lead to a decline in muscle mass and function, which can further lead to
sarcopenia [175]. Studies have shown that high-quality protein supplementation can im-
prove malnutrition in children, the elderly and perioperative populations. A randomized,
double-blind trial for the treatment of childhood moderate acute malnutrition found that
adding whey protein to complementary foods improved malnutrition in children [176].
Another randomized, double-blind trial in 6-to-59-month-old children suffering from se-
vere acute malnutrition showed that children who received soy protein-based ready-to-use
therapeutic foods showed similar outcomes in terms of weight gain, rate of weight gain,
changes in other body measurements, and body composition compared to those who
received milk-based ready-to-use therapeutic foods [177]. Older people are at high risk
for malnutrition, especially those with chronic diseases. Some studies have shown that
supplementing foods rich in high-quality protein can improve malnutrition in elderly peo-
ple [178–180]. A clinical trial of allogeneic hematopoietic stem cell transplantation found
that daily supplementation of soy–whey mixed protein prior to transplantation improved
protein-energy malnutrition in leukemia patients compared to a natural diet group [181].
Clinical studies have found that high-quality protein supplementation plays an important
role in improving malnutrition in IBD patients. Daily supplementation of whey protein or
soy protein can improve the incidence of malnutrition and muscle mass in patients with
IBD and colorectal cancer [29,182]. ESPEN recommends that during active IBD, protein
requirements are increased, and intake should be elevated (to 1.2–1.5 g/kg/day in adults)
compared to recommendations for the general population; whereas during remission, pro-
tein requirements are generally not elevated, and the recommended intake should be similar
(approximately 1 g/kg/day in adults) to that for the general population [168].Therefore,
IBD patients should pay attention to the intake of high-quality protein in their daily diet to
prevent or improve malnutrition.

5.2. Sarcopenia Associated with IBD

Sarcopenia is defined as a complex syndrome characterized by a progressive, gener-
alized decrease in muscle mass and strength. There are two types of sarcopenia: primary
sarcopenia and secondary sarcopenia. Primary sarcopenia is caused by heredity or aging.
Secondary sarcopenia is caused by insufficient activity, malnutrition, malignancy, conges-
tive heart failure, chronic liver disease, chronic congestive pulmonary disease, chronic
inflammation, or steroid therapy [183]. IBD, as a chronic inflammatory disease, is signifi-
cantly associated with metabolic disorders and nutrient deficiencies, which subsequently
increases the risk of sarcopenia. Studies reported that over one-third of IBD patients have
sarcopenia and pre-sarcopenia, and nearly one-fifth have sarcopenia [184]. Sarcopenia



Nutrients 2024, 16, 2302 16 of 26

has a negative impact on the length of hospital stay, surgical outcomes, clinical course,
postoperative complication, and low bone mineral density and results in quicker biologic
agent failure of IBD patients [184–186].

Protein supplement is an emerging treatment of sarcopenia and has attracted increas-
ing attention. Many international working groups, such as the Asian Working Group for
Sarcopenia (AWGS), the European Working Group on Sarcopenia in Older People (EWG-
SOP), and the Australian and New Zealand Society for Sarcopenia and Frailty Research
(ANZSSFR), all recommend supplementing adequate amounts of protein, which can help
prevent or even reverse sarcopenia [187–189]. High-quality protein is rich in essential
amino acids, especially branched-chain amino acid, which can stimulate rates of muscle
protein synthesis and suppress rates of muscle protein breakdown and play an important
role in maintaining muscle health [190]. Clinical trials have found that supplementation
of high-quality protein can improve muscle mass and reduce the incidence of sarcopenia
in IBD patients. One study investigated personalized nutrition care in sarcopenic IBD
patients, a protein goal of 1.2–1.5 g/kg of ideal body weight was applied in the preoper-
ative phase (whey protein supplementation); a significant increase in muscle mass was
reported after 103 days compared to baseline measurements [191]. A clinical trial for CD
found that supplementation with whey protein and soy protein isolate reduced body fat
and improved muscle mass [29]. Protein supplementation and resistance training are
widely recommended as part of the treatment of sarcopenia. A randomized, double-blind,
placebo-controlled trial in patients with IBD found that the group receiving whey protein
combined with resistance training improved sarcopenia more effectively than the group
receiving resistance training alone [31]. All of these findings were accompanied by re-
ductions in clinical inflammatory indicators. It is inferred that high-quality protein may
improve muscle by stimulating muscle protein synthesis and reducing muscle protein
breakdown caused by inflammation, thus further reducing the incidence of sarcopenia.
For patients with IBD who experience the clinical complication of sarcopenia, although
there is no standardized protein intake guideline across clinical practices, it is generally
advised that their daily protein intake should be at least 1.2 to 1.5 g per kilogram of body
weight [192]. The specific intake should be tailored to the individual patient’s physiological
condition, disease activity level, and the severity of sarcopenia. In addition to increasing
protein intake, resistance training is also recommended to further augment muscle mass
and strength recovery.

5.3. Osteoporosis Associated with IBD

Osteoporosis is a common systemic skeletal disease characterized by an imbalance in
bone formation and resorption. Osteoporosis is one of the most common complications in
patients with IBD, with a prevalence of 18 to 42% [193,194]. The etiology of osteoporosis in
patients with IBD mainly involves several factors, such as low mineral intake, decreased
vitamin D synthesis, reduced physical activity, long-term use of hormone medications, and
gastrointestinal damage caused by ongoing inflammatory processes [6,195]. The cause of
osteoporosis in patients with IBD is complex, which makes the prevention and treatment
of IBD-related osteoporosis relatively difficult. There are several therapeutic drugs avail-
able for the treatment of IBD-related osteoporosis, such as bisphosphonates, vitamin D
and calcium supplementation, calcitonin, recombinant parathyroid hormone, hormone
replacement therapy, minimizing corticosteroid use, and alternative treatment [196]. How-
ever, due to the lack of sufficient clinical data, most drugs are only suitable for adults,
and, in addition, they usually have some limitations such as high prices and obvious side
effects [197,198]. Nutritional support as a safe and economical approach has been applied
to the management of IBD and osteoporosis [199–202]. Studies have found that protein,
as an important component of nutritional support, can not only improve inflammation
in patients with IBD, but also contribute to the bone health of patients. Milk and dairy
products are one of the main sources of high-quality protein, and limiting milk and dairy
products consumption are risk factors for osteoporosis in patients with IBD. Iwona et al.
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found that the proportion of IBD patients who consumed milk significantly decreased after
diagnosis, and the bone mineral density of IBD patients who did not drink milk was lower
than that of IBD patients who drank milk [203]. Coqueiro et al. observed a moderate corre-
lation between bone mineral density and dietary protein intake in patients with CD [157].
A study revealed that a moderately high soy protein diet in animal models of IBD mitigated
the high osteoclast surface and depressed the bone formation rate, in addition to inhibiting
the expression of inflammatory cytokines such as TNF-α and receptor activation of the
NF-κB ligand in the gut and bone [83]. It is speculated that high-quality proteins such as
milk protein and soy protein can ameliorate osteoporosis by inhibiting osteoclast-mediated
bone resorption, promoting the formation and proliferation of osteoblasts, and enhancing
calcium absorption [201,204]. For IBD patients at risk of osteoporosis, ensuring adequate
daily intake of high-quality animal and plant proteins can not only improve their overall
nutritional status but also significantly promote bone health. It is recommended to design
a reasonable protein intake plan by combining the recommended intake levels outlined in
the ESPEN guidelines while fully considering the individual patient’s circumstances.

6. Conclusions

As a disease characterized by chronic intestinal inflammation, IBD not only seriously
affects the quality of life of patients, but also poses a severe challenge to global public health.
Its pathogenesis is a multifaceted process involving genetics, immunology, environmental
factors, and gut microbiota. Early research focused primarily on the role of genetic suscep-
tibility and immune system abnormalities in IBD, while recent studies have shifted their
focus to environmental triggers and gut microbial imbalances, indicating that these factors
play a crucial role in the etiology of IBD. This shift in research perspective has opened up
new avenues for exploring potential therapeutic targets and preventative measures.

As the foundation of life activities, proteins play an irreplaceable role in maintaining
intestinal health, promoting intestinal mucosal repair, and regulating immune responses.
This article reviews the therapeutic and ameliorative effects of protein nutritional support
on IBD in recent years and analyzes its possible mechanisms of action. It is found that
protein nutritional support can treat and alleviate IBD by promoting mucin secretion, regu-
lating the distribution of intestinal tight junction proteins, regulating intestinal microbiota,
and modulating two key metabolic pathways, NF-κB and Keap1/Nrf2/HO-1. The applica-
tion of protein nutritional support in IBD patients aims to improve the nutritional status
of patients, reduce intestinal inflammation, and thereby enhance their quality of life by
optimizing protein intake. Existing studies have shown that appropriate protein nutritional
support can reduce the incidence of complications in IBD patients, promote the recovery of
intestinal function, and improve the prognosis of the disease to some extent (Table 2).

However, the application of protein nutritional support in the treatment of IBD is
still in the exploratory stage, and many details and mechanisms remain to be further
elucidated. Future research should focus more on the intrinsic link between protein and
the pathogenesis of IBD, as well as the specific impacts of different protein sources and
types on the intestinal health of IBD patients. In addition, personalized nutrition support
programs for different populations and disease stages are also an important direction
for future research. With technological advancements and deeper research, we expect
the application of protein nutritional support in IBD treatment to become more precise
and effective, emerging as a crucial tool for patients’ self-management and rehabilitation.
Meanwhile, exploring the combined application of protein nutritional support with drug
therapy, surgery, and other treatments is anticipated to offer a more comprehensive and
systematic therapeutic approach for IBD patients.

Author Contributions: Conceptualization, Q.L.; methodology, Q.L.; software, Q.L.; validation, Q.L.;
formal analysis, Q.L.; investigation, Q.L.; resources, Q.L.; data curation, Q.L.; writing—original draft
preparation, Q.L.; writing—review and editing, J.W.; visualization, Q.L.; supervision, J.W.; project
administration, J.W.; funding acquisition, J.W. All authors have read and agreed to the published
version of the manuscript.



Nutrients 2024, 16, 2302 18 of 26

Funding: This research was funded by the Innovation Engineering Project of the Chinese Academy
of Agricultural Sciences (CAAS-ASTIP-2024-IFND).

Acknowledgments: The authors would like to thank Jing Wang for his guidance and financial help.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Baumgart, D.C.; Carding, S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet 2007, 369, 1627–1640. [CrossRef]

[PubMed]
2. Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham,

K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662.
[CrossRef] [PubMed]

3. Cao, L.; Dayimu, A.; Guan, X.; Duan, M.; Zeng, S.; Wang, H.; Zong, J.; Sun, C.; Yang, X.; Yang, X. Global evolving patterns and
cross-country inequalities of inflammatory bowel disease burden from 1990 to 2019: A worldwide report. Inflamm. Res. 2024, 73,
277–287. [CrossRef] [PubMed]

4. Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev.
Gastroenterol. Hepatol. 2021, 18, 56–66. [CrossRef] [PubMed]

5. Zhang, Y.; Liu, J.; Han, X.; Jiang, H.; Zhang, L.; Hu, J.; Shi, L.; Li, J. Long-term trends in the burden of inflammatory bowel disease
in China over three decades: A join point regression and age-period-cohort analysis based on GBD 2019. Front. Public Health 2022,
7, 994619.

6. Guan, Q.A. Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019,
2019, 7247238. [CrossRef]

7. Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165.
[CrossRef] [PubMed]

8. Shouval, D.S.; Rufo, P.A. The Role of Environmental Factors in the Pathogenesis of Inflammatory Bowel Diseases: A Review.
JAMA Pediatr. 2017, 171, 999–1005. [CrossRef] [PubMed]

9. Lichtenstein, G.R.; Abreu, M.T.; Cohen, R.; Tremaine, W. American gastroenterological association institute technical review
on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 2006, 130, 940–987.
[CrossRef]

10. Chande, N.; Patton, P.H.; Tsoulis, D.J.; Thomas, B.S.; MacDonald, J.K. Azathioprine or 6-mercaptopurine for maintenance of
remission in Crohn’s disease. Cochrane Database Syst. Rev. 2015, 10, CD000067. [CrossRef]

11. Timmer, A.; Patton, P.H.; Chande, N.; McDonald, J.W.; MacDonald, J.K. Azathioprine and 6-mercaptopurine for maintenance of
remission in ulcerative colitis. Cochrane Database Syst. Rev. 2016, 5, CD000478. [CrossRef] [PubMed]

12. Magro, F.; Rodrigues-Pinto, E.; Coelho, R.; Andrade, P.; Santos-Antunes, J.; Lopes, S.; Camila-Dias, C.; Macedo, G. Is it possible to
change phenotype progression in Crohn’s disease in the era of immunomodulators? Predictive factors of phenotype progression.
Am. J. Gastroenterol. 2014, 109, 1026–1036. [CrossRef] [PubMed]

13. Feuerstein, J.D.; Isaacs, K.L.; Schneider, Y.; Siddique, S.M.; Falck-Ytter, Y.; Singh, S.; AGA Institute Clinical Guidelines Committee.
AGA Clinical Practice Guidelines on the Management of Moderate to Severe Ulcerative Colitis. Gastroenterology 2020, 158,
1450–1461. [CrossRef] [PubMed]

14. Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al.
ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2020, 14, 4–22. [CrossRef] [PubMed]

15. Amiot, A.; Bouguen, G.; Bonnaud, G.; Bouhnik, Y.; Hagege, H.; Peyrin-Biroulet, L.; French National Consensus Clinical Guidelines
for the Management of IBD Study Group. Clinical guidelines for the management of inflammatory bowel disease: Update of a
French national consensus. Dig. Liver Dis. 2021, 53, 35–43. [CrossRef] [PubMed]

16. Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169,
1053–1060. [CrossRef] [PubMed]

17. Verstockt, B.; Ferrante, M.; Vermeire, S.; Van Assche, G. New Treatment Options for Inflammatory Bowel Diseases. J. Gastroenterol.
2018, 53, 585–590. [CrossRef] [PubMed]

18. Downer, S.; Berkowitz, S.A.; Harlan, T.S.; Olstad, D.L.; Mozaffarian, D. Food is medicine: Actions to integrate food and nutrition
into healthcare. BMJ 2020, 369, m2482. [CrossRef] [PubMed]

19. Gropper, S.S. The Role of Nutrition in Chronic Disease. Nutrients 2023, 15, 664. [CrossRef] [PubMed]
20. Di Renzo, L.; Gualtieri, P.; Frank, G.; De Lorenzo, A. Nutrition for Prevention and Control of Chronic Degenerative Diseases and

COVID-19. Nutrients 2023, 15, 2253. [CrossRef]
21. Limketkai, B.N.; Rau, S.; Fasulo, C. Preventative and therapeutic potential of nutrition for inflammatory bowel diseases:

A narrative review. JPEN J. Parenter Enteral Nutr. 2024, 48, 258–266. [CrossRef]
22. Wu, X.; Hou, Q.; Zhao, Z.; Wang, J.; Guo, Y.; Lu, L.; Han, J. Effects of Soy-Whey Protein Nutritional Supplementation on

Hematopoiesis and Immune Reconstitution in an Allogeneic Transplanted Mice. Nutrients 2022, 14, 3014. [CrossRef]
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