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Abstract: In recent decades, with the rapid development of the inorganic synthesis and the increasing
discharge of pollutants in the process of industrialization, hollow-structured metal oxides (HSMOs)
have taken on a striking role in the field of environmental catalysis. This is all due to their unique
structural characteristics compared to solid nanoparticles, such as high loading capacity, superior pore
permeability, high specific surface area, abundant inner void space, and low density. Although the
HSMOs with different morphologies have been reviewed and prospected in the aspect of synthesis
strategies and potential applications, there has been no systematic review focusing on the structures
and compositions design of HSMOs in the field of environmental catalysis so far. Therefore, this
review will mainly focus on the component dependence and controllable structure of HSMOs in the
catalytic elimination of different environmental pollutants, including the automobile and stationary
source emissions, volatile organic compounds, greenhouse gases, ozone-depleting substances, and
other potential pollutants. Moreover, we comprehensively reviewed the applications of the catalysts
with hollow structure that are mainly composed of metal oxides such as CeO2, MnOx, CuOx, Co3O4,
ZrO2, ZnO, Al3O4, In2O3, NiO, and Fe3O4 in automobile and stationary source emission control,
volatile organic compounds emission control, and the conversion of greenhouse gases and ozone-
depleting substances. The structure–activity relationship is also briefly discussed. Finally, further
challenges and development trends of HSMO catalysts in environmental catalysis are also prospected.

Keywords: hollow-structured metal oxides; environmental catalysis application; structures and
compositions; structure–performance correlation

1. Introduction

With the occurrence of the global industrial revolutions and subsequent development
of the economy, huge amounts of fossil fuels, such as naphtha and coal, have been con-
sumed. As a result, a large number of atmospheric and aquatic environmental pollutants,
such as carbon monoxide (CO), nitrogen oxides (NOx), etc., have been discharged into the
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environment and are harmful to the health of human beings [1,2]. The removal of these
pollutants via environmental catalysis strategy is therefore of great importance from the
viewpoint of environmental protection.

Broadly speaking, all the catalytic processes reducing and removing pollutant emis-
sions and recycling resource utilization of the waste can be ascribed to the category of
environmental catalysis, such as the below conditions: (a) eliminating the atmospheric, wa-
ter, and indoor pollutants (e.g., CO [3], SOx [4], NOx [5], formaldehyde [2], toluene [6] and
4-Nitrophenol [7], etc.); (b) reducing the harmful substances generated in the energy con-
version processes (e.g., supported metal catalysts are used to reduce polycyclic compounds
and the biphenyls produced by the pyrolysis of industrial waste plastics) [8]; (c) converting
the waste into useful resource [9]. The development of the efficient catalysts is consid-
ered the key factor of environment catalysis. In recent decades, structural engineering
has attracted global widespread attention, and bridges the interplay between properties
and performance.

At present, noble metals and transition metal oxide-supported catalysts are widely
used in all kinds of environment catalytic processes [10]. Moreover, studies of catalysts
have indicated that the catalytic activities of removing pollutants have been greatly re-
lated to various factors, such as the properties of the supports (e.g., specific surface area,
porous structure, lattice oxygen mobility, etc.), the characteristics of the active centers
(e.g., morphology, crystal face, dispersion, etc.), and the metal–support interaction (e.g., the
adsorption of oxygen species, low-temperature reducibility, the ability to activate the
reactants, the interaction between metals, etc.) [11].

Therefore, the catalytic ability could improve by adjusting the morphology, spanning
from the atomic scale to the microarchitecture, and the spatial organization of components
of the support [12,13]. As for the hollow micro–nano structured materials, they are defined
as a type of functional nanomaterials with void spaces inside different shells [14]. In addi-
tion, the scarcity and cost of materials are also considered to be important concerns when
developing new catalysts. The outstanding interfacial properties and higher atom utiliza-
tion efficiency of HSMOs can be envisaged in potential catalysis application. Therefore, it is
reasonable to design and construct novel catalysts with hollow structures in the viewpoint
of atom economy.

With the in-depth study of hollow micro–nano structures, the HSMOs have received
more and more attention in the field of environmental catalysis. HSMOs have advantageous
physical properties such as high specific surface areas, tunable pore sizes, synergistic
interaction, adjustable morphology, space utilization, abundant defects, adjustable surface
chemistry, and low density, etc. Additionally, further advantages, such as high loading
capacity, good surface penetration, water resistance, strong metal–support interaction
(SMSIs), and magnetism, can be achieved by controlling their structure and composition. As
a result, these have been widely used in many environmental catalysis reactions, including
methane combustion [15], water–gas shift [16], CO oxidation [17], CO conversion [18,19],
toluene oxidation [20,21], chlorinated aromatic compound oxidation [22], formaldehyde
oxidation, etc. [23]. The summary of the application of HSMOs in the elimination of
environmental pollutants is shown in Table 1.

Furthermore, HSMOs are also widely used in lithium-ion batteries [24,25], gas sen-
sors [26], energy-related systems [27], and heterogeneous catalysts, etc. [28–30]. Recently,
some excellent reviews have given comprehensive descriptions and discussions of HSMOs,
showing their fascinating performance, fabrication, and properties [31–34]. However, these
reviews did not comprehensively cover the composition and structure design of HSMOs or
their applications in the field of environmental catalysis. Therefore, this review summarizes
the different aspects of the application of HSMOs to environmental catalysis. In light of
this, the synthetic strategies are only briefly introduced in this review. These strategies
can be classified into four different types, including hard-templating, soft-templating, self-
templated, and template-free methods. Therefore, this review will mainly focus on the
recent progresses in the application of the HSMOs as the efficient catalysts and/or supports
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in the field of environmental catalysis, which performed lots of superiorities compared
with the traditional counterparts. To highlight the catalytic performance of HSMOs, we
focus on the catalytic activity as the main performance descriptors rather than the stability
and selectivity.

Table 1. Summary of the application of HSMOs in the elimination of environmental pollutants.

Items Details

Automobile and stationary sources emission

Catalytic oxidation of CO
NH3-SCR removal of NOx
Catalyst for automobile three-way catalytic (TWC) reaction
Catalyst for diesel oxidation catalytic (DOC) reaction

Volatile organic compounds (VOCs)
Catalytic oxidation of toluene
Catalytic oxidation of vinyl chloride (VC)
Catalytic oxidation of formaldehyde (HCHO)

Greenhouse gases Catalytic conversion of CO2
Catalytic conversion of CH4

Other potential pollutants

Hydrogenation of 4-nitrophenol (4-NP)
Catalytic oxidation of 1,2-dichlorobenzene (o-DCB)
Catalytic oxidation of dyes (e.g., acid orange 7(AO7), methylene blue)
Photocatalytic degradation of pharmaceuticals (e.g., aceta-minophen,
norfloxacin (NOR), tetracycline (TC), and ciprofloxacin)
Photocatalytic degradation of organic pollutions (e.g., phenol)

2. The Application of HSMO Catalysts in Environmental Catalysis
2.1. Automobile and Stationary Sources Emission Control

The untreated exhaust gases of automobiles, chemical plants, and coal-fired power
plants such as CO, NOx, SOx, and other harmful gases, have caused serious environmental
problems and human health issues [35,36]. As it is well known, CO is a toxic atmospheric
pollutant that is both flammable and explosive, whilst NOx and SOx can the cause acid
rain and photochemical smog, which negatively affect human respiratory system. In
order to alleviate the related pollutants’ emissions, various strategies, such as adsorption,
absorption, catalytic oxidation, incineration, plasma destruction, and photocatalysis, etc.,
have been widely investigated. It is clear that catalytic oxidation has been considered to
be the most effective method because of its unique advantages, such as its high efficiency
and cleanliness [36,37]. Therefore, lots of efforts have been devoted to the development of
efficient catalysts to control the emissions of automobile and stationary sources. Meanwhile,
HSMO-based catalysts provide promising and valuable chances to develop advanced
catalysts due to the advantages of HSMOs in terms of their low density, large surface-to-
volume ratios, reduced mass transport length, and high loading capacity.

2.1.1. Catalytic Oxidation of CO

Industrial and automobile CO emissions have been increasing year upon year. The
removal of CO emissions has become an important concern because of their high toxicity
to human health and the living environment. The catalytic oxidation of CO has been
considered the most effective treatment method [10]. The HSMOs of various structures
have been used to catalyze CO oxidation in the past two decades. The hollow interior space
of HSMOs is expected to effectively reduce the density of the material and enhance the
permeability of the material. As a result, they can provide gaseous reactants with large
specific surface areas for the absorbance and mass transference of the CO molecules to the
active center. In addition, the extended contact time between CO molecules and the active
center have potentially positive impacts on the whole catalytic process.

The ‘lattice oxygen’ mechanism believes that the oxygen supply ability of metal oxides
is a key factor influencing catalytic reactions [38]. To date, numerous catalysts have been
investigated in the preliminary study of CO oxidation. Among these catalysts, Ceria
(CeO2), with its cubic fluorite structure, has been considered a key promoter of catalytic CO
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oxidation. Therefore, the catalysts for CO oxidation are divided into the hollow micro/nano-
structured CeO2-based materials (HMNCMs) and other HSMOs and highlighted in this
subsection. For HMNCMs, CeO2 performs variable oxidation states, and has good redox
properties and a high storage/release oxygen capacity thanks to its abundant oxygen
vacancy, the redox property of Ce3+/Ce4+, and its structural integrity [39]. Studies of CeO2
morphology control for the catalytic oxidation of CO can be traced back to 2006 [40]. Lots
of studies have focused on the shape-controlled synthesis of Ce-based nanomaterials and
their corresponding catalytic applications [41,42]. Ce-based nanomaterials can obtain a
controllable morphology through the reasonable regulation of reaction conditions [43]. To
date, many Ce-based catalysts with hollow structures have been successfully designed
and fabricated [44–52], which accelerate the process of their practical application [53].
However, there is no complete report on the application of HMNCMs toward the catalytic
CO oxidation.

It is worth noting that lots of HMNCMs with different compositions and morphologies
have been developed since 2012 [54–58]. The HMNCMs could be divided into the pure
CeO2 hollow structure, the composite binary or multiple CeO2 hollow structures, the
multi-element Ce-based hollow structure, and the Ce-based hollow structure-doped with
noble metals according to the composition. The critical factors of reaction conditions, the
possible formation mechanism on the morphology and assembly of the HMNCMs, and the
CO oxidation catalytic activities have been investigated in previous studies. The amazing
progress of hollow micro/nano-structures have been largely driven by the development
of analytical technologies and the simultaneous development of template materials [32].
Therefore, in order to clearly prospect and outlook the development and changes, the
related information and details about HMNCMs and other HSMOs were summarized.

• Pure CeO2 hollow structure

The previous investigation into CeO2 with a hollow structure morphology revealed
that the exposed special crystal facets, small CeO2 crystal sizes, and a significantly deformed
structure in the boundary area were key factors for the improved CO oxidation activity [50].
Additionally, the oxygen storage capacity of CeO2 is greatly related to the morphology or
surface structure [45,59]. Therefore, it is of great necessity to explore and develop CeO2
with hollow structure. Studies have shown that {100} surface ceria nanocrystals performed
a higher CO oxidation activity than those with {111} surface-dominant [60,61], which was
related to the lattice oxygen migration of {100}/{110}-dominated surface structures [59,62].
Han et al. [63] fabricated the CeO2 hollow structure catalyst with a significant improvement
in the catalytic CO oxidation activity. The reason for this was that the CeO2 hollow
structure exposed more {001} faces, which have more dangling bonds on the surface and
internal Ce atoms. Therefore, the CeO2 with abundant dangling bonds, mesoporosity,
oxygen vacancies, and high surface areas were beneficial to their catalytic performance in
CO oxidation.

There are also other pure CeO2 hollow structures, including CeO2 hollow nanocones [64],
CeO2 hollow microspheres [65–67], and CeO2 hollow dodecahedrons [68]. A summary of
pure CeO2 with various hollow structures is presented in Table 2. Among them, Li et al. [68]
found that the CO catalytic activity of the cracked hollow CeO2 dodecahedrons was signifi-
cantly lower than that of the hollow CeO2 dodecahedrons due to the presence of oxygen
vacancy defects and the permeability of the shell. The hollow CeO2 dodecahedrons and
the CeO2 hollow nanocones exhibited excellent CO catalytic activity, which was ascribed to
the homogeneously dispersed particles with mesoporous structures comprising the highly
specific BET surface area morphological features. However, the catalytic activity of these
CeO2 hollow structures still does not meet the requirements of industrial applications
because the hollow catalyst possesses the disadvantage of a structural collapse as well as
low activity. Therefore, CO oxidation catalysts require a stable structure to achieve excellent
catalytic stability.



Nanomaterials 2024, 14, 1190 5 of 47

Table 2. Pure CeO2 with various hollow structures and the catalytic performances of their CO
catalytic oxidation.

Synthesis Method SBET (m2 g−1) Catalytic Performance Morphology Ref.

One-pot template-free route 14.7 T50 = 280 ◦C
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Furthermore, compared with other hollow-structured CeO2, hollow CeO2 dodeca-
hedrons performed the best CO oxidation catalytic activity because of the incorporation
of Co species [68]. Although the CeO2 itself cannot achieve a high catalytic CO oxida-
tion activity, it can incorporate other metals as structural and/or electronic promoters to
improve its catalytic activity and stability with the priority of not destroying the hollow
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structure. Based on these basic studies, HMNCMs doped with transition metals have been
further developed.

• The composite binary or multiple CeO2 hollow structure

It was reported that the synergistic effect created by incorporating the transition metal
(Co, Cu, Mn, Ni, and Fe) into CeO2 could greatly improve the catalytic activity [70–73].
In Table 3, we summarize the composite binary or multiple CeO2 materials with various
compositional, hollow structures, and the catalytic parameters for CO catalytic oxidation.
The changes in the physical properties of hollow catalysts with different structures will
increase the catalytic CO oxidation activity. For example, the Co3O4-CeO2−x hollow multi-
shell structure (HOMS) could achieve the complete conversion at 166.9 ◦C, while the
complete conversion temperature of Co3O4-CeO2−x(Co/Ce = 4/1) nanoparticles (NPs) was
206 ◦C [70]. For hollow mesoporous Co3O4-CeO2 composite nanotubes with open-ends, the
non-closed structure can accelerate the reactants to enter the hollow structure of the catalyst
to contact more active centers, accounting for the 100% CO conversion at 145 ◦C [71].

Table 3. The binary or multiple CeO2-based materials with various compositions, hollow structures,
and catalytic parameters for CO catalytic oxidation.

Doped
Metals Material Synthesis Method SBET

(m2 g−1)
Total CO Conversion

Temperature Morphology Ref.

Co

Co3O4-CeO2−x
Sequential

templating approach 55.2 166.9 ◦C
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Table 3. Cont.

Doped
Metals Material Synthesis Method SBET

(m2 g−1)
Total CO Conversion

Temperature Morphology Ref.

Cu

Ce-MOF
CeO2-CuO

Assistance of
selective etching 86.7 98 ◦C
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As shown in Figure 1, the Co catalytic CO oxidation mechanism was addressed by
the Langmuir–Hinshelwood (L-H) model, which contained the four following steps [71]:
(1) The CO was adsorbed into the interface of Co3O4 and CeO2. (2) The CO2 molecule was
formed with the oxygen vacancy left due to the extraction of surface oxygen by CO. (3) The
O2 reacted with the oxygen vacancy and the amount of adsorbed O2 increased, with the
dissociation of O2 into the O2

− ion radical, which promoted the enhancement of the CO
oxidation. (4) The O2

− ion radical reacted with the CO molecule and the CO2 molecule
was formed. The oxygen vacancy was a vital part for the dissociation of O2 in the CO
oxidation reaction, which linked with the metal nanoparticles size, the oxidation states,
and the oxidation states of the catalyst.
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Figure 1. Schematic of the reaction mechanism for CO oxidation. Figure reproduced form ref. [71].

As a new type of composite materials, the hollow composite materials have attracted
increasing attention. Liu et al. fabricated the CeO2-CuOx hollow nanospheres with loos and
a rough surface, which demonstrated that they had a more unique structure because Cu
species were more inclined to concentrate on the surface of CeO2 hollow spheres compared
with the pristine CeO2 [74]. In addition, the Cu species was the active site of CeO2-CuOx
composite hollow spheres in terms of catalytic CO oxidation [75]. The structural stability of
the CuOx/CeO2 interface is also a very important concern for Cu-doped CeO2 catalysts. The
sintering of the surface CuOx during the reaction often causes changes in the surface copper
species and crystal structure of cerium oxide, which in turn affect the catalytic activity.

The active center theory believes that the corners, steps, edges, dislocations, defects,
and other discontinuities on the catalyst surface would modify the nature of the adsorbed
species and the dynamics of the surface reactions [88]. Their catalytic activities are usually
higher than those on a flat surface. As a result, these sites are considered active centers. As
shown in Table 3, abundant steps were exhibited on the surface of the novel litchi-peel-like
hierarchical hollow copper–ceria microspheres, which was crucial for the improvement
in catalyst activity [76]. The excellent catalytic activity could be attributed to the step-
stabilized strong interaction between CuOx species and CeO2 and the abundant surface
steps in litchi-peel-like samples that act as adsorption sites for oxygen.

Many researchers believed that the copper–ceria catalyst was a sort of promising
alternative that could substitute for noble metal catalysts due to its low cost and decent
catalytic activity [78]. Therefore, the spiny yolk@shell CuO@CeO2 cubes with a hedgehog-
like surface composed of large spiny CuO crystal whiskers [77], triple-shelled CuO/CeO2
hollow nanospheres [79], and hollow-multiporous wall CeO2-supported CuO catalysts [78]
were prepared. The hollow-multiporous wall CeO2 supported CuO catalysts for CO
oxidation with a T100 of around 60 ◦C. However, its stability test was not so excellent
compared to other Cu-doped CeO2 catalysts.

It is common practice to improve the catalytic activity of HMNCMs by incorporating
Mn. Zhang et al. [82] prepared MnO2@CeO2–MnO2 composite hollow spheres exhibiting a
superior catalytic performance by the facile three-step method, which employed carbon
spheres (CSs) as sacrificial templates. Chen et al. prepared CeO2–CuO with a core–shell
structure [80] and porous/hollow-structured CeO2-MnOx [84] to promote the performance
of the catalytic CO oxidation. Liu et al. [81] fabricated CeO2–MOx (M = Cu, Co, Ni) compos-
ite yolk–shell nanospheres by the general wet-chemical approach. After this, they fabricated
a series of MCo2O4@CeO2 (M = Ni, Cu, Zn, Mn) core@shell nanospheres [80], double-
shelled Fe2O3/CeO2 boxes [87], CeO2@MnO2 core@shell nanospheres [83], Mn2O3@CeO2
core@shell cubes [85], and CeO2-MnOx hollow 3D porous architecture [86].

Obviously, the doped metal Cu of Ce-based martials played a pivotal roles in catalytic
reaction. However, the comparison of catalytic activities toward the CO oxidation of the
and hollow-multiporous wall CeO2 supported CuO catalysts and the CeO2–CuOx hollow
nanospheres indicated that the adjustable morphology of catalysts endows the catalyst
to rationalize a multitude of factors, such as the synergistic interaction, high surface area,
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space utilization, high loading capacity, superior pore permeability, and abundant inner
void space.

• The multi-element Ce-based hollow structure

Additionally, multi-metal doped Ce-based CO oxidation catalysts have also been
extensively studied. Some parameters of the hollow structure, such as the composition and
wall thickness, are related to the synergy between metals. Liu et al. [89] reported the hollow
CeO2-=–Cu2O, core–shell NiO@Cu2O, and hollow CeO2-NiO-Cu2O cages (Figure 2). The
multicomponent metal oxides with a hollow structure exhibited a lower CO oxidation
temperature than Cu2O cubes.
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Figure 2. The SEM (x1 and x2) and TEM (x3) images of the Cu2O cubes, composite CeO2-Cu2O
(1), NiO@Cu2O (2), and CeO2–NiO–Cu2O (3). (x = a, b, c and d for Cu2O and composites 1−3,
respectively) The scale bar is 800 nm in parts x1 and x3, and it is 500 nm in part x2. Figure reproduced
from ref. [89]. (a1,a2) The SEM images of Cu2O cubes; (a3) The TEM images of Cu2O cubes; (a4) The
SAED pattern of Cu2O cubes; (b1,b2) The SEM images of composite CeO2-Cu2O; (b3) The TEM
images of composite CeO2-Cu2O; (c1,c2) The SEM images of composite NiO@Cu2O; (c3) The TEM
images of composite NiO@Cu2O; (d1,d2) The SEM images of composite CeO2–NiO–Cu2O; (d3) The
TEM images of composite CeO2–NiO–Cu2O.
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Cheng et al. [90] synthesized NiCo2O4@CeO2 core@shell nanotubes with a tunable
shell thickness through the layer-by-layer coating method and employed these materials
as the high-performance catalyst of the CO oxidation reaction. The NiCo2O4@CeO2-2
(2 represented the molar ratio of Ce/(Ni + Co)), which showed the highest catalytic activity:
over 50% of CO can be oxidized at a low temperature of 100 ◦C, and the final T100 (100%
conversion temperature) was about 150 ◦C. The effect of different shell structures on
catalytic performance was studied. The results showed that the two-phase interface area of
NiCo2O4@CeO2-1 with the thinnest CeO2 shell will decrease, which weakens the synergistic
effect between CeO2 and NiCo2O4.

• Ce-based hollow structure doped with noble metals

Huge challenges such as the low thermal stability and loss of catalytic activity due
to sintering still need to be solved in catalytic applications. This was attributed to the
noble metal nanoparticles which tend to aggregate during the process of catalytic reaction,
causing the rapid decay of catalytic activity and stability [12]. The decentralized function of
HMNCMs is a critical advantage for noble metal materials. Thus, designing and fabricating
HMNCMs to suppress the aggregation and sintering of noble metal nanoparticles is an
effective and promising solution [63,91]. The summary of the Ce-based hollow structure
doped with noble metals is presented in Table 4.

Table 4. CeO2-based hollow structure doped with noble metals with various compositions, structures,
and their catalytic performances of CO catalytic oxidation.

Doped Noble
Metal Material Synthesis Method SBET

(m2 g−1)
Catalytic

Performance Morphology Ref.

Pd

Pd@CeO2

Template-assisted and
solvothermal

alcoholysis strategy
73.3 T90 = 2 ◦C
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Table 4. Cont.

Doped Noble
Metal Material Synthesis Method SBET

(m2 g−1)
Catalytic

Performance Morphology Ref.

Au

Au@CeO2 In situ redox reaction — T100 = 21 ◦C
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[102]

The noble metal NPs act as the active catalytic sites for CO oxidation. The role of
hollow ceria as support is primarily to stabilize noble metal NPs to prevent their sintering
during catalytic reactions. In addition, ceria also works as an electronic modulator for
the loaded noble metal NPs [92,95,97]. The interior void space of hollow CeO2–ZnO
microspheres fabricated by Xie et al. [94] can be clearly observed in Table 4. The Ce–
OZn linkages formed at the interface between CeO2 and ZnO nanoparticles, which was
conducive to strengthening interfacial interactions and CO adsorption. Consequently, the
catalytic activity of CO oxidation over the CeO2–ZnO composite hollow microspheres was
greatly improved due to the synergistic effect between CeO2 and ZnO. They loaded the
Au nanoparticles on the surfaces of the CeO2–ZnO composite hollow microspheres by the
deposition−precipitation method to further improve the CO oxidation catalytic activity.

Many HMNCMs have been used as the support for Au nanoparticles, such as
Au@CeO2-ZrO2 with a hollow core–shell structure [98], Au/CeO2 hollow nanospheres [3],
Au/CeO2 nanotubes [99], and sandwich hollow-structured CeO2@Au@CeO2-MnO2 [103].
Compared to non-hollow-structured core–shell Au@CeO2 nanocomposites [104], these
hollow-structured catalysts exhibited a higher catalytic activity for CO oxidation.

HMNCMs loaded with Pd can effectively prevent particle migration and deactivation
by separating precious metal NPs in the small cavities [91]. As shown in Figure 3a, (1) Pd
NPs were fully deposited on the surface of RF polymer spheres to form RF@Pd structure;
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(2) RF@Pd particles were exposed to the solution containing Ce3+ and hexamethylenete-
tramine (HTMA) to form RF@Pd@CeO2; (3) Hollow Pd–CeO2 nano-composite spheres
(NCSs) were fabricated by calcination to eliminate the polymer templates.
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For other HMNCMs doped with metallic Pd NPs, Zhang et al. [93] prepared sandwich-
like MnO2-Pd-CeO2 hollow spheres by depositing Pd nanoparticles on the outer surface
of the MnO2 shell, before coating it with CeO2, which had an anchoring effect on the
outermost layer (Figure 3b). The hollow spheres exhibited excellent stability and CO
oxidation activity due to the sandwich structure and the strong synergy between Pd and
the layered porous MnO2–CeO2 shell.

There are also many works which have incorporated metal Pt NP into HMNCMs to
improve their catalytic activity. Wang et al. [100] found that Pt cations on the CeO2–Pt
interface could make the Pt–CO bond weak, which made the reduction in oxygen easy
during the CO oxidation reaction. Additionally, the CeO2–Pt nanotube composites also
had excellent thermal stability, even when calcined at a high temperature up to 700 ◦C.
This demonstrated that the hollow structure could prevent the migration and sintering
of Pt NPs. Similarly, the CeO2 hollow sphere embedded with Pt (Pt/CeO2 HS) [101] and
Pt/CeO2@SiO2 catalysts with the porous/hollow structure [102] exhibited high activity and
excellent durability in terms of CO oxidation. The significant increase in the CO conversion
rate was attributed to the presence of internal voids in the material, which enhanced the
chemisorption of CO on the Pt sites.

• Other HSMOs

The rational morphological design and component optimization of other metal oxides
doped in HMNCMs such as Fe2O3, Co3O4, CuO, etc., have also been studied. Based on
this, other HSMOs applied to CO oxidation are summarized in Table 5.
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Table 5. Other HSMOs with various compositional, structure, and their catalytic performances of CO
catalytic oxidation.

Materials Synthesis Method SBET
(m2 g−1)

T100 of 100% CO
Conversion Morphology Ref.

α-Fe2O3 hollow
microspheres

Ultrasonic-spray-assisted
synthesis method 49.3 320 ◦C
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As displayed in Table 5, Li et al. [66] prepared the hollow transition metal oxide
microspheres (CeO2, α-Fe2O3, and Co3O4) via a general ultrasonic-spray-assisted synthesis
method for catalytic CO oxidation. The catalytic activity expressed by the CO conversion
of these hollow/mesoporous transition metal oxide microspheres followed the following
sequence: Co3O4 hollow microspheres > CeO2 hollow microspheres > α-Fe2O3 hollow
microspheres. Therefore, Co3O4 was demonstrated to be an efficient catalyst for the
oxidation of CO.

The other hollow-structured Co3O4 catalysts include the H–Co3O4@H–C (hollow
Co3O4 NPs embedded in hollow carbon shell) [105], hollow and core–shell nanostructure
Co3O4 [106]. The activities of these hollow-structured Co3O4 catalysts were improved
by introducing hollow structures into the Co3O4 NPs. The hollow nanostructure Co3O4
provided more abundant active sites which are beneficial to the catalytic activity compared
to the core–shell nanostructure Co3O4. However, the core–shell Co3O4 exhibited greater
long-term stability than the hollow nanostructure Co3O4. This may be ascribed to the shell
structure being prone to collapse without Co3O4 cores providing support points. Therefore,
HSMOs could be designed with hollow structures to increase the oxygen vacancies and
provide abundant active sites to improve the catalyst activity. The stability of the hollow
structure could be increased by structural adjustment.

Moreover, second active metal oxides can be addicted to catalysts using metal–support
interactions to improve the general catalytic performance. Zeng et al. [107] synthesized the
Au/α-Fe2O3 catalysts with a varied hollow structure, which displayed the high catalytic
performance of CO oxidation. Comparing α-Fe2O3 supports with the spindle, rod, and
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hollow rod structures, the hollow α-Fe2O3 nanoparticles exhibited the best activity due to
the strong Au–support interaction with the Au nanoparticles.

For hollow micro/nanostructured materials doped with metallic Pd NPs, Du et al. [108]
fabricated the hollow In2O3@Pd–Co3O4 core/shell nanofiber catalyst with a higher CO oxi-
dation activity (T90 = 56 ◦C) and lower activation energy. Additionally, they also confirmed
that the ultra-thin shell structure and structural defects of In2O3@Pd-Co3O4 increased the
redox capability. The high content of Pd2+, the small proportion of Co3+, and the increase in
chemisorbed oxygen species were also possible reasons for the improvement in its catalytic
performance. Moreover, the L-H mechanism could effectively explain the catalytic CO
oxidation over the In2O3@Pd–Co3O4 catalyst. The possible CO oxidation reaction mech-
anism over the In2O3@Pd–Co3O4 catalyst is described in Figure 4a. Firstly, CO and O2
molecules were adsorbed onto the surface of the catalyst; secondly, Pd2+ and Co3+ activated
the adsorbed CO molecules, and formed CO (ads); then, the oxygen adsorbed on the surface
was captured to convert CO (ads) into CO2 (ads); then, the CO2 (ads) was converted into the
CO2 and the oxygen vacancies of the sample were regenerated; finally, the O2 in the reactant
supplemented the oxygen vacancies, and the absorbed oxygen was also regenerated. The
Pd2+ is the main active sites for CO oxidation. According to the XPS measurement, the
oxidation states of Pd were Pd0+ and Pd2+. The surface atomic ratio of Pd2+/(Pd0+ + Pd2+)
was 51.6% and the In3+ oxidation state of In was presented in the catalysts.
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Figure 4. (a) The reaction mechanism of CO oxidation over the In2O3@Pd–Co3O4 catalyst reproduced
from ref. [108]; (b,c) SEM images, (d–f) TEM images, and (g) HRTEM images of the MnO2–Co3O4

hollow spheres reproduced from ref. [109].

As shown in Figure 4b–f, the Co–Mn composite hollow spheres [109] were success-
fully prepared through a ‘Kirkendall effect’ method. The unique surface structure of the
MnO2–Co3O4 composite oxides could expose the abundant catalytic active sites of the in-
terface between Co3O4 and MnO2 (Figure 4f). The Co3O4 nanoparticles with the ultra-thin
nanosheet structure can be observed in Figure 4g, which could provide plentiful surface
oxygen species and the strong adsorption ability of CO to improve the catalytic perfor-
mance. The high content of Co3+ and Mn4+ facilitated the formation of oxygen vacancies in
the catalysts. Therefore, the multi-shelled MnO2–Co3O4 hollow spheres exhibited a reliably
high activity for CO oxidation due to its strong synergistic effect and the abundant oxygen
vacancies between Co3O4 and MnO2.
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Generally, traditional metal oxide-based catalysts can achieve acceptable CO catalytic
activity at high temperatures, while noble metal-based catalysts can achieve them at
relatively low reaction temperatures. However, the high cost of precious metal catalysts
limits their availabilities and wide applications [10]. Therefore, it is both greatly necessary
and urgent to develop the ‘noble-metal-free’ catalyst with the low-temperature catalytic
performance of CO oxidation.

In summary, HSMOs were widely used to catalyze the CO oxidation reactions, while
more attention was paid to HMNCMs due to the advantageous physical properties such
as the high specific surface areas, big pore volumes, synergistic interaction, abundant
defects, adjustable morphology, space utilization, and low density, etc. In addition, ceria
is a very important oxygen storage material because of the reversible valence couple in
Ce4+/Ce3+ and the high mobility of oxygen vacancies. There are generally two sources
of oxygen vacancies in CeO2, specifically, the intrinsic oxygen vacancies and the foreign
oxygen vacancies generated by doping the heteroatoms.

Firstly, the pure CeO2 hollow structure was considered a promising catalyst for CO
oxidation. The improved CO oxidation activity of the pure CeO2 hollow structure depended
on a critical factor, such as the exposed special crystal faces, small CeO2 crystal sizes, and
significantly deformed structure in the boundary area. Afterward, with the growing
tendency towards the fabrication of nanomaterials, more and more studies have focused on
HMNCMs, including the composite binary, multiple CeO2 hollow structure, and Ce-based
hollow structure doped with noble metals. Hereafter, the multi-element Ce-based hollow
structure emerged only recently. CeO2 can generate a strong synergistic effect with other
components in the catalytic process. Other HSMOs have similarly received a research
process as HMNCMs. Therefore, the strong synergistic effect of transition metal oxides has
been widely reported in the field of CO catalytic oxidation using the hollow structure of
HSMOs to increase the exposed surface area of the active center to the reactants.

It is generally believed that catalysts with multi-shell hollow structures can obtain a
better structure and catalytic stability than the single-shell counterpart because the multi-
shell layers possess different supporting functions and the outer shell has a protective
effect on the inside shell. Compared with single-shell hollow metal oxides, the multi-shell
structure has a larger specific surface area, easier diffusion kinetics, higher bearing capacity,
and lower density. Modifying the surface of the hollow structure by manufacturing defects,
adding active metal components, and reducing the thickness of the hollow structure wall
can greatly improve the catalytic activity. The hollow structure can greatly facilitate the
internal diffusion of reactants and the external diffusion of products during the reaction [86].
In addition, increasing the number of shells of the hollow structure can improve the thermal
stability of the hollow structure [110].

2.1.2. NH3-SCR Removal of NOx

The emission of nitrogen oxides (NOx) is mainly derived from the high temperature
combustion of fuel such as the coal combustion process in power plants and mobile trans-
portation, or in stationary sources such as glass furnace and ceramics factory. [111] They
constitute one of the main factors responsible for causing environmental problems, such as
acid rain, ozone layer holes, and photochemical smog [112]. The elimination of NOx air pol-
lutants has become one of the public’s main concerns. To date, two methods have been ap-
plied to eliminate NOx by HSMOs catalysts: the oxidation method and the low-temperature
selective catalytic reduction of NOx with NH3 (NH3-SCR) (Equations (1) and (2)).

4NO + 4NH3 + O2 → 4N2 + 6H2O, (1)

2NO2 + 4NH3 + O2 → 3N2 + 6H2O, (2)

In fact, the NO catalytic oxidation will enhance the SCR process via ‘fast’ SCR reaction:
4NH3 + 2NO + 2NO2 → 4N2 + 6H2O [113,114]. To be specific, the fast SCR reaction can be
inspired by the partial oxidation of NO into NO2 [115,116]. In addition, a suitable NO/NO2
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ratio is demanded for the oxidation method. However, the ratio of NO in the flue gas
accounts for 95% of the NOx. Therefore, the catalytic oxidation of NO to NO2 plays an
important role in the technique to eliminate NOx.

The hollow structure of the functional material has various advantages, such as high
porosity, low density, good permeability, large specific surface area, better gas transfer, more
active sites in the SCR of NOx, and outstanding reactant shuttle space [114]. Because the
above characteristics can be optimized by various methods, considerable efforts have been
devoted to the development of high-efficiency and environmentally friendly denitrification
catalysts, which can work well at low temperatures (<250 ◦C) [117,118]. However, previous
studies reported that the reaction of SO2 and NH3 on the catalyst surface would deposit
NH4HSO4 over the catalyst surface in the presence of oxygen. As a result, the active sites
were blocked [5]. Therefore, the urgent challenges for industrial flue gas denitrification
catalysts are to prevent the deactivation of active sites on the catalyst surface from the
toxicity caused by SO2, alkali metals, as well as active metal oxide nanoparticles aggregating
at high temperatures [114].

• Single-component HSMOs catalysts

In the past decade, manganese oxide (MnOx) has attracted extensive attention as a
low-temperature NH3-SCR catalyst due to its various types of active unstable oxygen. The
active oxygen species is the main factor affecting its catalytic performance; meanwhile,
the morphological structure also greatly affects the catalytic performance of manganese
oxide (MnOx). For example, Shao et al. [113] reported that the hollow structure of MnO2
could significantly enhance the catalytic oxidation activity of NO due to the cavity structure
providing the shuttle space for oxidation (Figure 5a,b). The adsorption and conversion rate
of the reactants were greatly improved. As a result, the NO oxidation effect of MnOx with
hollow morphology was much better than that of MnO2-C with amorphous morphology.
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The oxidation reaction pathways of NO on H-MnO2 and MnO2-R (rod-like morphol-
ogy) through various characterization techniques are shown in Figure 5g. It is widely

believed that the reaction pathway 1 (NO Mnn+
→ NO2

− O2→ NO2) is the main path of NO con-
version, which occurred on both H-MnO2 and MnO2-R surfaces. For H-MnO2, in reaction
pathway 2, the NO initially converted into NO3

− on the catalyst surface. Subsequently,
they were oxidized to NO2 by O species. However, the NO could be converted into NO−

and N2O2
2− by the abundant chemisorbed oxygen (O2

2− or O− species), and then oxidized
to NO2.

• Multi-component HSMOs catalysts

However, there are also some disadvantages of pure MnOx catalysts, such as low N2
selectivity at high temperature, poor SO2 tolerance, and a narrow operation window [118].
To date, it has been reported that the use of metal dopants or promoters is a very com-
mon method to improve the SO2 resistance of HSMOs catalysts [112]. To improve the
performance of NO oxidation, they continued to try doping the Ce and Fe into H-MnO2
(Figure 5c–f) and MnO2-R. The result indicated that the mixed-metal oxide doped with
the second metal had a positive effect on the catalytic oxidation of NO. Fe doping (H-
MnFeOx) displayed the highest NO conversion, i.e., 89.8% at 220 ◦C. This was because of
the rambutan-like morphology of H-MnFeOx, which could provide more active sites.

In addition, the MnOx-CeO2 binary oxide has always been widely investigated as a
catalyst of NH3-SCR reaction. [117]. The main reason is that the hollow structure provides
a huge specific surface area, higher reducibility, and sufficient acid sites for reactants [119].
Additionally, the uniformly distributed high content of Mn4+ [120] and oxygen vacan-
cies [121] were also the possible reasons. Additionally, the porous multi-shell hollow
sphere can accelerate the diffusion rate of gas into the internal space. Ma et al. [122]
prepared the CeO2–MnOx composite with a multi-shell hollow structure (Figure 6a–d).
The catalyst with three-layer hollow spheres presented the best performance with 100%
conversion in the 150–250 ◦C range. As shown in Figure 6e, the multiple collisions of
reactant gases between the shells were more likely to occur in the catalyst with a multi-
shell structure. Therefore, the catalytic activity of the catalysts followed the order of three
shells > double shells > single shell > NPs.

There are more MnOx catalysts with hollow morphologies combined with other metal
oxides for the NH3-SCR reaction, among which the typical hollow sphere morphologies
were usually used. For instance, the triple-shelled NiMn2O4 hollow spheres were syn-
thesized by a self-assembly method, which showed the low-temperature activity of the
NH3-SCR reaction with complete NOx conversion at 125 ◦C [123]. The excellent catalytic
performance was attributed to the plentiful active Mn4+ and surface adsorbed oxygen
of the spherical NiMn2O4 material. The hollow nanotube structure of MnCoOx catalyst
(MnCoOx-HNT) [114] was used to catalyze the low-temperature SCR process of NOx. The
hollow nanotube structure could effectively protect the active sites on the inner surface
from SO2 or alkali metal pollution. In addition to this, the catalyst surface possessed large
amounts of OH groups, which acted as sacrificial sites for anchoring SO2 and alkali metals
on the surface of the catalyst. In addition, another special hollow structure catalyst, such
as the urchin-like MnOx@PrOx hollow core–shell structure catalyst [124], was fabricated
using a sacrificial templating method. The MnOx@PrOx catalyst with a hollow core–shell
structure exhibited excellent low-temperature NH3-SCR activity with a maximum NO con-
version of 99% at 120 ◦C due to the abundant Lewis acid sites and the excellent reducibility
generated by the interaction between MnOx and PrOx. Furthermore, the special core–shell
structure of the catalyst brought about the superior SO2 and H2O tolerance.
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For the low-temperature NH3-SCR catalysts, Ce-based catalysts have also been in-
vestigated. The morphology design of the hollow structure CeO2 catalyst is beneficial
to improve the performance of the denitration catalyst. The CeO2 shell can serve as the
effective barrier for the aggregation of the nanoparticles. Meanwhile, the CeO2 shell can
also improve the tolerance of SO2 and H2O by inhibiting the formation of ammonium
nitrate and sulfates [125]. The CeMoOx catalysts with hollow structure were investigated,
such as Mo-doped CeO2 hollow microspheres [126] and Sn-modified CeMoOx electrospun
fibers [127]. The results presented that the strong redox ability, an abundance of Brønsted
acid sites, plenty of chemisorbed oxygen species, and a high content of Ce3+ were the main
factors for the excellent catalytic performance.

Thereafter, the hollow-structured CeO2 NH3-SCR catalyst, such as the hollow-structured
CeO2-TiO2 catalysts [112], Cr–Ce composite catalysts with the double-shelled hollow
morphology [128], CeO2@Fe-ZSM-5 catalyst with hollow structure [129], hollow-structured
WO3@CeO2 catalyst [130] porous CexNb1−x oxide hollow nanospheres [131], and Px-Ce0.3–
Zr–Ti nano-hollow spheres [132] have been developed and fabricated. The structures of
these catalysts exhibited the hollow spheres. The high NH3-SCR activity on the hollow
cavity structure catalyst was attributed to the large cavity size, increased curvature radius,
abundant active oxygen species, defects, acidic strength, and increased surface proportion
of Ce3+.
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To summarize, HSMOs have been used to catalytically remove NOx with NH3-SCR
due to its unique physiochemical properties. For the catalytic oxidation activity of NO,
MnOx with a hollow structure has been frequently examined as a promising catalyst due
to their various types of active unstable oxygen and the cavity structure could provide
the shuttle space for oxidation. Additionally, transitional metals and rare earth metals
doped into Mn-based oxides have been widely studied to overcome the disadvantages
of MnOx, such as the low N2 selectivity at high temperature, poor SO2 tolerance, and
narrow operation window. The exceptional catalytic activities of the Mn-based materials
principally originate from the redox characteristics of MnOx and the presence of oxygen
vacancies. In addition, Mn-based materials and Ce-based materials with a hollow structure,
which contains sufficient acid sites with large amount of active surface oxygen (OS), are
crucial for low-temperature catalytic NH3-SCR. The increase in the curvature radius of the
curved hollow spheres surface is an acceptable strategy.

2.1.3. Catalyst for Automobile Three-Way Catalytic (TWC) Reaction and Diesel Oxidation
Catalytic (DOC) Reaction

The main source of air pollution and secondary pollution is the soot particles emitted
by mobile diesel engines. Therefore, it is necessary to develop high-performance catalysts
that can oxidize soot at a low temperature [133]. However, both TWC and DOC should
eliminate all these harmful components, such as CO, NO, hydrocarbons (HCs), and soot, at
the same time [134,135]. NO2 is beneficial to soot combustion, as is water vapor, which is
also another key factor influencing the catalytic effect of soot combustion catalysts [136].

The hollow-structured metal oxide catalysts of the oxidation of CO and NO have
reached a significantly high level of activity. The hollow structures are feasible due to
the significantly improved soot–catalyst contact in the fields of automobile three-way
catalysts (TWCs) and diesel oxidation catalytic (DOC) reaction [134,137,138]. Additionally,
the development of the TWCs with strong interactions between metals and metal oxides to
prevent the sintering of metal nanoparticles have been a research hotspot. For example, the
soot or NO oxidation was performed on the CeMnCu ternary composite oxides with hollow
structures prepared by different methods [136]. The results indicated that the addition of
the third metal oxide, high BET surface area, small metal oxide hollow-structure grain size,
uniform element distribution, and low-average-valence Ce was essential for improving
the reducibility and catalytic activity of soot combustion. The hollow structure of the
nanoparticles in each CMC-Cp-x (CMC: CeMnCu, Cp: co-precipitation) could expose large
amounts of lattice oxygen to the (sub-) surface to promote the migration of lattice oxygen,
which is very important for catalytic oxidation (Figure 7a–f).

In addition, Feng et al. [139] prepared the trepang-like hierarchical structured CeO2@MnO2
nanocomposite oxide with a width of 60 nm by hydrothermal method. The special structure
of MnO2 short nanorods on the surface of the hollow spindle CeO2 (Figure 7g,h) was
beneficial in terms of accelerating the oxidation of soot and achieving a high catalytic
activity with T50 at 373 ◦C (5% O2/500 ppm NO). The main reason for this was that this
unique structure could provide more active sites and increase the accessible opportunities
between the catalyst and the soot.

For other hollow-structured catalysts for eliminating soot particles,
La0.63Sr0.27K0.1CoO3−δ nanotubes with a hollow structure were synthesized by doping
some Sr2+ to inhibit the grain growth during the heat treatment at a high temperature [140].
The soot particles have more contact chances between the catalyst and reaction gas within
the hollow structure. As a result, the La0.63Sr0.27K0.1CoO3−δ catalyst displayed high activity
in terms of soot oxidation with T50 at 359 ◦C in 5% O2 and 2000 ppm NO. Additionally,
the hierarchical hollow structure [HHS] assembled from the porous NiCo2O4 nanosheets
was also attributed to abundant active oxygen species [141]. Therefore, the temperature at
50% soot conversion (T50) of NiCo2O4 nanosheets could be achieved as low as at 354 ◦C.
Therefore, the application of hollow structures in the field of automobile TWC reaction and
DOC reaction is valid, but still needs to be developed diligently.
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2.2. Volatile Organic Compounds Emission Control

Volatile organic compounds (VOCs) are considered air pollutants that are greatly
harmful to human health, and refer a class of substances composed of various organic com-
pounds with a boiling point in the range of 50 ◦C–260 ◦C at room temperature. Meanwhile,
outdoor sources are the main part of the anthropogenic emission sources of VOCs, includ-
ing chemical industries, transportation, petroleum refineries, dry cleaners, food processors,
and textile manufacturers, etc. [142]. Excess VOCs are emitted by indoors and natural
resources, such as solvents and cleaning products, restaurant and domestic cooking, office
supplies, printers, heat-exchanger systems, etc. [143]. Additionally, VOCs also participate
in the formation of photochemical smog and the depletion of the ozone layer, which are
responsible for the climate and environmental changes [144]. The catalytic recovery tech-
nologies of volatile organic compounds, such as the catalytic combustion [144], catalytic
decomposition at room temperature [145], catalytic oxidation, [23], and photocatalytic min-
eralization, etc. [143], have been widely considered as the most promising post-treatment
technologies to control the emissions of VOCs [146]. Recently, the catalytic oxidation of
VOCs has received more and more attention. Therefore, it is urgent to develop excellent
catalysts with advanced low-temperature activity for VOCs though structural engineering.
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2.2.1. Catalytic Elimination of Toluene

The aromatic hydrocarbons, such as benzene and toluene, are the toxic and carcino-
genic volatile organic compounds in the discharged exhaust gas [147]. HSMOs are expected
to catalyze the oxidation of these VOCs with high efficiency due to the large surface area
and abundant oxygen vacancies, which are essential for the improvement of the catalytic
oxidation of toluene [147,148]. Nevertheless, HSMOs have been widely used in the field of
the catalytic elimination of aromatic hydrocarbons. In recent years, various excellent metal
oxide catalysts with hollow structures have been developed for the catalytic elimination
of toluene and have shown good low-temperature catalytic activity, stability, reusability,
and excellent water tolerance [149–151]. However, hollow-structured metal oxides have
different morphologies and compositions. Thus, the metal oxide catalysts with hollow
structures for toluene oxidation reported in the summary are exhibited in Table 6. The metal
oxide catalysts could be divided into single-component metal oxide catalysts with hol-
low structures, hollow-structured metal-oxide-supported catalysts, and hollow-structured
binary metal oxide catalysts.

Table 6. Summary of toluene oxidation over the reported metal oxide catalysts with hollow structures.

Catalysts
Synthesis
Method

SBET
(m2 g−1)

Reaction Conditions Catalytic Performance

Morphology Ref.Toluene Concentration,
Weight Hourly Space

Velocity (WHSV)

T90
(◦C)

T100
(◦C)

Ea
(kJ mol−1)

CeO2 hollow
sphere

Hydrothermal
methods 130.2 1000 ppm, 48,000 mL g−1 h−1 207 — 55.0
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Table 6. Cont.

Catalysts
Synthesis
Method

SBET
(m2 g−1)

Reaction Conditions Catalytic Performance

Morphology Ref.Toluene Concentration,
Weight Hourly Space

Velocity (WHSV)

T90
(◦C)

T100
(◦C)

Ea
(kJ mol−1)

hollow
microsphere

CuMnOx

One-pot
preparation 193.3 1000 ppm, 30,000 mL g−1 h−1 237 — 55.7
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• Single-component metal oxide catalysts with hollow structure

The morphology of catalysts with hollow structures consisting of a single-metal oxide
component, such as CeO2, Co3O4, and MnO2, has been extensively studied. For example,
Feng et al. [147] prepared CeO2 with different morphologies (rod, cube, and hollow sphere)
for catalytic toluene combustion at low temperature. Among these catalysts, the CeO2
hollow sphere exhibited the best tolerance to water and toluene combustion activity with
T90 at 207 ◦C, which was an improvement compared to the CeO2 rod and CeO2 cube. The
excellent catalytic performance of the CeO2 hollow sphere led to more active surface oxygen
and better redox properties on the catalyst due to the larger surface area and more surface
oxygen vacancies. Similarly to hollow Co3O4 polyhedral nanocages, the other reason for
the high activity were the strongest OH groups and the higher atomic ratio of Co3+/Co2+

on the catalyst surface [152].
Manganese oxides (MnOx) are among the most active oxides for catalytic VOCs

oxidation. Furthermore, a study showed that Mn was the main activity center of toluene
oxidation [155]. The probable reaction pathway for the toluene oxidation of the MnOx
polyhedra with a hollow structure was proposed. At the start, toluene molecules were
adsorbed on the surface of the catalysts, and then partly oxidized into benzyl alcohol, which
might subsequently transform into benzaldehyde and benzoic acid. With the increasing
temperature, the benzene ring was opened to form the maleic anhydride and was further
oxidized to carbon dioxide and water [153].

Moreover, the structure–activity of this important transition metal oxide has been
widely studied. The VOC decomposition of MnOx was ascribed to the outstanding adsorp-
tion capacity, high mobility of oxygen, the higher average oxidation state (AOS) of Mn,
and abundant OH groups [159,160]. The low-temperature reducibility of the catalyst was
attributed to the high content of Mn4+, which facilitated the occurrence of the redox cycle
and promoted the activation of the surrounding surface lattice oxygen, thus enhancing the
mobility of oxygen species with the participation of oxygen vacancies. Additionally, Gu
et al. [151] prepared the hierarchically structured flower-like MnO2 hollow microspheres
with low-temperature activity and high thermal stability, resulting from its large specific
surface area (214 m2/g), abundant oxygen vacancies, improved reducibility, high num-
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ber of acidic sites, and strong acidity. The adsorption and activation of gaseous toluene
molecules were further promoted by these features, thus exhibiting remarkable activity for
toluene catalytic oxidation at low temperature. The mechanism for explaining the results
was proposed as shown in Figure 8, which was a complete cycle synergizing the Brønsted
acid site and oxygen vacancy for toluene oxidation. Initially, the gas toluene was adsorbed
and activated on Brønsted acid sites. Then, it reacted with the surrounding active oxygen
species to produce carbon dioxide and water and complete a catalytic cycle. Meanwhile, the
molecular oxygen could be activated on the oxygen vacancies, which would be generated
with the consumption of active oxygen species. And, the activated surface lattice oxygen
could also participate in the reaction.
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Figure 8. Schematic diagram of the complete reaction cycle for the catalytic oxidation of toluene on
MnO2-1.2. Figure reproduced from ref. [151].

For the oxidation elimination of VOCs, post-plasma catalysis (PPC) is also an important
catalytic technology. The insufficient adsorption of gas and low catalytic activity at room
temperature for the complete oxidation of toluene are still challenges in post-plasma
catalysis (PPC). At the same time, hollow structures are a special morphology for metal
oxides and have attracted considerable attention due to their well-defined interior voids,
high specific surface areas, and superior permeation properties. Yang et al. [159] described a
simple one-step template-free hydrothermal method for the preparation of the hierarchical
hollow urchin structured MnO2, which is displayed in Figure 9a–f. The post-plasma
catalytic decomposition of toluene was conducted at room temperature. As a result, hollow
urchin α-MnO2 exhibits a higher toluene decomposition, CO2 selectivity, and carbon
balance compared with solid urchin α-MnO2. The toluene decomposition, CO2 selectivity
and carbon balance over hollow urchin α-MnO2 reach up to ~100%, ~59%, and ~81% at
an SIE of 240 J/L, respectively, which indicated the higher activity in comparison to the
non-thermal plasma (NTP) process (the initial concentration of toluene was kept at 105 ppm
with a gas flow rate of 150 mL min−1). As shown in Figure 9g,h, the major degradation
pathways of toluene over the hollow urchin α-MnO2 catalyst during the post-plasma
catalytic process consisted of two steps: (1) the plasma-induced ring-opening destruction
of toluene in the gas phase (Figure 9g); and (2) the adsorption and conversion of toluene
and organic byproducts into CO2 and H2O on the surface of the catalyst (Figure 9h).



Nanomaterials 2024, 14, 1190 24 of 47

Nanomaterials 2024, 14, x FOR PEER REVIEW 22 of 46 
 

 

 

 

 

Figure 9. SEM and HRTEM images of: (a–c) solid-urchin and (d–f) hollow-urchin MnO2. Plausible 

reaction pathways for toluene decomposition in the PPC (post-plasma catalysis) process are also 
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Figure 9. SEM and HRTEM images of: (a–c) solid-urchin and (d–f) hollow-urchin MnO2. Plausible
reaction pathways for toluene decomposition in the PPC (post-plasma catalysis) process are also
given: (g) NTP (non-thermal plasma)-induced gas-phase reactions in the DBD (dielectric barrier
discharge) reactor and (h) catalytic reactions on the surface of MnO2 in the catalytic reactor. Figure
reproduced from ref. [159].

• Hollow-structured metal oxides supported catalysts

As can be observed in Table 6, the catalytic activity of single-component metal oxides
is significantly lower than that of multi-component catalysts. Metal Pt and Pd noble-based
catalysts have been widely investigated in the catalytic oxidation of toluene. Additionally,
noble metals exhibit much higher activity in the combustion of toluene compared with
transition metal oxides (mainly CoOx, MnOx, etc.), which was attributed to the advantages
of a hollow structure such as large surface areas and space inside, abundant oxygen
vacancies, SMSIs, etc.
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To optimize the dispersion and chemical state of Pt species, Kondratowicz et al. [144]
deposed Pt species into the hollow ZrO2 spheres as support using the bottom–up strategy
and impregnation with PtCl4 or the reduction of PtCl4 in an ethylene glycol solution. In
contrast with the materials produced by the bottom–up strategy, the catalyst produced by
the polyol technique had a better catalytic activity in terms of toluene combustion due to
the larger Pt nanoparticles with higher stabilization and the dispersion of the metallic Pt
phase. Moreover, the more reactive oxygen would generate on the surface Pt site.

Mo et al. [154] prepared a series of different MnO2 crystal structures (α-, β-, γ-, and
hollow-MnO2). Compared with α-, β-, and γ- MnO2, the H-MnO2 catalyst exhibited a
superior high level of activity with T90 at 230 ◦C for toluene oxidation due to the abundant
surface Oads species on the catalyst with the well-defined hollow structure. Then, these
catalysts were decorated by Pt NPs on the MnO2 crystal structures. The Pt/α-MnO2 catalyst
showed the best performance for catalytic toluene combustion (T90 = 170 ◦C), which was
attributed to the SMSIs between the Pt nanoparticles and the supports. The surface oxygen
vacancies and the mobility of the surface lattice oxygen would be improved by the SMSIs,
thus leading to the deep oxidation of the toluene molecules to CO2 and H2O.

Qu et al. [6] presented the h-NiCoOx catalyst with large surface areas, abundant surface
hydroxyl groups and numerous oxygen vacancies, which exhibited a superior catalytic
activity compared with single metal oxides (Co3O4 and NiO) and NiCoOx nanosheets. After
being loaded with Pd particles, the 2.0 wt% Pd/h-NiCoOx demonstrated an especially high
performance for toluene oxidation with approximately 100% conversion achieved at 190 ◦C.
In comparison with h-NiCoOx, the temperature is lower by 60 ◦C. Mechanisms based
on the Mars–van Krevelen model [161] for the toluene oxidation reaction over Pd/metal
oxide catalysts are presented in Figure 10a. The proposed system was followed as: (1) after
the toluene molecules were adsorbed on the catalyst surface, it was activated to form
the dehydrogenated intermediates with the promotion of surface hydroxyl groups on the
catalyst [162]. (2) The activated lattice oxygen species were migrated to react with the
intermediates due to the existence of oxygen vacancies and mixed-valence states, such as
in the Co3+/Co2+ and Ni3+/Ni2+ pairs, and then, it could be reoxidized by the gaseous
oxygen [161,162]. (3) The dehydrogenated intermediates and toluene were completely
oxidized from CO2 and H2O.

Wang et al. [20] reported that hollow nanocage-shaped γPt/Co3−xZrxO4 catalysts
show significant activity for complete toluene catalytic oxidation. The key points of the
preparation with the solution-phase cation exchange method for designing this catalyst
were constructing solid-solution supports by doping Zr into the Co3O4 lattice, and sub-
sequently loading Pt. The SEM images of the materials are displayed in Table 6. Af-
ter Pt nanoparticle loading, the 2.0 wt% Pt/Co2.73Zr0.27O4 catalyst achieved complete
toluene catalytic oxidation at 180 ◦C, which was the best catalytic activity among these
γPt/Co2.73Zr0.27O4 samples. In Figure 10b, which shows the proposed mechanisms of
toluene decomposition and catalytic oxidation over 2.0 wt% Pt/Co2.73Zr0.27O4, the steps
are as follows: firstly, because the Pt metal on the catalyst surface was more active, the
toluene molecule favorably adsorbed onto it and was then activated as a dehydrogenation
intermediate. Afterward, the major intermediates such as benzaldehyde and benzoate were
formed due to the dehydrogenation intermediate reacting with active oxygen species, and
finally, was completely oxidized to CO2 and H2O. Additionally, the rapid activation of O2
molecules benefited from the Pt metallic atoms and the active oxygen species produced by
the generated oxygen vacancies.
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• Hollow-structured binary metal oxide catalysts

The economic inapplicability of precious metals limits their application and develop-
ment. Thus, transition metal oxides such as Co, Mn, etc., are expected to replace metal Pt
and Pd due to their low cost and high availability when the outstanding catalytic activity
for toluene oxidation is proven. Moreover, the addition of other metals could significantly
improve the catalytic activity of toluene due to the synergistic effect [163].

Li et al. [156] prepared hollow-structured Mn–Ce binary oxides using carbon spheres
as hard templates and applied for catalytic toluene combustion. The MnCe–OH catalyst
exhibited the highest catalytic performance for toluene combustion with T90 at 237 ◦C
in comparison with the MnCe–H and MnCe sample (obtained from acidic- or alkali-
treated carbon spheres) attributed to the thinner and more porous shell, enhanced low-
temperature reducibility, and moderate surface components (abundant Mn4+ and surface
adsorbed oxygen). Furthermore, a large number of the defects with the Ce addition, surface
adsorption oxygen, and the surface Mn4+ species of the CeaMnOx hollow microsphere with
hierarchical structure were formed by redox co-precipitation method [157]. The catalytic
performance for toluene combustion was significantly improved in terms of its high stability
= and water resistance, even under the condition of 5 vol.% H2O of Ce0.03MnOx. The
possible reaction mechanism for toluene catalytic oxidation over Mn–Ce binary oxides
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was offered based on in situ DRIFTS analyses. The oxidation of toluene underwent the
following consecutive steps: initially, toluene molecules were transformed into aldehydic,
then into benzoate species, and the CO2 and H2O were formed finally.

Additionally, adding a second metal element to the hollow structure to improve the
catalytic activity is closely related to the preparation method. Xiao et al. [155] reported
the hollow-microsphere CuMnOx catalysts synthesized by an expeditious salt hydrolysis-
driven redox-precipitation protocol for toluene combustions. As shown in Figure 11a, to
fabricate the CuMnOx with molecular-scale homogeneity and a high dispersion of Cu2+

and Mn2+, the hydrolysis driving redox method was used to raise their atomic utilization
efficiency compared with the co-precipitation method. The HR-2Mn1Cu (hydrolysis-driven
redox-precipitation protocol) showed the lowest toluene conversion temperature with T50
and T90 of 228 ◦C and 237 ◦C, respectively, and the toluene conversion at 240 ◦C was much
higher than that of other catalysts. The excellent activity of the HR-2Mn1Cu was ascribed
to the formation of a long-range disordered mesostructure with the uniform introduction
of copper ions by the hydrolysis-driven redox co-precipitation. With the corrosion of H2O2,
the surface hollow structure and accumulative pores were formed, which then increased
the high specific surface area and accessibility of surface edge sites and inner atoms of
HR sample.
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Temperatures and heating rates are important heating decomposition conditions
for precursors, based on the application of hollow Co3O4 polyhedral nanocages [152].
Zhao et al. [154] successfully fabricated the hollow MnxCo3−xO4 polyhedron
(HW-MnxCo3−xO4) by controlling heating conditions to optimize the decomposition of
Mn@Co-ZIFs precursors. The HW-MnxCo3−xO4 displayed remarkable catalytic oxidation
performance for toluene with T100 occurring at 195 ◦C due to the high surface atomic
ratio of Co2+/(Co3+ + Co2+), an abundance of surface-adsorbed oxygen with the largest
specific area, and a minimum crystallite size. In addition, the possible reaction mechanism
was proposed and followed the L-H mechanism different from hollow Co3O4 polyhedral
nanocages. The complete redox cycle [164] is shown in Figure 11b, and the steps were as
follows: firstly, the toluene molecule reacted with the chemically adsorbed oxygen after
being adsorbed onto the surface of the catalyst. Secondly, the benzaldehydic species were
produced and converted into CO2 and finally H2O. Meanwhile, oxygen vacancies were
produced by the catalysts to form the new chemically adsorbed oxygen.

The hollow-structured material made good progress, but the synthesis of the hollow-
structured cubic metal oxides faces huge challenges. As shown in Figure 11c, the SiO2
template strategy was applied to prepare hollow the CoInOx nanocube (HC-CoInOx) [150]
for the catalytic combustion of toluene. The formation process of the construction of a
hollow structure indicated that using the porous SiO2 template can greatly increase its
surface area to produce a large number of surface dangling bonds and provide more oxygen
vacancies and surface weak acid sites, which would play important roles in improving
the oxidation activity of materials. Thus, the hollow HC-CoInOx nanocube exhibited an
excellent catalytic performance (T90 = 178 ◦C). The proposed reaction mechanism over the
hollow HC-CoInOx catalyst for the toluene oxidation process is shown in Figure 11d, which
preferred the Mars–van Krevelen mechanism. The redox cycle includes the following steps:
firstly, toluene molecules reacted with the adjacent lattice oxygen after adsorbing onto the
metal active sites and then formed CO2, H2O, and an oxygen vacancy. Subsequently, the
gas O2 molecules were reabsorbed and replenished into this oxygen vacancy, and then
reacted with another toluene molecular as before.

In summary, there is no doubt that the optimization of the hollow structure highly
improved the catalytic activity of single-component metal oxide catalysts. However, there
are bottlenecks to this improvement. The introduction of noble metals is known to further
enhance the activity. For the supported catalyst, the precious metal was the active site to
activate the O2 molecules, and the active oxygen species were produced by the generated
oxygen vacancies of the HSMOs [20]. Additionally, to make full use of the advantages
of the hollow structure (high specific surface areas, big pore volumes, abundant defects,
adjustable morphology, space utilization, low density, and the metal–support interactions,
etc.) [159], the toluene catalytic oxidation reaction is crucial.

In order to maximize the toluene catalytic oxidation activity of the HSMOs, the
incorporation of other active metal elements has been used to adjust the structure–activity
relationship. The key factors for the oxidation of toluene on the catalyst are the surface
reaction [158], the high number of acidic sites [151], and the supply of active oxygen by the
abundant oxygen vacancies [150]. As for binary metal oxide catalysts, the catalytic oxidation
of toluene over the metal oxides with a hollow structure is related to various influencing
factors, such as the concentration of surface oxygen vacancies [20], the thickness and the
porosity of the shell [156], abundant surface hydroxyl groups [6] and Mn4+ species [157],
and so on. Based on these synthesis methods and experimental investigations, the hollow-
structured metal oxide catalysts with high activity and durability at the component level
could be designed and fabricated.

2.2.2. Removal of Other Volatile Organic Compounds (VOCs)

Formaldehyde (HCHO) has been considered a carcinogenic and toxic volatile organic
compound (VOC), which widely exists in wood adhesives, furniture, preservatives and
disinfectants, textiles, dyes, cigarette smoke, and other materials we encounter daily [23].
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As a dangerous indoor pollutant, HCHO at a very low concentration can also pose a huge
threat to human health [165]. In addition, chlorinated volatile organic compound pollutants
(CVOCs) also include chlorinated volatile organic compounds which have high chemical
stability, severe toxicity, and potential carcinogenicity [166]. The removal of pollutants in
the air or indoors using catalytic oxidation technology has been considered one of the most
promising technologies for addressing this issue.

Compared with traditional catalytic materials, HSMOs have attracted significant
attention for addressing catalytic VOC oxidation due to certain advantages such as their
large specific surface area, low density, high loading capacity, outstanding interior voids,
good surface permeability, excellent permeation properties, and high mobility. Furthermore,
HSMOs are good candidates for catalyst support.

The related catalytic elimination method, catalytic performance, synthesis method, and
structural properties of the previously reported metal oxide catalysts with hollow structures
in catalytic oxidation are summarized in Table 7. As can be observed, the application range
of hollow-structured oxide catalysts in the field of VOC removal is gradually expanding
due to their outstanding advantages. The catalysts were prepared by different methods
and metal oxides led to the exhibition of various morphologies, such as hollow spherical
structures, hollow nanoboxes, hollow chains, and core–shell nanospindles.

Table 7. Summary of catalytic activities in the VOC oxidation of reported metal oxide catalysts with
hollow structures.

Catalysts Synthesis Method
Textural Properties

Reaction Conditions X (%) T (◦C) Ref.SBET
(m2g−1)

Pore Volume
(cm3g−1)

KxMnO2 hollow
nanospheres Soft chemistry route 40.7 0.09 100 ppm HCHO, 20 vol % O2,

GHSV = 50,000 h−1 80 100 [167]

MnO2 hollow
spheres

Hard templating
method 104.0~236.0 0.40~0.80 100 ppmv HCHO in dry air,

GHSV 30,000 h−1 99.7 90 [23]

Au/MnO2
hierarchical hollow

microsphere

Hydrothermal
method and sol-gel

method
52.3 0.16 200 ppm HCHO in air, GHSV

30,000 mL·g−1
cat·h−1 59.2 25 [168]

Pt/C@MnO2
composite

hierarchical hollow
microspheres

Hydro-
thermal method with

hollow carbon
spheres as a

sacrificial template

153.0 0.37 HCHO solution (38% mass
concentration) 90.5 __ [2]

Hierarchical Pt/WO3
nanoflakes

assembled hollow
microspheres

Solution method 23.0 0.12
HCHO solution (38% mass

concentration), 260 ppm HCHO
concentration

97 __ [165]

Hierarchically
macro-mesoporous

Pt/γ-Al2O3
composite hollow

microspheres

Chemically induced
self-transformation

method
114.0 0.37 HCHO solution (38%) __ __ [169]

Hierarchical Pt/NiO
hollow microspheres

Template-free
approach 50.8 0.11 HCHO solution (38%) __ __ [170]

Pt/CoSn(OH)6
hollow nanoboxes __ __ __ HCHO solution (38%),

~180 ppm HCHO concentration 80.1 __ [171]

Hollow chains
mesoporous Pt/TiO2

(RPt-nominal were
0.5 wt%)

Microwave–
hydrothermal route 132.0 0.29 HCHO solution (38%) __ __ [145]

Fe2O3@SnO2
core–shell

nanospindles
__ 108.0 0.18

HCHO aqueous solution
(38 wt%, contains 10–15 wt%

methanol)
95.99 __ [172]

RuCoOx/Al2O3
hollow microspheres Soft-template method 193.0 0.39

Gas containing 0.1% vinyl
chloride in air, weight hourly

space velocity (WHSV) of
30,000 mL·g−1·h−1

90 345 [166]
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• Hollow nanospheres

For vinyl chloride (VC) catalytic oxidation, Wang et al. [166] synthesized hollow
alumina microspheres (Al2O3-hms) as the support for ruthenium/cobalt binary oxides to
prepare the catalyst. The RuCoOx/Al2O3-hms exhibited the highest VC oxidation activity
with T50 at 310 ◦C and T90 at 345 ◦C compared with RuOx/Al2O3-hms, CoOx/Al2O3-hms,
and Al2O3-hms. The SMSI effects between metal nanoparticles and Al2O3-hms support
varied the low-temperature reducibility, the abundance of surface oxygen, lattice oxygen
mobility, and the metal valence state distribution over RuCoOx/Al2O3-hms catalysts.

Manganese oxides (MnOx) were the transition metal oxides with multiple crystalline
phases and oxidation states, which have been extensively investigated due to their high
reductive degree in high oxidation states (Mn4+ and/or Mn3+). Chen et al. [167] synthesized
manganese oxide honeycomb and hollow nanospheres via a simple soft chemistry route
for the effective removal of HCHO. The catalytic activity of KxMnO2 nanospheres for
HCHO oxidation was improved by changing the KMnO4/OA molar ratio to form the
hollow structure. The 100% HCHO conversion temperature (T100) of the hollow KxMnO2
nanospheres was 80 ◦C, and the T100 of honeycomb nanospheres was 85 ◦C, which, due to
the HCHO, would adsorb and retain for a longer period in the hollow structure.

Boyjoo et al. [23] prepared the MnO2 hollow spheres by the redox (CPR) method
to control the manganese oxide precipitation coated on SiO2 spheres (Figure 12). The
Mn[P]N (‘Mn’ stands for MnO2, ‘P’ for permanganate Mn(VII) solution, and ‘N’ for nitrate
Mn(II) solution; the letter between the square brackets [] represents the solution that was
added dropwise) was performed best with T50 and T90 of 75.6 ◦C and 99.7 ◦C, respectively,
which was attributed to the highest surface area. The Mn[P][N] maintained a high 75%
conversion up to 90 h of reaction due to the high concentration of oxygen vacancies to
continuously regenerate hydroxyl species on the surface of the birnessite sheets. Moreover,
the hydroxyl radicals replenished from the water would be helped to complete the oxidation
of formaldehyde.
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Figure reproduced from ref. [23].

Furthermore, the adoption of a hollow spherical structure with hierarchical struc-
tures to modify the surface of metal oxides has received more attention due to open the
hierarchical architecture endowed abundant surface sites for the diffusion and adsorption
of reactants as well as the high active mental dispersion [2]. For example [168], MnO2
hierarchical hollow microspheres (MnO2-S3) with a crystalline structure of γ-MnO2 were
prepared using the hydrothermal method; then, the Au nanoparticles were dispersed on
the surfaces of hollow MnO2 microspheres using the sol–gel method. The Au/MnO2-S3
showed the highest activity with 59.2% conversion, achieved at 25 ◦C, among the Au/MnO2
samples. Therefore, another effective method was to load noble metals to improve the
catalytic activity.

Pt with high activity and good stability is typically used to decompose HCHO, even at
room temperatures [173]. This was attributed to the fact that the metal Pt with the negative
charge could provide more active sites for HCHO oxidation, probably due to facilitating the
electron transfer and the formation of active oxygen [174]. The HCHO conversion efficiency
of the hierarchical WO3 nanoflakes, comprising assembled hollow microspheres, was only
3% within 60 min, and the HCHO conversion efficiency was 97% of WO3-Pt1.0 (within
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60 min) (1.0 represents the weight percentage of Pt loaded in the samples) [165]. This result
indicates that WO3 was inert for the catalytic oxidation of HCHO, and Pt played a key role
in the HCHO decomposition. Furthermore, Sun et al. [2] prepared a hierarchical core–shell
Pt/MnO2-HCS (hollow carbon spheres) composite sphere through the template-assisted
hydrothermal method and reductive deposition of Pt NPs (Figure 13a–d). Compared with
MnO2-MS (MnO2 microsphere), the Pt/MnO2-HCS sample exhibited a higher HCHO
decomposition efficiency of 90.5% within 60 min.
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The other special hierarchical macro-mesoporous hollow structure, such as that of
the γ-Al2O3 hollow spheres (HAO), was assembled with nanosheets on the surface and
then PHAO (Pt- hollow γ-Al2O3 spheres) was fabricated by depositing small Pt NPs on
the surfaces of the nanosheets, which were used for HCHO oxidation (Figure 13e–h) [169].
Among all the catalysts, PHAO was the most active catalyst in terms of HCHO oxidation
and demonstrated a highly improved performance.

As shown in Figure 13i–l, Qi et al. [170] prepared hierarchical Pt/NiO hollow micro-
spheres through the template-free approach, and loaded Pt by the combined NaOH-assisted
impregnation of NiO with NaBH4 reduction. In contrast to Ni400G (the as-prepared sample
heated to 400 ◦C which was ground into a fine powder using an agate mortar to destroy the
hollow spheres), the Ni400P (with a calcination temperature at 400 ◦C) achieved a higher
catalytic activity due to the hierarchical hollow spheres assembled by a large number
of nanosheets and the bimodal macro-mesoporous structures. And, this phenomenon
also reflected the two following points: (1) the diffusion and transport of gas molecules
would be blocked in the pores generated by the disorderly stacked nanosheets; (2) it is
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difficult for the growth and cluster of Pt nanoparticles because of the lack of a hierarchical
macro-mesoporous structure.

• Other hollow-structured metal oxides

To oxidate HCHO, Qi et al. [145] prepared a highly efficient Pt/TiO2 catalyst using
TiO2 hollow chains as support material, and found that the hollow chain-like structure with
numerous mesopores, great pore volume, and a high surface area remarkably improved
its catalytic activity. Additionally, the uniform CoSn(OH)6 hollow nanoboxes with an
abundance of surface hydroxyl groups and plenty of catalytic oxidation sites also provided
superior support in order to disperse the Pt metals [171].

Lv et al. [172] reported using the Fe2O3@SnO2 core–shell nanospindles as the sup-
port for loading Pt nanoparticles, which were prepared by assembling SnO2 shells over
Fe2O3 cores (Figure 14a–d). Compared to the Pt/Fe2O3 and Pt/SnO2 catalysts, the
Pt/Fe2O3@SnO2 shows enhanced room-temperature HCHO oxidation activity with the
95.99% removal ratios of HCHO after 1 h. By analyzing the DFT simulation results, an
excellent catalytic performance was ascribed to the fast adsorption and activation of the
reactant O2 by the Fe2O3 surface, and the SnO2 surface is beneficial for the desorption
of the resultant H2O. Also, the synergetic combination of the individual oxide building
blocks produced by the hetero-structure was another reason for the observed enhanced
catalytic capability.
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Generally, metal supports loaded with noble metal are widely used catalysts for the
catalytic oxidation of volatile organic compounds. However, the dispersion degree of
noble metal on metal oxides is critical to catalytic activity. Metal oxides with a hollow
structure have shown their advantages, such as their large specific surface area, low density,
high loading capacity, outstanding interior voids, good surface permeability, and high
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mobility, etc. The low-temperature oxidation performance of catalysts for the removal of
volatile organic compounds is due to the two following key factors: (1) the synergistic effect
between the noble metal particles and the support; and (2) the abundance of surface sites
for the diffusion and adsorption of reactants.

2.3. Removal of Other Pollutants
2.3.1. Catalytic Conversion of CO2

As it is well known, global warming is caused by massive emissions of greenhouse
gases [175]. Carbon dioxide has been considered the main greenhouse gas responsible for
global warming [176,177]. Meanwhile, CO2 can also be a promising and economical carbon
source for synthesizing organic compounds [178,179]. Thus, the incorporation of CO2 into
epoxides [175], the synthesis of symmetrical or asymmetrical urea compounds [180] and
formic acid and its derivatives [181] from CO2, the synthesis of acetic acid via methanol
hydrocarboxylation with CO2 and H2 [182], as well as the recycling of CO2 through the
hydrogenation or reforming processes, etc. [183], are considered promising approaches.
In some of these processes, catalysts have been extensively researched and developed
because they can reduce processing costs. Researchers are keen to enhance the catalytic
activity using metal oxides with special surface characteristics [175]. Moreover, the hollow
nano-microstructures of metal oxide materials strongly affects their efficiency due to the
composition and size of such structures, the various pore sizes, and the fine structure of
the spherical shells. Thus, the application of HSMOs is one of the solutions for catalysts to
achieve a high performance.

Spinel-type composite metal oxides have been widely used for the incorporation of
CO2 and CS2 into epoxides due to their various advantages, such as their mixed-metal
oxidation state, chemical stability, excellent synergistic performance, economical cost, and
simple preparation process [9,175,176]. In terms of ingredients, catalysts with nanocrys-
talline aluminum-derived spinel structures are widely employed due to their high thermal
stability, high mechanical resistance, hydrophobicity, and low surface acidity. The hol-
low spinel-type composite metal oxides, such as nano-CuAl2O4 hollow spheres [175],
nanoporous triple-shelled CuAl2O4 hollow spheres [179], and multi-shell hollow CoAl2O4
microspheres [9], have been promising catalysts for the cycloaddition of CO2 to epoxides.
For instance, the copper–alumina spinel hollow sphere decorated the unique structures
of the nanoflake with a triple-shell structure [179], as displayed in Figure 15a–c, which
highly improved the catalytic activity for the cycloaddition of CO2 at atmospheric pressure
due to the good accessibility of interior active sites in the hollow structure. Additionally,
another hollow-structured catalyst with an excellent performance for the cycloaddition of
CO2 and epoxide under solvent-free conditions is that of hollow marigold CuCo2O4 spinel
microspheres [176], which have numerous Lewis acidic active sites.

In addition, Witoon et al. [183] prepared a series of CuO–ZnO catalysts for the hydrogena-
tion of CO2 to methanol by adjusting the chitosan concentration. It was found that the hollow-
structured CuO-ZnO catalyst (Figure 15d–f) with the largest surface area (46.2 m2 g−1) and the
smallest crystallite sizes achieved the highest space–time yield of methanol (135 g kg−1

cat·h−1)
at 513 K. Tian et al. [184] synthesized the hollow CuO/ZnO/Al2O3 composite microspheres
using carbonaceous saccharide as the template. The obtained catalysts could achieve an
optimum methanol yield of 15.3% with the 24.7% CO2 conversion at 262 ◦C.

Other hollow structures were developed from the MOF derivative catalysts. The
included hollow-structured Cu@ZrO2 prevent the sintering of Cu nanoparticles, which
leads to the high performance of CO2 hydrogenation, and to methanol reaction with 5%
CO2 conversion and 85% methanol selectivity at 220 ◦C [185]. Additionally, the hollow-
structured In2O3@ZrO2 effectively improved the catalytic activity of formate intermediates
to methanol (STYMeOH of 0.29 gMeOH·gcat

−1·h−1 at 290 ◦C) because of the strong In2O3–
ZrO2 interaction at the In2O3/ZrO2 heterointerfaces [186].
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from ref. [179]; (d–f) SEM images at different magnifications of the CuO-ZnO catalyst reproduced
from ref. [183]. The red borders in the figure represent irregular spherical shape of the sample.

2.3.2. Catalytic Conversion of CH4

The impact of CH4, another greenhouse gas, on the environment is 20 times that of
CO2 [187]. The methane dry reforming process (Equation (3)) is a sustainable means of
reducing greenhouse gas emissions by simultaneously consuming two kinds of greenhouse
gases. It can contribute to both environmental protection and the energy economy [188]:

CH4 + CO2 → 2H2 + 2CO, △H = 247 kJ/mol (3)

However, the carbon deposition [189] and active metals sintering [188,190] of catalysts
are the main problems arising during the dry reforming of methane (DRM). Recent studies
have shown that the application of HSMOs is favorable for the catalysis of DRM [189,191–193].

As it is known to all, HSMOs exhibit advantages including their high loading capacity,
superior pore permeability, high specific surface area, abundant inner void space, and
low density. Therefore, the promotion of gas diffusion and the high dispersity of active
metal nanoparticles were attributed to the hollow structure [191,194]. Additionally, the
high metal dispersion over a greater surface area of the support is one particular advantage
of supported metal catalysts, showing excellent activity due to the interactions of the metal
with the support and the stability of the support at high temperature.

Compared with the one-component system, the incorporation of the second oxide
significantly improves the catalytic activity, stability, and anti-catalytic toxicity of the
nanostructure, which is due to the synergistic interaction between the two different oxides
that would be increased by tuning the composition and morphology of hollow structure.
The adjustment of the component benefited from the SMSIs provided sufficient reaction
active sites and oxygen vacancies to inhibit the high carbon deposition [195]. Finally,
superior catalytic activity and particle sintering resistance would be achieved. Thus, the
investigation of HSMOs could remarkably influence the activity, stability, and anti-catalytic
toxicity of catalysts for DRM.

2.3.3. Removal of Organic Compounds

To date, HSMOs have shown great potential in the field of the catalytic environ-
mental contaminants, such as the hydrogenation of 4-nitrophenol (4-NP) and the cat-
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alytic oxidation of 1,2-dichlorobenzene (o-DCB). For the catalytic hydrogenation of 4-NP,
Au/CeO2 catalyst [196], hollow Cu2O/rGO nanohybrid [197], Au@mesoporous SnO2 yolk–
shell nanoparticles [198], cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles
(CuFe2O4/CNC) [199], and Fe3O4@Au hollow spheres, etc. [200], the materials exhibited
excellent catalytic activity due to the unique porous structure, were permeable for chem-
ical species, and had large specific surface areas, which induced the easy accessibility of
the reactant at the active sites. Furthermore, the good reusability of Fe3O4@Au hollow
spheres was attributed to its magnetic properties, which resulted in the rapid recycling of
catalysts [200].

Except for the Fe3O4@Au hollow spheres sample, hollow Fe3O4-Au nanocompos-
ites [201] (Figure 16a–f), hollow Fe3O4/P(GMA-EGDMA)SO3H/Au-PPy catalyst [202]
(Figure 16g–j), Au/Fe3O4@TiO2 hollow nanospheres [203] (Figure 16k–n), and multi-shelled
FeCo2O4 hollow porous microspheres/cotton cellulose fibers (CCFs) [204] all exhibited
magnetism, and thus their convenient separability and excellent repeatability. Moreover,
the superior catalytic performance of FeCo2O4 hollow porous microspheres/CCFs was
also ascribed to the synergistic effect between magnetic TS-FeCo2O4 (triple-shelled) and
CCFs. And, the CeO2@Au@CeO2–MnO2 catalyst with the sandwich hollow structure [103]
proved the synergistic effect among the components. Additionally, the TS-FeCo2O4/CCF
materials could act as a photo-catalyst with high catalytic activity, which was attributed
to the multiple additional reflections of the incident light which would occur in the multi-
shelled hollow structure. Thus, the more efficient utilization of incident light within the
interior cavity was realized.
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Figure 16. TEM images of the Fe3O4–Au 5 mL (a) and Fe3O4–Au 20 mL with the HRTEM image
(inset) (b); Fe3O4–Au 40 mL with the SAED pattern (inset) (c) and Fe3O4–Au 60 mL (d); TEM
images of single Fe3O4–Au 5 mL (e) and Fe3O4–Au 60 mL (f) microspheres and corresponding
EDS elemental mapping images (Au, Fe, and O). Figure reproduced from ref. [201] TEM images
of (g) hollow Fe3O4 microspheres, (h) Fe3O4/P(GMA-EGDMA) microspheres, and (i,j) Fe3O4/P
(GMA-EGDMA)SO3H/Au-PPy microspheres. Figure reproduced from ref. [202]. TEM images of
(k) SiO2 nanospheres, (l) Au/Fe3O4/SiO2, (m) Au/Fe3O4/SiO2@TiO2, (n) Au/Fe3O4@hTiO2. Figure
reproduced from ref. [203].
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Furthermore, the Co3O4/CoP composite hollow polyhedron [7] was synthesized as a
superior catalyst with dramatic efficiency and stability for the reduction of 4-NP through
phosphorization calcination. It is believed that the rapid transfer of electrons during the
catalytic hydrogenation of 4-NP is crucial, which is supported by the MFe2O4 (M=Co, Ni,
Cu) hollow spheres [205], the plasmonic Au-loaded hollow porous TiO2 spheres, etc. [206].

In addition, Wu et al. [207] prepared metal oxides (NiO, CuO, and NiO/CuO) with
hollow nanosphere morphology. The five-stage hydrogenation of the 4-NP reaction process
over NiO/CuO porous carbon shell (HNSs@C) is illustrated in Figure 17a. The HNSs
played a key role in the “electrical” connection between the particles during the electron
transfer from the oxidation site to the reduction site [208]. Moreover, the surface with
rich interconnected nanobranches could reduce the interface resistance and provide a
convenient way for electron transfer.
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Figure 17. (a) Schematic diagram of the catalytic mechanism of metal oxide HNSs@C for the
hydrogenation of 4-NP reaction. Figure reproduced from ref. [207]. SEM images of (b) Fe2O3,
(c) FeCa5, (d) FeCa10, and (e) FeCa20. Figure reproduced from ref. [209]. SEM images of (f) FeMn10,
(g) FeMn20, (h) FeMn40, and (i) FeMn80 (represent the molar ratios of Mn/(Fe + Mn) are ~10, 20,
40, and 80 mol%). Figure reproduced from ref. [22]. (j) Proposed reaction routes of o-DCB catalytic
oxidation over ZnCe5 (doped with 5 mol% Ce). Figure reproduced from ref. [210].
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For the catalytic oxidation of o-DCB, the structure–reactivity relationship has been
widely investigated. However, the morphological effect of the hollow structure was rarely
discussed. A small amount of data currently available developed demonstrated that the
strong performance of the hollow-structured catalysts was attributed to their small crys-
tallite size, the high concentration of surface-active oxygen [22], good low-temperature
reducibility, and the synergistic effect between metal oxides [209,210]. As shown in
Figure 17b–e, the Ca-doped FeOx hollow microspheres were fabricated using carbon
microspheres as templates [209], and the optimal FeCa10 (the nominal content of Ca was
10 mol%) hollow microspheres achieved a superior catalytic activity, water resistance,
stability, and CO2 selectivity. The hierarchical porous structure of a series of novel Fe–Mn
composite oxides with hollow microsphere morphology, as shown in Figure 17f–i, was
also one of the properties that resulted in high catalytic activity, CO2 selectivity, good
water-resistant performance, and excellent stability [22].

The oxidation of o-DCB over mixed-oxide hollow microspheres occurs to follow the
Mars–van Krevelen-like mechanism [209,210]. For example, as shown in Figure 17j, the
reaction mechanism of the Ce-doped ZnO hollow microspheres was summarized as the
following steps: (1) o-DCB was converted into catecholate or phenolate species through
nucleophilic substitution after being adsorbed onto the surface ZnCe5; (2) and then ZnCe5
proceeded to inducing the ring opening reaction of catecholate or phenolate species, which
facilitated the formation of maleate, acetate, and formate species; (3) CO2 and H2O were
formed due to the oxidation of a large amount of maleate, acetate, or formate species [210].

HSMOs also have great potential for treating water pollutants such as dyes (e.g., acid
orange 7(AO7) [211], methylene blue) [212], pharmaceuticals (e.g., acetaminophen [213],
norfloxacin (NOR) [214], tetracycline (TC) [215], and ciprofloxacin) [216], and organic pol-
lutions (e.g., phenol) [217] through the photocatalytic degradation and advanced oxidation
processes (AOPs).

For the photocatalytic degradation of pharmaceuticals and organic pollutions, hollow-
structured TiO2 has been widely studied. The hollow mesoporous TiO2 microspheres were
synthesized for the photocatalytic degradation of acetaminophen [213], and the TiO2 hollow
mesoporous nanostructures photocatalytic degradation of phenols [217]. Additionally, the
CeO2/Co3O4 hollow microsphere [215] was prepared for the degradation of tetracycline
(TC). For the photodegradation of AO7, Fe-doped CeO2 hollow microspheres [211] as the
catalyst were prepared by a simple coprecipitation method using yeast as a bio-template,
as shown in Figure 18a–h. Fe-doped CeO2 hollow microspheres have a higher photocat-
alytic performance in degrading AO7 aqueous solutions containing H2O2 under visible
irradiation, which can be attributed to their greater number of oxygen vacancies, higher
specific surface area, and lower band gap, in contrast with CeO2 hollow microspheres and
Fe-doped CeO2 nanoparticles.

Thus, the advantages of HSMOs with respect to the photocatalytic degradation of
pharmaceuticals and organic pollutions are given as follows: (1) the addition of substance
promoted the separation of electron and hole pairs; (2) the large specific surface area
provided more active sites; and (3) the abundant pore structure increased the probability of
contact between the catalyst and pollution [217].

For AOPs’ treatment of methylene blue, Zhang et al. [212] prepared Fe3O4@MnO2
ball-in-ball hollow spheres (BBHs) with magnetic properties as the catalyst shown in
Figure 18i–l. The improved catalytic activity of Fe3O4@MnO2 BBHs was ascribed to the
synergistic effect of outer MnO2 nanosheets and the inner Fe3O4 hollow ball. And, the
recyclability of the as-prepared catalyst was attributed to the magnetic property.

AOPs have been considered an effective means of water purification. The Fenton reac-
tion is a specific kind of AOP. In addition, the Mn-doped Fe3O4 hollow microsphere [218],
hollow spheres of Cu–CuFe2O4/SiO2 composite [219], bifunctional hollow mesoporous
Fe0@C@MnFe2O4 [220], and the hollow sphere CuFe2O4 [221] have been prepared as
Fenton-like catalysts for treating other dyes. These catalysts exhibited a superior catalytic
activity for the removal of pollutants, good catalytic stability, and easy magnetic recovery



Nanomaterials 2024, 14, 1190 38 of 47

due to the inherent characteristics of metal oxides and the advantages of a hollow structure,
which could provide important instructions to rationally design and synthesize HSMOs for
water pollution treatment.
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Figure 18. SEM images of the (a) Fe-doped CeO2 nanoparticles, (b) yeast template, (c) CeO2 hollow
microspheres, and Fe-doped CeO2 hollow microspheres before (d) and after (e–h) calcination. Figure
reproduced from ref. [211]. The SEM image (i) and TEM images (j–l) of Fe3O4@MnO2 BBHs. Figure
reproduced from ref. [212].

3. Conclusions and Perspectives

HSMOs have piqued the interest of researchers as a novel type of structure. This
structure takes advantage of the intrinsic properties of various metal oxides and fully
exploits the various properties of the hollow structure, as well as the benefits of interfacial
interaction and the synergistic effects between the metal oxides. Because metal oxide
hollow structures have basic properties such as their high loading capacity, superior pore
permeability, high specific surface area, abundant inner void space, and low density,
they have a wide range of applications in environmental catalysis. We summarized their
geometric morphology, metal oxide components, and interior/ulterior architecture from
various levels and perspectives in different environmental catalysis processes in order to
investigate the structure–performance correlation of HSMOs.

For environmental catalysis, the premise is to realize a highly catalytic performance by
enhancing the probability of contact between the catalysts and the reactant, thus exposing
more active sites. Countless HSMOs with properties such as a high specific surface areas,
big pore volumes, and adjustable morphology have been developed. As the structure–
activity relationship becomes clearer in this important field, the excellent catalytic perfor-
mance is ascribed to the improvement in the properties in terms of magnetic properties,
synergistic interaction, abundant defects, sufficient utilization of interior space, sufficient
acid/base sites, good redox characteristics, abundant active oxygen, high storage/release
capacity of oxygen, a large amount of active surface oxygen (OS), etc.

However, some aspects of HSMOs still need attention and deserve further study in
order to optimize hollow structures in different applications, as described below:

(1) Specific laws of the synergistic effect between metal components of HSMOs. It
is generally accepted that the synergistic effect is complex. However, the specific laws of
the synergistic effect should be briefly summarized and then these novel laws should be
generalized for practically useful synthetic approaches. For example, this could include the
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integration of different types of catalytic sites, such as acid, base, redox, oxygen vacancy,
and other sites, using the variation of catalyst metal oxide compositions.

(2) Synthesis strategies need to be developed in order to reduce the process com-
plexity and production cost. The synthesis of catalysts with hollow structures typically
involves complex steps and elaborate formulations, which are more expensive than the
conventional catalysts used in the industry. Therefore, the functional benefits offered by
hollow-structured catalysts also come at a cost. In reality, in environmental catalysis, there
are more substances that would cause catalyst poisoning and deactivation. To assess the
real potential of catalysts, detailed techno-economic analyses and extensive benchmarking
studies of the candidate and conventional catalysts are required.

(3) The rational design and optimization of the HSMOs’ shell porosity, thickness, and
shell number are necessary. The catalytic kinetic behavior and molecular behavior control of
HSMOs were regulated by these characteristics. The proper selection of microporous shells
with a precise pore structure and size, increasing the number of shell layers, changing the
thickness or curvature, etc., could promote selective reactions. The physical and chemical
properties of HSMOs are investigated and tuned to enhance their interactions with the
reacting gas molecules, thus effectively increasing the reaction rate.

Additionally, pioneering characterization technologies are highly preferred and ur-
gently desired so that the aspects of HSMOs outlined above can be made much clearer
with the use of advanced characterization data. Focusing on the structural characteristics
of HSMOs, expounding the constitutive relationship between the component composition
and its performance could have a guiding significance for the further optimization of
the structure of the material, and it is expected to be widely used in the preparation of
other HSMO materials. In the future, we can predict that the development of HSMOs for
environmental catalysis will eventually intersect with various state-of-the-art fields.
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