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Abstract: An interpolation method, which estimates unknown values with constrained information,
is based on mathematical calculations. In this study, we addressed interpolation from an image-based
perspective and expanded the use of image inpainting to estimate values at unknown points. When
chemical gas is dispersed through a chemical attack or terrorism, it is possible to determine the
concentration of the gas at each location by utilizing the deployed sensors. By interpolating the
concentrations, we can obtain the contours of gas concentration. Accurately distinguishing the
contours of a contaminated region from a map enables the optimal response to minimize damage.
However, areas with an insufficient number of sensors have less accurate contours than other areas.
In order to achieve more accurate contour data, an image inpainting-based method is proposed
to enhance reliability by erasing and reconstructing low-accuracy areas in the contour. Partial
convolution is used as the machine learning approach for image-inpainting, with the modified loss
function for optimization. In order to train the model, we developed a gas diffusion simulation
model and generated a gas concentration contour dataset comprising 100,000 contour images. The
results of the model were compared to those of Kriging interpolation, one of the conventional spatial
interpolation methods, finally demonstrating 13.21% higher accuracy. This suggests that interpolation
from an image-based perspective can achieve higher accuracy than numerical interpolation on well-
trained data. The proposed method was validated using gas concentration contour data from the
verified gas dispersion modeling software Nuclear Biological Chemical Reporting And Modeling
System (NBC_RAMS), which was developed by the Agency for Defense Development, South Korea.

Keywords: data reconstruction; gas dispersion; image inpainting; spatial interpolation; partial
convolution; machine learning; chemical sensing

1. Introduction

When chemical gas is dispersed in chemical attacks, terrorism, or safety accidents,
the gas forms a plume and diffuses in various weather conditions. Since the diffused gas
is colorless and odorless, it can cause severe casualties. It is important to determine the
extent and concentration of gases to minimize casualties. Chemical sensors can also be
used to assess the spread of gas. It is possible to generate a gas concentration contour
using the data measured by the sensors. For a rapid response against gas dispersion, it
is advantageous to install a large number of detection sensors. However, resources are
limited, and the reliability of contours where sensors are relatively scarce is low. Figure 1
shows the difference in the reliability of contours according to the number of sensors. As
shown in the figure, the contours generated by an insufficient number of sensors do not
accurately reflect the actual environment. Therefore, we proposed a method for enhancing
the reliability of these areas by reconstructing inaccurate regions using image inpainting.

Mathematical methods have commonly been used to estimate data for unknown
areas using limited information. Spatial interpolation is one of the mathematical estimation
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methods. The input contour image for our method was also generated using spatial interpo-
lation, and unreliable regions within the image were reconstructed using image inpainting.
Unlike other studies aimed at improving the accuracy of interpolation from a mathematical
perspective, we addressed the same problem from an image-based perspective.

Figure 1. Difference in the reliability of contours according to the number of sensors. The pictures
on the left are the original contours obtained using the gas diffusion simulator we developed. The
middles are the contours created using Kriging interpolation based on a sufficient number of values
sampled from the original contours. The pictures on the right are the contours generated based on
an insufficient number of values. The black dots represent the positions of chemical sensors. The
concentration data on those points are used for Kriging interpolation.

Recent approaches [1–3] to image inpainting are based on generative models such
as generative adversarial network (GAN) [4], transformer [5–7], and denoising diffusion
probabilistic model (DDPM) [8]. These methods demonstrate effective performance in
plausible filling by utilizing the strengths of the image processing of each model. However,
generative model-based approaches generate only plausible and diverse images of missing
regions. Filling the missing region plausibly is not meaningful in this task because the
purpose of the reconstruction of concentration contours is to improve accuracy. In this
study, a partial convolution [9]—based model was proposed among the various models
of image inpainting. Since the gas concentration is continuous and mathematically highly
correlated with nearby values, it would be more proper to fill it using nearby values rather
than simply filling it plausibly. In contrast to generative models, partial convolution fills in
missing regions using the convolution calculation of nearby valid regions. Additionally,
image inpainting using partial convolution is robust, even with irregular missing data,
allowing for more flexible and rational contour reconstruction. By adding a new loss
term and tuning the coefficients of the loss function in [9], the model demonstrated better
performance in gas concentration contour reconstruction.

In order to train the model, a contour dataset representing the concentration of a
dispersed gas is required. Obtaining a sufficient amount of actual data is restricted by time
costs and economic constraints. Therefore, a gas diffusion simulation model was developed
to construct the concentration contour dataset. This dataset consisted of contour images,
and the simulator was based on a two-dimensional Gaussian distribution. This diffusion
simulation model also considered wind effects and particle viscosity to generate realistic
image data. After training, the utility of the model was validated using the Nuclear Biologi-
cal Chemical Reporting And Modeling System (NBC_RAMS) developed by the Agency for
Defense Development (ADD), South Korea. NBC_RAMS is capable of utilizing validated
mathematical models to simulate the behavior of gas particles accurately. The validation
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was conducted by comparing the results of the software with those of the reconstructed
contours using the proposed model. Consequently, we demonstrated that image inpainting
can improve the accuracy of the spatial interpolation of gas concentration distribution.

The main contributions of this paper can be summarized as follows:

• The proposed model, optimized for gas concentration reconstruction, demonstrates
an accuracy that is 13.21% higher than that of conventional spatial interpolation
methods. This improvement in accuracy has been validated using reliable software,
NBC_RAMS;

• The enhanced accuracy in identifying gas diffusion allows for a rapid response in
scenarios involving the leakage of hazardous gases, thereby enabling prompt action
in emergencies to prevent significant casualties;

• The proposed model improves economic efficiency. In real-world scenarios where
the deployment of numerous sensors is impractical, it enables effective situation
assessment using a limited number of sensors. Additionally, the model can be applied
to various fields involving spatially distributed data.

2. Related Works
2.1. Image Inpainting

Image inpainting is a technique used to plausibly fill an erased space in an image; it is
often used to restore the corresponding position after removing specific objects. In its early
days, nonlearning methods were proposed and were mainly categorized into diffusion- and
patch-based methods. Diffusion methods propagate the information of the valid image re-
gions surrounding the erased area to fill them in. Bertalmio et al. [10] and Ballester et al. [11]
introduced the early diffusion method using anisotropy. Chan et al. [12] later modi-
fied the total variation denoising model for the inpainting of nontextual images. Other
methods introduced by Demanet et al. [13] and Levin et al. [14] use image statistics
for diffusion-based image inpainting. While diffusion methods excel at filling small
or narrow areas, they struggle with large areas. Patch-based methods operate under
the assumption of redundancy and coherence in natural images, where nearby pixels
tend to share similar characteristics. Many methods have been proposed to search for
patches to fill the erased space. Examples include using structure-based priority for patch
searches [15], using Markov random fields [16], and applying nonlocal texture matching and
nonlinear filtering [17]. However, these methods also have limitations in effectively filling
larger areas.

As deep learning has shown significant potential in image processing, many methods
using deep learning techniques have emerged in the field of image inpainting. Specifically,
convolutional neural networks (CNNs) and generative models have been widely used for
image inpainting tasks. Pathak et al. [18] applied a CNN-based autoencoder architecture to
learn the mapping between an input image with missing regions and a complete image.
The partial convolution approach [9] fills in the image using a convolution operation
only on the valid pixels around the missing region. Yu et al. [19] divided the inpainting
process into two steps and utilized gated convolution. Various methods for generating
images corresponding to erased regions have been developed using GANs, transformers,
and DDPMs. Notably, approaches such as those using adversarial and contextual losses
with a conditional GAN [20], as well as methods using CNNs and GANs to predict edge
guidance in erased areas for inpainting [21], have been proposed. The method proposed
by Wan et al. [3] uses a transformer and CNN to decouple image inpainting into an image
structure recovery step (for the transformer) and a resolution upsampling step (for the
CNN). Lugmayr et al. utilized DDPM to complete an image using sampled noise, which is
a process applicable regardless of the mask shape [2].
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2.2. Spatial Interpolation

Spatial interpolation techniques are used to estimate values at unmeasured locations
based on known data. Representative methods such as inverse distance weighted (IDW),
Kriging, and splines have been extensively compared in many studies.

IDW interpolates by forming a linear combination based on data from unknown
regions. Compared to other methods, it has the advantage of being simple and less
computational but has the disadvantage of being sensitive to outliers. The Kriging method,
similar to IDW, estimates data at an unmeasured location but incorporates a variogram,
which measures the spatial correlation between two points and contributes significantly
to the Kriging method’s high accuracy. While it offers high accuracy, the Kriging method
demands significant computational resources. The spline method performs interpolation
using a mathematical function and estimates by fitting the known data into a spline function.
It has the advantage of being flexible for complex patterns; however, it has low reliability
towards the edge of the estimation region.

Although the suitability of the method differs depending on the specific geographic
area and the aspect of data existence, many studies have reported that the accuracy of the
Kriging method is high in many fields. Bekele et al. [22] compared the performances of the
Kriging method and IDW and demonstrated that the Kriging method generally has high
performance. Laslett et al. [23] similarly compared the Kriging and spline methods and
demonstrated that Kriging has better accuracy.

3. Materials and Methods
3.1. Dataset

The accuracy of the model in real-world situations depends on how closely the dataset
reflects actual environmental conditions. Generating a dataset that mimics real-world
situations requires access to sensor-measured concentration values. However, gathering
extensive data by dispersing gases in an actual environment is both economically and
time-intensive. In order to overcome this challenge, we developed a simulation model that
emulates gas diffusion. In this simulation model, gas diffusion follows a two-dimensional
Gaussian distribution. Figure 2 illustrates the diffusion process.

Figure 2. (a) Gas diffusion process in the developed simulator. Before diffusion, all gas particles are
located at specific co-ordinates. However, as sampled vectors are added, the particles move, resulting
in diffusion, as shown in the grid map on the right. (b) Result of the diffusion process.
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Gas diffusion in the simulation model occurred on a two-dimensional grid map, and
each gas particle stored the two-dimensional co-ordinate vector of the current position.
Once the origin grid of gas diffusion was set, all particle vectors were set in that grid
co-ordinate. Subsequently, an equal number of two-dimensional random vectors were
sampled from a Gaussian distribution. By adding these sampled vectors to the co-ordinate
vectors of the gas particles, each particle moved on the grid, facilitating diffusion. The
gas diffusion simulation model also considers the effects of wind. The wind effects were
categorized into 16 directions, with corresponding vectors for each direction added to
all particles at regular intervals. In reality, wind affects gas particles differently based
on concentration. High-concentration areas are less affected by wind compared to low-
concentration areas. In order to reflect this viscosity of particles, we multiplied a value
from 0.5 to 1 for each wind vector according to the concentration of each grid before adding
it. Consequently, a small-magnitude wind vector was added to the co-ordinate vector of
the gas particles located in areas with high concentrations. Figure 3a shows the results of
the gas diffusion simulation model based on 16-directional winds.

Figure 3. (a) The results of the gas diffusion simulation model. The shape of the gas diffusion contour
varies depending on the wind blowing in 16 directions. (b) The portion of the dataset created from the
simulation results. The images below were created using the Kriging method, using 49 concentration
points indicated by the black dots in the simulation results above.

Each image within the dataset was 256 × 256 pixels and was created using the Kriging
method, utilizing 49 concentration points from the results of the gas diffusion simulation
model. Figure 3b shows a segment of the gas concentration contour dataset created from
the simulation results. We also created 100 masks for training. Each mask image has a
randomly masked region with a size of 100 × 100 pixels, which is about 15% of the input
image. The mask was filled with zeros in the missing regions and ones in the valid regions.
Figure 4 shows samples of the mask images.

Figure 4. The portion of the masks for training. Black rectangles are used to mask the different regions
of the training data, with their positions varying randomly for each mask. This process removes
random areas of the training data, enabling the model to learn from a diverse set of scenarios.
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3.2. Partial Convolution

Partial convolution was adopted to reconstruct the low-reliability areas of the contour.
Partial convolution, proposed by Liu et al. in 2018 [9], is an image-inpainting method that
utilizes a CNN. In this approach, unlike other convolution-based methods, the convolution
filter slides across the image and performs convolution operations solely on the valid pixels
not covered by a mask. Consequently, the missing regions of the images are filled in as
a result of the operation. In addition, the masks are updated gradually after each partial
convolution operation. These differences enable partial convolution-based inpainting to
effectively handle irregularly sized masked regions. The update process for the images and
masks can be expressed as

x′ =

{
WT(X ⊚ M) sum(1)

sum(M)
+ b if sum(M) > 0

0 otherwise.
(1)

m′ =

{
1 if sum(M) > 0

0 otherwise.
(2)

where W is the convolutional filter, X is the image feature corresponding to the filter’s
location, and M is the corresponding feature of the binary mask. 1 has the same shape as
the filter, with all the elements being 1, and it is used for calculating the scaling factor. When
the filter slides, if there are nonzero pixels in the image, the corresponding regions of the
image and mask are updated. Nonzero pixels represent valid regions that were not erased
by the mask. As the image passes through the partial convolution layers, all the missing
regions in the image and mask are gradually filled progressively from the valid regions.

3.2.1. Network

The proposed model has a UNet-like architecture network [24] composed of par-
tial convolution layers. The encoding layers use convolution operations and activation
functions that reduce the dimensions of the image, and the decoding layers use nearest
neighbor upsampling to expand the image dimensions. The features extracted from the
image during the encoding stage were passed to the decoding layers through the skip links
of the UNet architecture. These features were concatenated with the results of the previous
decoding block and then forwarded to the next layer. Equations (1) and (2) were applied
to the convolution operations in the encoding stage to update the input for the next layer.
Consequently, the missing regions in the image are filled, and the mask is updated during
encoding. By using the features obtained through the skip links from the encoding stage,
the decoding layers can obtain information regarding the missing regions of the image.
The U-Net architecture’s ability to effectively extract gas diffusion patterns in the encoding
layers and fully utilize the input contour information in the final layer is advantageous for
gas contour reconstruction.

3.2.2. Loss Function

The loss function of partial convolution [9] was adjusted for the proposed model’s
performance. The coefficients of each loss term were modified, and a new term was added
to better fit the model to the task of contour reconstruction. The loss function includes
newly defined perceptual loss, two style losses [9], and the total variation loss proposed
by Johnson et al. [25]. Additionally, the loss function also includes two L1 loss terms that
compare the masked and unmasked regions with the ground truth. ImageNet-pretrained
VGG-16 [26] was used to calculate the perceptual loss and style losses. In order to improve
the model’s performance, an SSIM (structural similarity index) [27] loss term was added.
SSIM is frequently utilized in learning methods that aim to make images similar since
it represents structural similarity at the pixel level between two images. The total loss
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function consisting of seven terms can be represented as Equation (3), and the results were
compared according to various tuning conditions.

Loss = Lvaild + 21Lhole + 0.05Lperceptual + 30(Lstyleout + Lstylecomp) + 0.1Ltv + Lssim . (3)

3.3. Loss Tuning

The contour images reconstructed using this model are represented by discrete colors,
where each color represents the gas concentration. Since pixel smoothing is not crucial, the
coefficients of the two Lstyle were reduced to allow the loss to converge better. In addition,
due to the critical importance of accuracy in the filled regions for this task, the coefficient of
Lhole, which represents the loss of the filled areas, was increased. As the model is trained to
minimize the loss, modifying these coefficients and adding the SSIM loss term helps the
model focus more on accurately filling the interior regions to match the training data. We
performed a hyperparameter search to determine the coefficients of the loss function, and
the tuned model demonstrated a higher mIoU score of 3.24%. The score was calculated only
for the regions filled in by the model. The mIoU score can be calculated using Equation (4).
OverlapN indicates the number of pixels overlapping with the ground truth for each class,
where each class represents 13 different colors for contour representation. The increase in
mIoU score through loss tuning demonstrates that the model has become more suitable for
gas contour reconstruction.

mIoU =
Overlap1 + Overlap2 + · · ·+ Overlap13

number o f pixels × number o f classes
. (4)

4. Results
4.1. Training Process

In order to train the contour reconstruction model, we utilized 100,000 contour images
of different origins and wind directions. Each image in the dataset was a 256 × 256 pixels in
size, and we partitioned the entire dataset into 70,000 images for training, 15,000 images for
validation, and 15,000 images for testing. The mask images used for training were of the
same size as the contour images. Figure 5 shows the test results of the trained model.

4.2. Validation

The validation of the model was conducted using a diffusion simulation model and
NBC_RAMS. In each case, the ground truth was the concentration contour generated
using the two simulation tools. The concentration values of specific points were sampled
from the simulation results, and contours were generated using Kriging interpolation and
sampled concentrations. These contours tend to have lower accuracy in areas with sparse
data coverage. These areas were erased, and the trained model reconstructed the missing
regions. The reconstructed contours were then compared to the ground truth. Significant
improvement in the contour accuracy after reconstruction is represented in Figure 6.

4.2.1. Diffusion Simulation Model

The simulation results mimicked an actual environment in which a fatal chemical gas
is dispersed. It is assumed that 49 sensors are installed in areas with a sufficient number of
sensors and 43 sensors are installed in areas without a sufficient number of sensors. From
the simulation results, contour images were generated through spatial interpolation using
only the concentrations corresponding to the sensor locations. The accuracy in the areas
with relatively few sensors was low, and these areas were erased by the mask and filled
with the model. The mIoU score between the restored contours and the simulation results
was calculated and compared with the contours before restoration. In order to validate the
restoration ability of the model, 50 contours with mIoU scores below 65 were defined as
restoration targets. The restoration results showed an average score increase of 13.21%, as
listed in Table 1.
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Figure 5. Training results. The pictures in the blue box are part of the test dataset. The reconstructed
results of the model for randomly masked input images are presented in the green box.

Table 1. Validation results using the diffusion simulation model.

mIoU Score
∆ Score

Before Restoration After Restoration

60.61% 73.82% 13.21

4.2.2. NBC_RAMS

The validation was performed using a process similar to that of the diffusion simula-
tion model. The NBC_RAMS results were preprocessed to match the format of the training
data. Contours were generated using preprocessed data, and the contours of the environ-
ments with an insufficient number of sensors were restored using the model. Compared to
the results of the diffusion simulation model, NBC_RAMS demonstrated slightly higher
accuracy in environments with a shortage of sensors. In this validation, 50 contours with
mIoU scores below 70 were defined as the restoration targets. As presented in Table 2, after
the restoration of the model, the average score increased by 11.46%.

Table 2. Validation results using NBC_RAMS.

mIoU Score
∆ Score

Before Restoration After Restoration

68.61% 80.07% 11.46

4.2.3. Contour Reconstruction with Varied Mask Size

The required mask size for reconstruction varies depending on the extent of inaccurate
areas in the spatial interpolation results. In order to evaluate the model’s adaptability to
different mask sizes, we classified the masks into three categories: small, medium, and
large. Small masks cover 15% or less of the entire image, medium masks cover between
15% and 25%, and large masks cover more than 25%. For each category, the 20 contours
generated using the two different simulation tools were used as test data. The results, which
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are presented in Table 3, demonstrate that the mIoU score increases more significantly with
larger masks compared to the spatial interpolation results. However, the reconstruction
accuracy decreases as the area to be restored increases.

Figure 6. (a) The results of validation using the developed diffusion simulation model. From the
left, the simulation result; the spatial interpolation results using only the concentration of a sufficient
or insufficient number of black dots; contours with the low-reliability parts erased; and the result
filled by the model. (b) The results of validation using the NBC_RAMS. The image and contour
representing the results of NBC_RAMS were added on the left, and an image preprocessed to be
suitable for the model is shown in the third column from the left. The remaining images represent the
same as in (a). The red boxes indicate the regions that were erased and reconstructed.
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Table 3. Validation results of the model’s adaptability for various mask sizes.

Size of Mask
Small (∽15%) Medium (15∽25%) Large (25%∽)

Mean proportion of masked regions 13.88% 20.97% 28.06%
∆ mIoU Score 3.52 6.02 15.14
mIoU Score 79.58% 80.23% 75.57%

5. Discussion

In this study, we propose a novel method to improve the accuracy of spatial inter-
polation in gas concentration using image inpainting. By training an image inpainting
model with reliable gas diffusion simulation results, we enhanced the accuracy of gas
concentration contours by reconstructing the inaccurate regions. The validation using two
different simulation tools showed an improvement in accuracy of 13.21% and 11.46% com-
pared to the conventional method: Kriging. The partial convolution model was adopted
to reconstruct the erased areas using the valid surrounding values, and the model’s loss
function was adjusted to be suitable for gas concentration contour restoration.

Figure 5, which presents the training results, indicates that the model fills in the erased
regions of the contour by considering the gas diffusion patterns. The second case from the
left shows that the inner region, which was filled based on the surrounding valid areas,
closely resembles the ground truth. Additionally, the last case demonstrates that the central
regions of the contour are meaningfully filled using the surrounding values. These results
suggest that the image inpainting model reconstructs the contour based on gas diffusion
patterns rather than merely filling it in a plausible manner.

Figure 6 represents the results of the trained model reconstructing the inaccurate
regions within the contour under the assumption of sensor shortage. As the number of
sensors decreases, the performance of Kriging interpolation becomes worse. After erasing
the unreliable areas of those results, the model reconstructs them, demonstrating improved
accuracy. Despite using masks larger than those used for training, the model effectively
restores the impaired regions. This demonstrates that partial convolution performs robustly
using masks of various sizes, making it suitable for real-world applications.

The proposed model demonstrates notable accuracy improvements in both the valida-
tion using simulation tools and the validation using NBC_RAMS. These results indicate
that the dataset generated using the simulation tools effectively reflects the gas diffusion
patterns. The performance of the proposed model was verified using NBC_RAMS, a
verified gas dispersion modeling program. Table 3 represents the results of the model’s
adaptability validation for varied mask sizes. When small-sized masks are required, this
indicates that the accuracy of spatial interpolation is not significantly low. Therefore, the
improvement in accuracy compared to the spatial interpolation results is the lowest. As the
mask size increases, the region being reconstructed by the model becomes larger, leading
to a greater level of accuracy improvement. However, as the model reconstructs a larger
area, the restoration accuracy itself can decrease.

However, the experiments conducted in this study have limitations due to their
reliance on simulations. While the model showed good performance in the simulation
environment, real-world conditions involve many more variables. In order to minimize
the influence of these variables, it is necessary to conduct real gas diffusion experiments
and generate concentration contours to compare with the model’s reconstruction results.
Therefore, future work may focus on exploring methods to minimize the impact of various
variables in real environments. Additionally, the dataset used to train the proposed model
does not account for factors such as strong winds or temperature changes due to sunlight,
resulting in a lack of diffusion scenarios across various environments. This limitation may
introduce biases into the model’s predictions. These biases can be mitigated by developing
more accurate simulation tools that consider a wider range of environmental factors. We
plan to develop such simulation tools in further studies. Validating the model trained on
this enhanced dataset in outdoor environments is expected to significantly improve the
model’s reliability.
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6. Conclusions

A machine learning-based approach is proposed to improve the reliability of spatial
interpolation from an image-based perspective using image inpainting. Consecutive nu-
merical values distributed in a specific environment, such as concentration, temperature,
and precipitation, make it challenging to determine the overall pattern. The accuracy of
estimating the overall environment is greatly influenced by the amount of available data.
In real-world situations, if sensors could be installed infinitely, the proposed method would
not be necessary, and accurate situation assessment would be possible using only numerical
interpolation. However, resources are limited, and it is impossible to install numerous
sensors. The proposed method showed performance that exceeds the accuracy of the exist-
ing spatial interpolation methods in situations with a limited number of sensors, making
it more desirable in terms of resource requirements. Nevertheless, the proposed method
requires spatial interpolation as a prerequisite, thereby resulting in higher computational
costs and complexity compared to spatial interpolation alone. However, as it is a method
for handling 2D image data, the increment in complexity is not significant. In summary, the
proposed method is a valuable approach in situations with limited sensor coverage, offer-
ing enhanced accuracy over traditional interpolation techniques while managing resource
constraints effectively.

Our model focused on gas concentration and reported a meaningful improvement in
accuracy through validation using two simulation tools. Chemical gases are colorless and
odorless, making it difficult to understand gas diffusion precisely. In order to understand
the diffusion of a gas, we must rely on deployed sensors, and a quick response is impossible
with a limited number of sensors. In such scenarios, the proposed method can contribute
to a more accurate understanding of the extent of diffusion. This approach can be applied
not only to gas concentrations and other numerical values. It also provides economic
efficiency by enabling sufficiently accurate situation identification using a limited number
of sensors. However, for the precise restoration ability of the image inpainting model,
it is essential to first develop realistic and dependable simulation tools. The accuracy of
image-based interpolation in various fields can be enhanced by training the model using
reliable simulation results.
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16. Ružić, T.; Pižurica, A. Context-aware patch-based image inpainting using Markov random field modeling. IEEE Trans. Image
Process. 2014, 24, 444–456. [CrossRef] [PubMed]

17. Ding, D.; Ram, S.; Rodríguez, J.J. Image inpainting using nonlocal texture matching and nonlinear filtering. IEEE Trans. Image
Process. 2018, 28, 1705–1719. [CrossRef] [PubMed]

18. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.

19. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Free-form image inpainting with gated convolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4471–4480.

20. Yan, Z.; Li, X.; Li, M.; Zuo, W.; Shan, S. Shift-net: Image inpainting via deep feature rearrangement. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 1–17.

21. Nazeri, K.; Ng, E.; Joseph, T.; Qureshi, F.Z.; Ebrahimi, M. Edgeconnect: Generative image inpainting with adversarial edge
learning. arXiv 2019, arXiv:1901.00212.

22. Bekele, A.; Downer, R.; Wolcott, M.; Hudnall, W.; Moore, S. Comparative evaluation of spatial prediction methods in a field
experiment for mapping soil potassium. Soil Sci. 2003, 168, 15–28. [CrossRef]

23. Laslett, G.M. Kriging and splines: An empirical comparison of their predictive performance in some applications. J. Am. Stat.
Assoc. 1994, 89, 391–400. [CrossRef]

24. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

25. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part
II 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 694–711.

26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
27. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/83.935036
http://www.ncbi.nlm.nih.gov/pubmed/18255537
http://dx.doi.org/10.1006/jvci.2001.0487
http://dx.doi.org/10.1109/TIP.2004.833105
http://www.ncbi.nlm.nih.gov/pubmed/15449582
http://dx.doi.org/10.1109/TIP.2014.2372479
http://www.ncbi.nlm.nih.gov/pubmed/25420260
http://dx.doi.org/10.1109/TIP.2018.2880681
http://www.ncbi.nlm.nih.gov/pubmed/30418909
http://dx.doi.org/10.1097/00010694-200301000-00003
http://dx.doi.org/10.1080/01621459.1994.10476759
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction
	Related Works
	Image Inpainting
	Spatial Interpolation

	Materials and Methods
	Dataset
	Partial Convolution
	Network
	Loss Function

	Loss Tuning

	Results
	Training Process
	Validation
	Diffusion Simulation Model
	NBC_RAMS
	Contour Reconstruction with Varied Mask Size


	Discussion
	Conclusions
	References

