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Abstract

Understanding the specific type of brain malignancy, source of brain metastasis, and under-

lying transformation mechanisms can help provide better treatment and less harm to

patients. The tumor microenvironment plays a fundamental role in cancer progression and

affects both primary and metastatic cancers. The use of single-cell RNA sequencing to gain

insights into the heterogeneity profiles in the microenvironment of brain malignancies is use-

ful for guiding treatment decisions. To comprehensively investigate the heterogeneity in glio-

mas and brain metastasis originating from different sources (lung and breast), we integrated

data from three groups of single-cell RNA-sequencing datasets obtained from GEO. We

gathered and processed single-cell RNA sequencing data from 90,168 cells obtained from

17 patients. We then employed the R package Seurat for dataset integration. Next, we clus-

tered the data within the UMAP space and acquired differentially expressed genes for cell

categorization. Our results underscore the significance of macrophages as abundant and

pivotal constituents of gliomas. In contrast, lung-to-brain metastases exhibit elevated num-

bers of AT2, cytotoxic CD4+ T, and exhausted CD8+ T cells. Conversely, breast-to-brain

metastases are characterized by an abundance of epithelial and myCAF cells. Our study

not only illuminates the variation in the TME between brain metastasis with different origins

but also opens the door to utilizing established markers for these cell types to differentiate

primary brain metastatic cancers.

Introduction

The brain tissue environment exhibits significant distinctions from other tissues, making it

uniquely poised to impact the low incidence of glioma brain metastasis, while also providing a

more conducive environment for invasive cancers that reach the brain [1, 2]. Brain malignan-

cies encompass two distinct categories of tumors: gliomas (GM) and brain metastasis (BM).

GM refers to primary tumors that originate within the brain, whereas BM refers to secondary
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tumors that develop from primary tumors originating outside the brain, such as lung, breast,

colorectal, and melanoma [3, 4]. Among central nervous system (CNS) cancers, BM stands as

the most prevalent subtype [5–7], occurring at a high rate of 30% to 40% among individuals

with cancer [8]. Differentiating between BM and GM poses considerable challenges due to

their similar features and origins. Precisely distinguishing between the two forms of cancer is

crucial, as their distinct treatment techniques greatly impact patient outcomes. Detecting

metastasis early can facilitate identifying initial lesions in asymptomatic individuals [9–11].

The treatment approach for BM typically involves a combination of surgery, radiation therapy,

and chemotherapy. The objective is to remove as much of the tumor as possible while preserv-

ing brain function and minimizing side effects. Additionally, targeted therapies might be

employed in some cases for treating brain metastasis [12, 13]. While a combination of immune

checkpoint blockade therapies has shown success in BM patients, not all individuals respond,

presenting a therapeutic challenge [14]. BM represents a grave medical condition, and its prog-

nosis varies based on factors such as the primary cancer type, metastasis size and location, and

the patient’s overall health. The diagnosis, prognosis, and treatment selection for cancer are

influenced by histological and phenotypic variances across different tumor types [15]. None-

theless, individuals afflicted with metastatic brain tumors form a diverse group, making it chal-

lenging to predict the prognosis based solely on the origin of the primary tumor [16].

Tumors consist of diverse cell types, including immune and stromal cells, as well as regula-

tory molecules that impact tumor growth dynamics. Collectively, these constituents give rise

to an intricate tumor microenvironment (TME) [12]. Moreover, the TME assumes a pivotal

role in metastasis progression [17], and current research underscores its substantial influence

on treatment response and clinical outcomes in cancer, warranting further investigation.

Therefore, gaining a deeper insight into the TME landscape holds significant value. Recent

studies have notably examined TME attributes in brain metastases, irrespective of their pri-

mary cancer source [3, 14].

Utilizing single-cell RNA sequencing (ScRNA-seq) represents a pragmatic approach in

comprehending human cancers. This methodology enables the identification of cancer diag-

nostic biomarkers by analyzing the transcriptomes of individual cells and exploring the diver-

sity within tumor cells [1, 12]. Progress in devising novel therapeutic strategies for brain

metastases associated with diverse cancer types has been gradual, with recent breakthroughs

focusing on targeting metastatic subclones and discerning selective niches. Earlier investiga-

tions primarily centered on evaluating the heterogeneity of glioma tumors and brain metasta-

sis through single-cell RNA sequencing [1, 3, 4, 6, 8, 12, 17–21].

The brain’s TME is now widely recognized as a pivotal regulator of cancer, offering poten-

tial avenues for innovative treatment approaches [22]. Nevertheless, substantial research

endeavors have recently been devoted to exploring the intricate interplay between TME het-

erogeneity and cancer progression. Many studies have delved into the diverse aspects of indi-

vidual tumors’ heterogeneity [23–26].

Given the critical significance of early brain metastasis detection to enhance treatment out-

comes, alongside the need to differentiate between gliomas and brain metastasis, our present

study leveraged the tumor microenvironment’s heterogeneity and high-abundance cellular

population markers to facilitate the identification and distinction of various brain tumor types.

To illuminate the intricate nature of the TME, we integrated single-cell RNA sequencing data

from human gliomas and brain metastasis originating from lung (BM-lung) and breast (BM-

breast) tissues. Subsequently, we undertook a comparative analysis of the cellular and subtype

heterogeneity across these integrated datasets. This analytical approach yielded a comprehen-

sive insight into the profiles of brain metastases, gliomas, and the prognosis of primary

cancers.
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Methods

Sample collection and clinical characteristics

We sourced single-cell transcriptome data from various datasets: breast-to-brain metastasis

(GSE186344, GSE143423), lung-to-brain metastasis (GSE186344, GSE131907, GSE143423),

and glioma tumors (GSE117891, GSE202371, GSE135045) via the Gene Expression Omnibus

(GEO) database. All samples included in our study comprised both patients with wild-type

and mutated forms, as well as a mix of both males and females. Our glioma samples encom-

passed all three types: Astrocytoma, Oligodendroglia, and Ependymoma, across 4 grades as

per the WHO classification [27]. The average age of glioma patients was 59 years. For patients

with lung-to-brain and breast-to-brain metastases, the average ages were 57 and 53 years,

respectively. Importantly, none of the surgical samples had undergone any prior treatment.

Among patients with lung-to-brain metastasis, both histological types of Small Cell Lung Can-

cer (SCLC) and Non-Small Cell Lung Cancer (NSCLC) were represented. Similarly, among

patients with breast-to-brain metastasis, both Triple-Negative Breast Cancer (TNBC) and

Estrogen/Progesterone receptor positive (ER/PR+) types, including (human epidermal growth

factor receptor 2) Her2-negative and Her2-positive subtypes, were included. All tumor tissue

were obtained from the frontal lobe, cerebellum, parietal lobe, and temporal lobe. A total of

88,291 cells were acquired from 14 individuals utilizing the Chromium 10X Genomics scRNA-

seq protocol across all three tumor groups. Additionally, 10,035 tumor cells from three glioma

tumor samples that employed the Drop-Seq protocol, as detailed in the GSE135045 study,

underwent analysis. All data collected in this study were mapped to the GRCh38 human refer-

ence genome.

Processing of ScRNA-seq datasets

To uncover the common sources of biological variation we employed the integration tool for

combining single-cell gene expression datasets using the R package Seurat version 4.1. We

excluded cells of low quality, those with fewer than 200 expressed genes, and genes expressed

in fewer than 3 cells from our analysis. Subsequently, cells with over 20% mitochondrial genes

and those with excessively low or high gene counts were filtered out. Further, all datasets

underwent standard preprocessing and were normalized through the LogNormalize method

within the NormalizeData function of the Seurat package by a scale factor of 10000. Employing

the variable feature variance stabilizing transformation method (selection.method = "vst"), we

identified the top 2,000 highly variable genes across all samples using the FindVariableFeatures

function of the Seurat package [28].

Data integration and analysis

We utilized the anchor strategy to integrate datasets. Initially, we extracted anchors from the

datasets and then proceeded to integrate them using 2000 anchors derived from the accurately

identified anchor set. Next, scaling and Principal Component analysis (PCA) was executed on

the integration dataset. To heuristically estimate the dataset’s dimensionality, we utilized Seur-

at’s Score JackStraw and elbow plot functions (S1A and S1B Fig). Subsequently, the first 35

principal components (PCs) were used to perform UMAP for nonlinear dimensional reduc-

tion. We applied a graph-based clustering approach from the Seurat package for clustering.

Therefore we utilized the K-nearest neighbor (KNN) strategy with the FindNeighbors function

and then used the FindClusters function to cluster with a resolution of 0.2. Also, other parame-

ters set as Seurat default. Finally, we determined cell types by utilizing known markers for each

cluster.
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Differential Expression Analysis of Genes (DEGs)

We conducted a differential expression analysis of genes using the non-parametric Wilcoxon

rank-sum test provided by Seurat’s FindMarkers tool. This analysis aimed to identify genes

that are expressed differently between the two groups of cells. For both cell groups, we set the

minimum percentage (min.pct) threshold to 0.25. Additionally, we defined a threshold of 0.5

for the log fold-change in average expression (logfc.threshold) between the two cell groups.

To identify genes that were either upregulated or downregulated in each cluster, we calcu-

lated the average log fold-change values between that cluster and other clusters. This allowed

us to quantify the extent of gene expression changes within each cluster

Results

Cell population analysis in glioma and lung-to-brain metastases

In this study, we focused on BM originating from different types of cancers and compared

these metastases with each other and GM. We utilized various human scRNA-seq datasets

from GM and BM-lung, which were obtained from the GEO database. The details such as

GEO ID, cancer type, scRNA-seq method, number of samples, and post-filtering cell count are

presented in Fig 1.

To perform a comparative analysis between GM and BM-lung, we pre-processed the tran-

scriptomes of 60,331 distinct tumor cells originating from 8 GM and 5 BM-lung samples. We

investigated the microenvironmental landscape and immunological state within GM and BM-

lung. To achieve this, similar cell types across the various datasets were grouped together in a

unified UMAP space, generated by integrating the datasets into a low-dimensional representa-

tion. The arrangement of each dataset within this integrated UMAP space is illustrated in

Fig 2A. Using this integrated dataset, an unsupervised graph-based clustering approach identi-

fied a total of 15 distinct clusters of tumor cells. These clusters are visualized in the UMAP

plot, as shown in Fig 2B. We identified a total of 15 distinct clusters, encompassing various cell

types: epithelial cells (EPCAM, KRT19, KRT18), monocytes (S100A9, CXCL8), CD4+ T cells

Fig 1. Datasets information of BM-lung, MB-breast, and GM.

https://doi.org/10.1371/journal.pone.0306220.g001

PLOS ONE Investigation of heterogeneity between lung and breast brain metastases with glioma

PLOS ONE | https://doi.org/10.1371/journal.pone.0306220 July 26, 2024 4 / 20

https://doi.org/10.1371/journal.pone.0306220.g001
https://doi.org/10.1371/journal.pone.0306220


(IL7R, LTB), CD8+ T cells (CD8A, GZMA, CCL5), B cells (MZB1, IGHG3), astrocytes (IQCG,

PIFO, NME5), macrophages (AIF1, CTSB, C1QB), alveolar type 2 epithelial cells (AT2)

(GPRC5A, NAPSA, SLC34A2), proliferating cells (MKI67, IGFBPL1), oligodendrocytes

Fig 2. Transcriptional landscape of BM-lung and GM using 55,749 cells. (A) UMAP plot displaying 55,749 high-quality cells from 13 samples

of BM-lung and GM, color-coded based on their original datasets. (B) UMAP plot presenting 55,749 high-quality cells from 13 samples of BM-

lung and GM, color-coded by their clusters. (C) Assignment of cell types to clusters based on gene marker expression patterns in BM-lung and

GM. (D) Dot plots illustrating conserved and cell-type-specific markers in BM-lung and GM. (E) Heatmap of gene expression levels of top-

ranking marker genes in 15 different clusters. (F) Pie charts representing the percentage of each cell type in BM-lung and GM.

https://doi.org/10.1371/journal.pone.0306220.g002
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(MOG, CLDN11, MOBP), fibroblasts (DCN, THY1, COL1A1), oligodendrocyte precursor

cells (OPC) (GFAP, SLC1A3, AQP4), dendritic cells (HLA-DQB1, HLA-DRB1, HLA-DPB1),

endothelial cells (PECAM1, CLDN5, FLT1), and undetermined cells (depicted in Fig 2C) [6,

21, 29–36]. The top 100 up-regulated genes for each cluster are listed in S1 Data, based on the

Differential Expression Analysis. Our findings highlight significant differences in cell popula-

tion composition between BM-lung and GM. Notably, there were noteworthy distinctions in

the abundance of immune cell types. Macrophages (30% in GM, 3% in BM-lung) and mono-

cytes (4.7% in GM, 0.01% in BM-lung) were notably more abundant in GM, whereas BM-lung

exhibited a higher frequency of CD4+ T (11.9% in BM-lung, 1.5% in GM) cells and CD8+ T

cells (7.9% in BM-lung, 3% in GM). Moreover, the prevalence of CNS cells, including oligo-

dendrocytes (13.6% in GM, 1.4% in BM-lung), astrocytes (9.3% in GM, 2.4% in BM-lung), and

OPC (6.3% in GM, 0.17% in BM-lung), was more pronounced in GM. In contrast, epithelial

cells, particularly of the AT2, were more prevalent in BM-lung (13% in BM-lung, 2.1% in GM)

(S1 Table in S1 File). A distinct cluster contained cell types that could not be definitively deter-

mined. Canonical markers for each cell type in BM-lung and GM are depicted in Fig 2C, and

determined clusters show in UMAP space in Fig 2D. The 10 top genes expressed in each clus-

ters show in heatmaps (Fig 2E). The distribution of cell percentages in BM-lung and GM is

visualized in Fig 2F.

Comparative analysis of immune cell sub-clusters in glioma and lung-to-

brain metastasis

To gain a deeper understanding of the immune cell subpopulations, we conducted targeted

analyses. Specifically, we focused on macrophages and T cells within these subpopulations.

By employing the FindClusters function, we isolated five distinct subclusters within macro-

phage cells. Through gene expression markers, we successfully delineated two primary cell

types (illustrated in Fig 3A). In the brain’s tumor microenvironment, tumor-associated

macrophages (TAM) were found to exist in two sub-clusters: monocyte-driven macro-

phages (MDM) (identified by EMP3, ACP5, and LYZ markers) and microglia (MG) (char-

acterized by CX3CR1, TMEM119, and P2RY12, markers) (depicted in Fig 3B) (S2A and

S2B Fig) Among these sub-clusters, sub-clusters 2, 3, and 4 were dominated by MG and

exhibited higher prevalence in GM. Conversely (67.3% in GM and 17.4% in BM-lung), sub-

clusters 1 and 5 were identified as MDM and were more abundant in BM-lung (82.5% in

BM-lung and 32.6% in GM) (S2 Table in S1 File). Also, percentages of each subclusters

show in bar plot (Fig 3C). Furthermore, our investigation extended to CD4+ T cells, which

were categorized into five sub-clusters using the FindClusters function. These sub-clusters

encompassed naive CD4+ T cells (marked by TCF7, CCR7), cytotoxic CD4+ T cells (charac-

terized by IFNG, GZMM, GZMA, GNLY), regulatory (Treg) CD4+ T cells (identified by

TIGIT, CTLA4, IL2RA), and proliferating cells (indicated by MKI67, RRM2, TYMS) (dis-

played in Fig 3D). Notably, sub-clusters 2 and 3 exhibited a higher prevalence in BM-lung,

and further analysis confirmed that both of these sub-clusters comprised cytotoxic CD4+ T

cells) (48.2% in BM-lung and 7.7% in GM) (shown in S2C and S2D Fig) (S3 Table in S1

File). UMAP plots with well-established cell type-specific marker genes are depicted in Fig

3E. Distribution of cell type percentages in CD4+ T cell is visualized in Fig 3F. Within CD8

+ T cells, we identified five sub-clusters (Fig 3G) (S2E and S2F Fig). Sub-cluster 4 exhibited

greater prevalence in BM-lung compared to GM, representing exhausted CD8+ T cells

(noted by CTLA4) (7.6% in BM-lung and 0.4% in GM). Another sub-cluster within CD8+ T

cells demonstrated relatively consistent population proportions between BM-lung and GM,

encompassing naive CD8+ T cells (marked by IL7R, TCF7, CCR7), cytotoxic CD8+ T cells
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(characterized by GNLY, FGFBP2), and proliferating CD8+ T cells (indicated by MKI67,

TPX2) (G9) (Fig 3H) (S4 Table in S1 File). Percentages of cell types in CD8+ T cell is visual-

ized in Fig 3I.

Fig 3. Sub-clustering of immune cells in the transcriptional landscape of BM-lung and GM. (A) Sub-clustering of macrophages and the identification of

two clusters of microglia and MDM (UMAP plot). (B) Feature plot displaying the marker expression of three marker genes for each sub-cluster of

macrophages. (C) Distribution of macrophage sub-clusters between GM and BM-lung in bar plot. (D) Sub-clustering of CD4+ T cells depicted in the UMAP

plot. (E) Feature plot illustrating the marker expression of three marker genes for each sub-cluster of CD4+ T cells. (F) Distribution of CD4+ T cell sub-clusters

between GM and BM-lung in bar plot. (G) Sub-clustering of CD8+ T cells shown in the UMAP plot. (H) Feature plot displaying the marker expression of three

marker genes for each sub-cluster of CD8+ T cells. (I) Distribution of CD8+ T cells sub-clusters between GM and BM-lung in bar plot.

https://doi.org/10.1371/journal.pone.0306220.g003
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Cellular population analysis in breast-to-brain metastases and glioma

In order to elucidate the cellular composition within the tumor microenvironment of BM-breast

and GM, we conducted a comprehensive investigation involving three BM-breast samples and

eight GM samples. To assess heterogeneity, we meticulously processed and analyzed data from a

total of 69,281 tumor cells across the datasets. The arrangement of each dataset within the integrated

UMAP space is depicted in Fig 4A. Employing clustering techniques, we categorized the cells into

12 distinct clusters (Fig 4A and 4B). We assigned these clusters based on the expression of estab-

lished marker genes, as illustrated in Fig 4C. The identified cell types included T cells (marked by

CD3E, CD3D, TRAC), B cells (characterized by JCHAIN, MZB1, CD79A), OPC (identified by

GPR17, SMOC1, FERMT1), macrophage cells (noted by C1QA, CTSB, AIF1), monocyte cells

(characterized by CTSS, S100A9, S100A8), proliferating cells (indicated by UBE2C, BIRC5, NUF2),

endothelial cells (marked by RAMP2, CLDN5, PECAM1), fibroblasts (distinguished by DCN,

COL1A1, THY1), oligodendrocytes (characterized by MOG, OLIG1, OLIG2), astrocytes (noted by

GFAP, SLC1A2, AQP4), and undetermined cells (Fig 4D) [25, 37–43]. The top 100 up-regulated

genes for each cluster are provided in S2 Data.Our findings indicated a greater prevalence of epithe-

lial (49.2% in BM-breast and 5.3% in GM) and fibroblast (11.3% in BM-breast and 2.2% in GM)

cells in BM-breast compared to GM. Conversely, myeloid cells (macrophages and monocytes)

(37.1% in GM and 6.5% in BM-breast), B cells (9.2% in GM and 1.5% in BM-breast), oligodendro-

cytes (13.2% in GM and 0.7% in BM-breast), and undetermined cells were more abundant in GM.

The 10 top genes expressed in each clusters show in heatmaps (Fig 4E). The distribution of cell per-

centages in BM-breast and GM is displayed in Fig 4F (S5 Table in S1 File).

Sub-clustering of macrophage and fibroblast cell types

To gain deeper insights into the subtypes within macrophages and fibroblasts, we undertook

sub-clustering of these cell type groups (S3A and S3B Fig). Within the macrophage cell popula-

tion, sub-clustering revealed three distinct subgroups: MG, MDM, and proliferating cells

(Fig 5A). MG cells were notably more abundant in GM compared to BM-breast (45.2% in GM

and 10.5% in BM-breast). Notably, the expression of well-known gene markers CX3CR1 and

EMP3, MKI67 allowed accurate classification of MG, MDM, and proliferating subtypes,

respectively (Fig 5B) (S6 Table in S1 File).

Fibroblasts in the tumor context, specifically Cancer-Associated Fibroblasts (CAFs), consti-

tute a heterogeneous cell population with diverse roles in the tumor microenvironment. In

order to comprehensively comprehend the heterogeneity of CAFs, we conducted sub-cluster-

ing of fibroblast cell types. This analysis revealed six distinct phenotypes within the fibroblast

cluster (Fig 5D) (S3C and S3D Fig). By analyzing gene expression markers, we successfully

identified five cell types, namely inflammatory-like CAFs (iCAFs) (characterized by CXCL12,

IL6), myofibroblast-like CAFs (myCAFs) (marked by ACTA2, COL1A1, MMP11), dividing

CAFs (dCAFs) (identified by TUBA1B, MKI67), antigen-presenting CAFs (apCAFs) (noted

by CD74, TMEM158, CLU), and tumor-promoting CAFs (tpCAFs) (characterized by TN5E,

PDPN5, VEGFA) (Fig 5E) [43–46]. It is noteworthy that apCAFs (11.1% in GM and 0% in

BM-breast) and tpCAFs (6.5% in GM and 0% in BM-breast) displayed higher abundance in

GM, while myCAFs were more prevalent in BM-breast (40.7% in BM-breast and 9.5% in GM)

(S7 Table in S1 File). Percentages of cell types in CD8+ T cell is visualized in Fig 3F.

Validation of results

To assess the accuracy and practicality of our derived findings, we conducted a validation

using two samples from the GEO database one GM sample (GSM3984326 from GSE135045)

and one BM-lung sample (GSM6112137 from the GSE202371 dataset). These samples yielded
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a total of 88,291 cells from two individuals, which were subsequently processed and filtered

down to 8,413 cells. Employing the same integration methodology outlined in the method sec-

tion, the datasets were integrated.

Fig 4. Transcriptional landscape of BM-breast and GM using 69,785 cells. (A) UMAP plot displaying 69,785 cells from 12 samples of BM-

breast and GM, color-coded according to their original datasets. (B) UMAP plot presenting 55,749 high-quality cells from 12 samples of BM-

breast and GM, color-coded by their clusters. (C) Assignment of cell types to clusters based on gene marker expression patterns in BM-breast

and GM. (D) Dot plots illustrating conserved and cell-type-specific markers in BM-breast and GM. (E) Heatmap of gene expression levels of

top-ranking marker genes in 12 different clusters. (F) Pie charts representing the percentage of each cell type in BM-breast and GM.

https://doi.org/10.1371/journal.pone.0306220.g004
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Post-integration, we scrutinized the expression of marker genes for various cell types.

Remarkably, our validation results echoed the findings obtained from the comparison between

BM-lung and glioma. The expression markers for cell types including T cells, exhausted CD8

+ T cells, cytotoxic CD4+ T cells, macrophages, MG, and AT2 epithelial cells were evaluated.

Notably, cytotoxic CD4+ T cells, exhausted CD8+ T cells, and AT2 epithelial cells exhibited

higher abundance in BM-lung (Fig 6A). In contrast, macrophages, microglia, OPCs, and oligo-

dendrocytes were more prevalent in GM (Fig 6B).

Discussion

BM represents a pressing healthcare concern in oncology treatment. Given the bleak progno-

ses associated with primary cancers that have spread to the brain, especially lung and breast

cancers, there is an urgent imperative to enhance our understanding of the underlying patho-

genic mechanisms and uncover novel targets for immune-based therapies [16]. It has become

increasingly evident that the TME within the brain plays a pivotal role in shaping cancer pro-

gression and the efficacy of treatments, both for primary brain tumors and metastatic lesions.

Mechanistic insights into the tumor-promoting activities of various constituents within the

brain TME have unveiled multiple potential targets for therapeutic intervention [23, 47].

In recent years, significant research endeavors have been dedicated to exploring the intri-

cate interplay between the immune system and the TME in BM. This exploration has led to a

Fig 5. Sub-clustering of macrophage and fibroblast cells in the transcriptional landscape of BM-breast and GM. (A) UMAP plot displaying the sub-

clustering of macrophages and the identification of two clusters of MG and MDM. (B) Feature plot illustrating the marker expression of three marker genes for

each sub-cluster of macrophages.(C) Distribution of CD4+ T cell sub-clusters between GM and BM-breast in bar plot. (D) UMAP plot showcasing the sub-

clustering of CAFs. (E) Feature plot displaying canonical marker genes for each sub-cluster of CAFs. (F) Distribution of CAFs cell sub-clusters between GM

and BM-breast in bar plot.

https://doi.org/10.1371/journal.pone.0306220.g005
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paradigm shift, recognizing the CNS as an immunologically distinct domain, as opposed to an

isolated one [22]. Furthermore, advancements in scRNA-seq have facilitated a comprehensive

analysis of tumor and immune microenvironment heterogeneity across various cancer types

[15]. To unravel the intricacies of the tumor microenvironment in both BM and GM, we

meticulously analyzed extensive scRNA-seq datasets encompassing lung and breast-to-brain

metastasis and compared the diversity of cellular constituents between these entities.

Our focus centered on profiling the distinct cell lineages that coalesce within tumors,

encompassing immune cells, oligodendrocytes, endothelial cells, epithelial cells, and fibro-

blasts. Following cluster assignment, we unveiled a unique subset of AT2 epithelial cells within

BM-lung, exhibiting a notably lower prevalence in glioma and BM-breast. Previous research

has underscored the significance of AT2 cells as crucial players in lung cancer origin and their

potential role in facilitating lung cancer metastasis [24, 48]. Hence, this specific cluster and its

distinct gene expression markers (GPRC5A, NAPSA, and SLC34A2) hold promise as prognos-

tic indicators for lung cancer, a prominent source of brain metastases [33, 34].

Tumor cells can incite an immune response, leading to a complex equilibrium where

diverse immune subtypes can either foster tumor progression, and metastasis, or confer

Fig 6. Expression levels of canonical marker genes for cell types in BM-lung and GM test samples. (A) Expression levels of canonical marker genes

with higher expression in BM-lung. (B) Expression levels of canonical marker genes with higher expression in GM.

https://doi.org/10.1371/journal.pone.0306220.g006
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resistance to treatments [49, 50]. Among the key elements in the microenvironment contribut-

ing to immune evasion are the expansion of pro-inflammatory macrophages and the malfunc-

tioning of T cells. Macrophages, known for their role in maintaining tissue homeostasis, have

garnered increasing attention in the tumor microenvironment of brain tumors. Interestingly,

when influenced by cancer cells, macrophages tend to polarize into immune suppressor cells,

thereby promoting an environment conducive to tumor growth and evasion of immune sur-

veillance [22, 51, 52].

Our findings highlight the prevalence of myeloid cells, specifically monocytes and macro-

phages, as the predominant immune cell types in GM. Prior research has illuminated the

dynamic roles played by myeloid cells in cancer, wherein their functions range from exhibiting

anti-tumor activities to promoting tumor growth, contingent upon the cancer type and its

stage [42, 53]. Furthermore, existing studies have pointed out distinctions between the uptakes

rates of macrophages in BM compared to GM. Despite functional similarities between these

two diseases, differences in their microenvironments persist [26, 54]. Given the pivotal role of

TAMs in orchestrating tumor progression, targeted interventions are gaining traction as a

strategy to disrupt the tumor-promoting activities of TAMs [54]. In our sub-clustering analysis

of TAMs within GM, BM-lung, and BM-breast, noteworthy patterns emerged. Specifically, the

MG subtype exhibited higher prevalence in GM compared to BM-lung and BM-breast. In con-

trast, the MDM subtype was more abundant in BM-lung and BM-breast. Prior investigations

have established that MDM is implicated in processes such as antigen presentation, immune

suppression, and wound healing, whereas MG is associated with tasks related to host defense

mechanisms and maintenance activities like synaptic pruning [26, 37, 55].

Considering the distinct roles played by each of the two subtypes in BM and GM, compre-

hending the presence of their respective populations within these conditions can significantly

assist in tailoring treatments based on the immune cell landscape. In the transcriptional pro-

files of BM-breast and GM, we have identified elevated frequencies of epithelial and fibroblast

cell types. Conversely, in GM cases, heightened frequencies were observed among myeloid

cells, B cells, and oligodendrocytes. Earlier studies on BM have indicated that patients with

BM-breast exhibit increased frequencies of macrophages, whereas cases of lung cancer demon-

strated higher T cell frequencies [8].

Consistent with these prior findings and in alignment with our discoveries, the immune

cell clusters and frequencies within BM differ based on the cancer’s point of origin. These dis-

parities have the potential to influence targeted therapeutic approaches for BM [8, 21]. Upon

closer examination of the immune cell subgroups, we have noted that elevated macrophage

levels in GM, rather than BM, are linked to MG. MG, often referred to as brain macrophages,

play a crucial role in immune regulation and the elimination of tumors [8]. Sub-analysis of the

T cell landscape reveals that T cells (both CD4+ and CD8+) dominate the immune cell compo-

sition in BM-lung compared to GM. When investigating the sub-clusters within T cell lym-

phocytes in BM-lung and GM, it becomes apparent that cytotoxic CD4 T cells (characterized

by GZMM, GZMA, GZMB, IFNG, and GNLY) and exhausted CD8+ T cells (marked by

CD8A, CTLA4, LAG3, and TIGIT) [33] exhibit a high frequency in BM-lung. Previous studies

on brain metastasis have shown a higher population of leukocytes in brain metastasis than in

CNS-endogenous cancers [55–58].

Within the realm of immunotherapies, the establishment of a lasting response is limited to

a subset of patients, primarily due to the tumor microenvironment’s suppressive effects on the

immune system. It’s worth noting that CD4+ T cells identify distinct surface markers com-

pared to CD8+ T cells, and given that cancer cells generally lack MHC-II expression, CD4+ T

cells demonstrate effectiveness in exerting tumor suppression through interactions with stro-

mal cell surface markers. For instance, these interactions involve macrophages, B cells, and the
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release of cytokines to facilitate CD8+ T cell activation. Post antigen encounter, a significant

portion of T effector cells undergo apoptosis, leading to the expansion of the exhausted T cell

phenotype within cytotoxic effector populations in CD8+ T cell subsets [31, 52, 59, 60].

CD8+ T cells function as cytotoxic lymphocytes responsible for detecting and responding

to infections. Following pathogen elimination, effector CD8+ T cells transition into memory

cells that provide protection upon subsequent exposure to antigens. However, in the context of

malignancy, effector CD8+ T lymphocytes experience exhaustion, resulting in diminished pro-

liferative and cytotoxic capabilities [61–63]. Recent investigations underscore that T cell

exhaustion and functional impairment within the TME are fundamental features of various

malignancies. These alterations in immune cell populations contribute to the transformation

of the tumor milieu into an immunosuppressive environment effectively establishing immu-

nosuppressive conditions within the tumor tissue [31, 59]. Collectively, this data highlights the

substantial role played by the tumor’s origin in shaping the specific characteristics of the brain

metastatic tumor microenvironment.

Cancer-associated fibroblasts (CAFs) constitute the predominant component of the tumor

microenvironment. As the tumor grows, the healthy breast matrix undergoes disruption,

marked by a reduction in the number of healthy fibroblasts and their conversion into CAFs.

CAFs release various cytokines, chemokines, extracellular matrix regulatory molecules, com-

ponents of the extracellular matrix, and inflammatory mediators, collectively promoting

tumor cell proliferation, invasion, metastasis, and evasion from immune surveillance [37, 39].

These CAFs contribute to the TME by generating enzymes that crosslink the matrix and prote-

ases that degrade the extracellular matrix, significantly contributing to increased tissue stiffness

and facilitating metastasis [64, 65].

Numerous studies have confirmed the presence of diverse phenotypic and functional CAF

populations within a single tumor, observed both in vivo and in vitro, along with single-cell

analyses of pre-sorted CAFs [64, 66–70]. Importantly, this study represents the first attempt to

compare CAF subpopulations between BM-breast and GM. Through our analysis of single-

cell RNA sequencing data, we have identified six distinct CAF subtypes based on their tran-

scriptome profiles. The allocation of cells within these sub-clusters reveals higher levels of

apCAFs and tpCAFs in GM, while myCAFs predominate in BM-breast. Previous research has

unveiled that myCAFs actively produce a range of matrix components and participate in

matrix remodeling. They also secrete cytokines and chemokines, along with inflammatory fac-

tors that facilitate tumor cell adhesion and migration. On the other hand, tpCAFs express

metalloproteinases and matrix proteins, which contribute to extracellular matrix remodeling

[45]. Additionally, dCAFs exhibit a more specialized expression pattern, specializing in the

production of basement membrane components and paracrine signaling molecules [41, 71].

Earlier investigations have indicated that GM do not exhibit a high abundance of CAFs; how-

ever, they do accumulate within the GM microenvironment. These CAFs develop a more mes-

enchymal phenotype, contributing to enhanced migratory and invasive behaviors in

malignant cells [72–74].

Chemotherapy is a frequent treatment for cancers and can significantly impact the disease

process. Cancer cells’ treatment sensitivity is heavily influenced by their interactions with the

tumor microenvironment (TME), especially immune cells. There’s currently significant inter-

est in targeting stromal cells in cancer therapy [75–77]. It’s crucial to accurately assess the com-

position of stromal cells in tumors, replicate the diverse characteristics seen in human tumors

in clinical models, and understand how this diversity impacts treatment efficacy, drug

responses, and resistance [78, 79]. Clinical studies indicate a correlation between CD4, CD8,

and macrophage levels in the tumor microenvironment and treatment outcomes. The immune

system plays an active role in illness, potentially affecting clinical responses and resistance to
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treatment. An abundance of macrophages can hinder therapeutic effectiveness. For instance,

in patients with node-positive breast cancer who underwent intensive chemotherapy, those

with tumors exhibiting high levels of macrophages, high CD4 T-cells, but low CD8 T-cells,

experienced significantly lower recurrence-free survival rates compared to those with tumors

showing low macrophage levels, low CD4 T-cells, and high CD8 T-cells. In addition, Cytotoxic

T-cells play a positive role in treatment effectiveness [80–82].

Furthermore, cancer-associated fibroblasts (CAFs) play a crucial role in the treatment pro-

cess due to their increased proliferation, enhanced extracellular matrix production, and unique

cytokine secretion compared to normal tissue fibroblasts. Early co-culture studies suggested

that injured or irradiated fibroblasts might promote cancer cell proliferation more effectively

than non-irradiated fibroblasts, indicating that within a solid tumor, fibroblasts are not passive

entities and could potentially influence therapy outcomes [81, 83, 84].

Researchers identified components produced by normal human fibroblasts in a preclinical

model of genotoxic damage, and discovered that WNT-16b might drastically restrict tumor

response through paracrine signaling. In a WNT-dependent way, elevated amounts of this

ligand promoted the growth of cancer cells and produced a mesenchymal phenotype. The

responsiveness of fibroblasts to chemotherapy was enhanced by removing WNT-16b. Stromal

fibroblasts secreted WNT-16b through an NF-κB-mediated pathway linked to inflammation

and stress. Because stress-response programs in stromal cells might decrease treatment efficacy

by providing a protective environment for cancer cells, the supporting stroma’s reaction to

therapy may be more complicated [84].

The study has several limitations, including potential variability from integrating single-cell

RNA sequencing datasets from different sources such as lung-to-brain metastasis, breast-to-

brain metastasis, and gliomas, which may introduce batch effects despite using the anchor

technique for data harmonization. Additionally, the sample size of both patients and cells ana-

lyzed may limit the statistical power and comprehensive representation of heterogeneity

within gliomas and brain metastases. Furthermore, the findings, based on a specific patient

cohort, may not fully represent broader populations or diverse clinical settings, thus limiting

the generalizability of the results. The identified cell types and their associations with disease

progression or therapeutic response are observational and require further validation through

functional studies and clinical trials.

Conclusion

In conclusion, the prevalence of distinct cell types exhibiting varying population proportions

in BM arising from different primary cancers holds the potential for aiding in the prediction of

the primary brain cancer type. Our findings underscore the significance of macrophages as

abundant and crucial elements within GM. Conversely, MB-lung exhibit elevated populations

of AT2 cells, cytotoxic CD4+ T cells, and exhausted CD8+ T cells. Meanwhile, BM-breast are

characterized by an abundance of epithelial cells and myCAFs. Our study not only sheds light

on the heterogeneity of the TME between BM-lung and BM-breast cases but also introduces

the possibility of leveraging well-known markers for these cell types to distinguish primary

brain metastatic cancers. Looking ahead, it remains imperative to discern the nuanced varia-

tions in microenvironmental composition across diverse brain tumor subtypes to attain a

comprehensive comprehension of tumor biology. Consequently, enhancing our understand-

ing of the tumor microenvironment contributes to the identification of primary tumors within

brain metastasis scenarios, thereby facilitating the selection of more tailored treatment

approaches based on the originating primary cancers.
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73. Clavreul A, Guette C, Faguer R, Tétaud C, Boissard A, Lemaire L, et al. Glioblastoma-associated stro-

mal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and

angiogenic properties. J Pathol. 2014; 233: 74–88. https://doi.org/10.1002/path.4332 PMID: 24481573

74. Mhaidly R, Mechta-Grigoriou F. Role of cancer-associated fibroblast subpopulations in immune infiltra-

tion, as a new means of treatment in cancer. Immunol Rev. 2021; 302: 259–272. https://doi.org/10.

1111/imr.12978 PMID: 34013544

75. Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung can-

cer targeted therapy. J Hematol Oncol. 2019; 12: 1–18. https://doi.org/10.1186/s13045-019-0818-2

PMID: 31815659

76. Lovly CM, Salama AKS, Salgia R. Tumor Heterogeneity and Therapeutic Resistance. Am Soc Clin

Oncol Educ B. 2016; 36: e585–e593. https://doi.org/10.1200/EDBK_158808 PMID: 27249771

PLOS ONE Investigation of heterogeneity between lung and breast brain metastases with glioma

PLOS ONE | https://doi.org/10.1371/journal.pone.0306220 July 26, 2024 19 / 20

https://doi.org/10.1016/j.cell.2020.04.055
http://www.ncbi.nlm.nih.gov/pubmed/32470397
https://doi.org/10.3389/fcell.2020.00017
https://doi.org/10.3389/fcell.2020.00017
http://www.ncbi.nlm.nih.gov/pubmed/32117960
https://doi.org/10.1038/s41591-018-0045-3
https://doi.org/10.1038/s41591-018-0045-3
http://www.ncbi.nlm.nih.gov/pubmed/29942094
https://doi.org/10.1016/j.xcrm.2022.100620
http://www.ncbi.nlm.nih.gov/pubmed/35584630
https://doi.org/10.1038/s41467-022-35238-w
http://www.ncbi.nlm.nih.gov/pubmed/36609566
https://doi.org/10.1016/j.omto.2020.12.003
http://www.ncbi.nlm.nih.gov/pubmed/33575475
https://doi.org/10.1016/j.cell.2005.02.034
http://www.ncbi.nlm.nih.gov/pubmed/15882617
https://doi.org/10.1016/j.semcancer.2019.08.004
https://doi.org/10.1016/j.semcancer.2019.08.004
http://www.ncbi.nlm.nih.gov/pubmed/31415910
https://doi.org/10.1038/ng.3818
http://www.ncbi.nlm.nih.gov/pubmed/28319088
https://doi.org/10.1038/s43018-020-0082-y
http://www.ncbi.nlm.nih.gov/pubmed/35122040
https://doi.org/10.1016/j.ccell.2021.09.003
https://doi.org/10.1016/j.ccell.2021.09.003
http://www.ncbi.nlm.nih.gov/pubmed/34624218
https://doi.org/10.1038/s41467-019-14134-w
http://www.ncbi.nlm.nih.gov/pubmed/31964880
https://doi.org/10.1016/j.ccell.2018.01.011
http://www.ncbi.nlm.nih.gov/pubmed/29455927
https://doi.org/10.1038/s41467-018-07582-3
http://www.ncbi.nlm.nih.gov/pubmed/30514914
https://doi.org/10.1038/s41417-020-0183-x
https://doi.org/10.1038/s41417-020-0183-x
http://www.ncbi.nlm.nih.gov/pubmed/32457487
https://doi.org/10.1002/path.4332
http://www.ncbi.nlm.nih.gov/pubmed/24481573
https://doi.org/10.1111/imr.12978
https://doi.org/10.1111/imr.12978
http://www.ncbi.nlm.nih.gov/pubmed/34013544
https://doi.org/10.1186/s13045-019-0818-2
http://www.ncbi.nlm.nih.gov/pubmed/31815659
https://doi.org/10.1200/EDBK%5F158808
http://www.ncbi.nlm.nih.gov/pubmed/27249771
https://doi.org/10.1371/journal.pone.0306220


77. Marino FZ, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, et al. Molecular heterogeneity in

lung cancer: From mechanisms of origin to clinical implications. Int J Med Sci. 2019; 16: 981–989.

https://doi.org/10.7150/ijms.34739 PMID: 31341411

78. Zhu L, Jiang M, Wang H, Sun H, Zhu J, Zhao W, et al. A narrative review of tumor heterogeneity and

challenges to tumor drug therapy. Ann Transl Med. 2021; 9: 1351–1351. https://doi.org/10.21037/atm-

21-1948 PMID: 34532488

79. Jiménez-Sánchez A, Cybulska P, Mager KLV, Koplev S, Cast O, Couturier DL, et al. Unraveling tumor–

immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat

Genet. 2020; 52: 582–593. https://doi.org/10.1038/s41588-020-0630-5 PMID: 32483290

80. Heys SD, Stewart KN, McKenzie EJ, Miller ID, Wong SYC, Sellar G, et al. Characterisation of tumour-

infiltrating macrophages: Impact on response and survival in patients receiving primary chemotherapy

for breast cancer. Breast Cancer Res Treat. 2012; 135: 539–548. https://doi.org/10.1007/s10549-012-

2190-6 PMID: 22886449

81. Massa C, Karn T, Denkert C, Schneeweiss A, Hanusch C, Blohmer JU, et al. Differential effect on differ-

ent immune subsets of neoadjuvant chemotherapy in patients with TNBC. J Immunother Cancer.

2020;8. https://doi.org/10.1136/jitc-2020-001261 PMID: 33199511

82. Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-

associated macrophages and cancer chemotherapy. Oncoimmunology. 2019; 8: 1–15. https://doi.org/

10.1080/2162402X.2019.1596004 PMID: 31143517

83. Lv X, Mao Z, Sun X, Liu B. Intratumoral Heterogeneity in Lung Cancer. Cancers (Basel). 2023; 15.

https://doi.org/10.3390/cancers15102709 PMID: 37345046

84. Junttila MR, De Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic

response. Nature. 2013; 501: 346–354. https://doi.org/10.1038/nature12626 PMID: 24048067

PLOS ONE Investigation of heterogeneity between lung and breast brain metastases with glioma

PLOS ONE | https://doi.org/10.1371/journal.pone.0306220 July 26, 2024 20 / 20

https://doi.org/10.7150/ijms.34739
http://www.ncbi.nlm.nih.gov/pubmed/31341411
https://doi.org/10.21037/atm-21-1948
https://doi.org/10.21037/atm-21-1948
http://www.ncbi.nlm.nih.gov/pubmed/34532488
https://doi.org/10.1038/s41588-020-0630-5
http://www.ncbi.nlm.nih.gov/pubmed/32483290
https://doi.org/10.1007/s10549-012-2190-6
https://doi.org/10.1007/s10549-012-2190-6
http://www.ncbi.nlm.nih.gov/pubmed/22886449
https://doi.org/10.1136/jitc-2020-001261
http://www.ncbi.nlm.nih.gov/pubmed/33199511
https://doi.org/10.1080/2162402X.2019.1596004
https://doi.org/10.1080/2162402X.2019.1596004
http://www.ncbi.nlm.nih.gov/pubmed/31143517
https://doi.org/10.3390/cancers15102709
http://www.ncbi.nlm.nih.gov/pubmed/37345046
https://doi.org/10.1038/nature12626
http://www.ncbi.nlm.nih.gov/pubmed/24048067
https://doi.org/10.1371/journal.pone.0306220

