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Abstract: In air traffic control (ATC), speech communication with radio transmission is the primary
way to exchange information between the controller and the pilot. As a result, the integration
of automatic speech recognition (ASR) systems holds immense potential for reducing controllers’
workload and plays a crucial role in various ATC scenarios, which is particularly significant for ATC
research. This article provides a comprehensive review of ASR technology’s applications in the ATC
communication system. Firstly, it offers a comprehensive overview of current research, including
ATC corpora, ASR models, evaluation measures and application scenarios. A more comprehensive
and accurate evaluation methodology tailored for ATC is proposed, considering advancements in
communication sensing systems and deep learning techniques. This methodology helps researchers
in enhancing ASR systems and improving the overall performance of ATC systems. Finally, future
research recommendations are identified based on the primary challenges and issues. The authors
sincerely hope this work will serve as a clear technical roadmap for ASR endeavors within the ATC
domain and make a valuable contribution to the research community.

Keywords: air traffic control; speech communication; automatic speech recognition

1. Introduction

The development of civil aviation is essential for both national economic growth and
international expansion. One critical aspect of civil aviation is air traffic control (ATC), a
complex and dynamic system emphasizing flight safety and efficiency, which is always a hot
research topic. According to the Federal Aviation Administration (FAA) workload forecast,
operations at airports, approaches, and routes are expected to increase rapidly from 2020 to
2040 [1], reflecting the growth and dynamism of the aviation industry. Air traffic mainly
relies on the manual command provided by air traffic controllers (ATCos). However,
the high-density airspace environment places continuous and significant demands on
ATCos, often leading to long periods of saturated workloads. This unrelenting pressure
underscores the need for ongoing research and development to enhance ATC systems and
alleviate the challenges faced by ATCos.

During an ATC procedure, ATCos transmit ATC commands using very high frequency
(VHF) radiotelephony, and it is imperative for the receiving pilots to accurately replicate these
commands. Within a communication channel are one ATCo and multiple pilots conducting
frequent and rapid speech, which requires ATCos and pilots to understand each other’s inten-
tions accurately and efficiently. Communication between ATCos and pilots is characterized
by stringent standards, a fast-paced environment, and the potential for noise and interference
during conversations. Occasional aviation incidents still occur due to errors in radiotelephony
communication, like inaccurate repetition, misunderstandings, and incomplete content. Using
automatic speech recognition (ASR) can effectively address this issue.
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ASR, which emerged in the 1950s, is a transformative technology that transcribes spo-
ken language into text, enabling computers to comprehend and process human speech [2].
The development of artificial intelligence, specifically deep learning, has dramatically en-
hanced ASR by implementing deep neural networks DNNs [3]. A breakthrough has been
made using the end-to-end (E2E) model, a single network that directly converts the input
speech sequence into an output text sequence [4]. Modern ASR represents a dynamic and
interdisciplinary field at the intersection of computer science, linguistics, signal processing,
and artificial intelligence. It has not only experienced remarkable advancements but has
also found extensive applications across diverse domains [5].

ASR technology holds immense promise within the realm of ATC by offering the
potential to elevate communication precision, alleviate ATCo workloads, and enhance
overall situational awareness, thus bolstering the safety of air traffic. One of its critical
applications is to check the correctness of pilots’ repetitions. Additionally, a proficiently
trained ASR system can serve as multiple pseudo-pilots in ATCos training. Furthermore,
ASR integration with existing ATC automation systems can facilitate tasks such as callsign
detection, measurement and reduction of workload for ATCos, command consistency
checking and command prediction. These multifaceted capabilities underscore ASR’s
potential to revolutionize and optimize various facets of ATC. The applications of ASR in
the ATC domain are shown in Figure 1.

ATCos Aircraft & 
pilots

ATC system

Surveillance

ATCS

Simulator

Pseudo-pilots

ATCS

ATCos training

Read-back checking

Callsign detection

Measurement and reduction of workload for ATCos
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ATC automation system integration

Automatic speech recognition system

ATC procedure

Command consistency checking

Figure 1. Roles of ASR in the ATC procedure.

Although ASR has made significant advances across various domains, its exploratory
use in ATC has revealed that while using ASR to assist ATCos shows some effectiveness,
it does not overall reduce ATCos’ workload. Instead, it introduces additional burdens,
primarily due to several reasons:

• Specialized vocabulary: Numerous rules and measures to regulate the pronunciation
of homophone words have been issued by the International Civil Aviation Organi-
zation (ICAO) to eliminate the misunderstanding of ATC speech [6], which makes
ATC speech significantly different from daily speech. Developing ASR systems that
accurately transcribe these domain-specific terms is a substantial challenge.

• Domain specificity: ATC communication involves industry-specific terminology and
communication standards that may be absent or limited in ASR model training data.
ASR systems typically require domain-specific data and terminology to achieve a
high accuracy. The lack of these domain-specific elements can lead to decreased
model performance. ATC speech data cannot be added to the general corpus to avoid
interfering with training and affecting the use of the general corpus in other fields.

• Accents and variability: Pilots and ATCos come from diverse linguistic backgrounds
and may speak with different accents or dialects. ASR systems must account for
this variability to ensure accurate recognition, adding complexity to the training and
adaptation processes.

• Unstable speech rate: The pace of communication within the ATC environment is
characterized by its inherent variability and unpredictability. This variability arises



Sensors 2024, 24, 4715 3 of 35

due to the dynamic nature of aviation operations, where ATCos and pilots must adapt
their speaking rates to rapidly changing circumstances. It can fluctuate significantly
in response to various factors, such as emergencies, traffic density, radio congestion,
language and accent differences and experience.

• Noise and interference: ATC communication often occurs in high-noise environments,
including aircraft engine noise, radio communications and other sources of interfer-
ence. These noise and interference factors can adversely affect ASR performance,
necessitating specific handling and adaptation.

Several reviews have summarized the application of ASR technology in ATC. An early
review presented the challenges and potential applications of ASR in the ATC domain [7].
However, only traditional ASR methods have been analyzed, while modern approaches
such as DNN and E2E have yet to be involved. Subsequently, the other two reviews
summarized several European projects, which do not include a comprehensive statement
of the current status of ASR research [8,9]. In a review published in 2021, the authors
described the use of ASR in ATC from the perspective of challenges and solutions without
involving too many specific technologies [10]. With the development of deep learning
and E2E technologies, the performance of ASR has been dramatically improved, and ATC
research institutions have made more exploration and attempts in the ASR domain. A
comprehensive overview of the application of ASR in the ATC domain needs to be provided.

This review offers a comprehensive overview of ASR in the context of ATC, intended as
a supplementary resource to the existing reviews on the subject. The main contributions are
as follows:

• The fundamental models and techniques employed in ASR research within the ATC
domain are introduced, including traditional statistical models, DNN-based acoustic
and language models and the E2E model.

• A comprehensive analysis is offered from various perspectives, including ATC corpora,
models, evaluation measures and applications.

• Recognizing the significance of evaluation measures, we have established a compre-
hensive evaluation framework. This framework enables a thorough assessment of
the developed ASR system, facilitating the identification of shortcomings and the
implementation of practical improvements.

• A clear outline of the challenges is provided, along with strategies to enhance the
effectiveness of ASR in the ATC domain.

This review is organized as follows. Section 2 introduces the statistical model and E2E
model involved in the summarized approaches. Section 3 describes the critical contents of
each method, including corpora, models, evaluation measures, and applications. Section 4
presents the evaluation framework for ASR systems in the ATC domain. Section 5 explores
the challenges and obstacles in current methods and offers innovative solutions for the
future. Section 6 concludes this review.

2. Key Models and Technologies for Automatic Speech Recognition

Before 2009, the core component of ASR systems was the statistical models that
represented the various phonemes and phonetic features of the target language to be
recognized. The Gaussian mixture model (GMM) was employed in conjunction with
the hidden Markov model (HMM) to establish a suitable framework for building such
models [11]. Advancements in computer hardware and machine learning algorithms have
significantly improved the efficiency of training DNNs. With the adoption of novel training
methods, DNNs can outperform GMMs in acoustic modeling for ASR, particularly on
diverse datasets, including those with extensive vocabularies [3]. Since 2015, continuous
improvements in deep learning models, the emergence of E2E models, and the adoption of
self-attention mechanisms have led to significant advancements. As a result, ASR systems
have become more accurate and adaptable to diverse speech scenarios [4]. The general
ASR models and techniques involved in this review are described in this section.
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2.1. Statistical Model

A statistical model comprises an acoustic model (AM), a language model (LM), a
lexicon, and a decoder, all collaborating to execute ASR tasks. The AM is responsible for
transforming sound signals into acoustic feature sequences. Subsequently, the decoder
utilizes the output from AMs, along with information from LMs and lexicons, to embark on
a search for the most probable text output. Ultimately, the decoder generates the optimal
text sequence, constituting the recognized result of ASR. This process represents a dynamic
search challenge, wherein the decoder must navigate a vast search space to obtain the most
accurate speech recognition outcomes. Hence, ASR systems necessitate efficient algorithms
and a substantial amount of training data to attain a high performance. The structure of the
statistical model is shown in Figure 2.

Signal 
analysis

Acoustic model

P（X|W)

Recoded Speech X

Training 
data

Lexicon

Language model

P（W)

Decoded Text W*

Search space
W

Figure 2. Structure of the statistical model.

With the speech signal being X = [x1, x2, x3, . . . ] and a word sequence being W =
[w1, w2, w3, . . . ], the target of the ASR task can be described as follows:

W∗ = arg max
W

P(W|X)

= arg max
W

P(X|W)P(W)

P(X)

= arg max
W

P(X|W)P(W)

(1)

where P(X|W) is predicted by the AM, and P(W) is calculated by the LM.

2.1.1. Acoustic Model

The AM is the initial component of an ASR system, which is responsible for analyzing
sound signals into acoustic features or vectors. It utilizes pre-trained models to map acoustic
features to probability distributions at the level of phonemes, speech units, or subword
units. It determines the probability of each time step in the acoustic feature sequence
corresponding to a particular speech unit. As noted above, P(X|W) can be expressed in the
form of a hidden Markov chain:

P(X|W) =
L

∏
l=1

P(xwl |wl) (2)

where each xwl is a valid pronunciation for the word wl , each base phone x is represented by
a continuous density HMM with transition probability P(wj|wi) and emission probability
P(xj|wi). The transition probability can be calculated from samples using conventional
statistical methods, but the main difficulty is calculating HMM emission probability.

HMM establishes the framework for ASR, and the modeling of its emission probability
directly impacts the performance of AM. GMM, with a sufficient number of sub-Gaussian
components, can effectively approximate a wide range of probability distributions, making
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it a commonly used choice for the emission probability model. After training the GMM,
the emission probability can be computed by comparing each probability density function.
Subsequently, P(X|W) can be calculated by combining the initial and transition probability
of HMM. Given a trained GMM-HMM model and a speech sequence X, it becomes possible
to calculate P(X|W) for different alternatives of W.

A DNN replaces the GMM to model the emission probability of the input speech
signal in a DNN-HMM model. DNN is a deep learning model with multiple hidden layers,
allowing it to learn nonlinear feature representations, thereby capturing complex patterns
within speech signals more effectively. In the DNN-HMM model, a DNN takes several
frames of coefficients as input and generates posterior probabilities over HMM states as
output. It is data-driven, enabling it to automatically learn acoustic features and speech
patterns from large-scale speech data without manual feature engineering. This flexibility
allows DNN to better adapt to variations in speaker pronunciation, speech scenarios and
diverse speech backgrounds.

Both convolutional neural networks CNNs and long short-term memory (LSTM)
networks have demonstrated significant improvements over DNN in various ASR tasks [12].
CNNs can reduce frequency variations and capture speaker-related features while filtering
out input variations. LSTMs are proficient in temporal modeling, making them suitable
for modeling sequential information. Combining these networks in a unified framework
has the potential to enhance ASR performance by effectively addressing both spectral and
temporal aspects of speech recognition.

2.1.2. Language Model

An LM considers the language structure and context of text. The role of an LM is
to provide additional information to make text predictions more accurate. It models the
probability distribution of word sequences P(W) to determine the most likely combinations
of words within a given context. The probability of a word sequence W = (w1, w2, . . . , wn)
is expressed as follows:

P(W) = P(x1 = w1, . . . , xn = wn) = P(wn
1 )

= P(w1)P(w2|w1)P(w3|w2
1) . . . P(wn|wn−1

1 )

=
n

∏
k=1

P(wk|wk−1
1 )

(3)

where:

P(wk|wk−1
1 ) =

count(w1, w2, . . . , wk)

count(w1, w2, . . . , wk−1)
(4)

The count() function represents the number of times a word string appears in the corpus.
Smoothing algorithms can be used to solve the problem of some word strings not appearing
in the training data due to factors such as insufficient training corpus or uncommon word
strings. The commonly used LMs are based on N-gram LMs, neural network-based LMs,
or pre-trained LMs.

The parameters of the model increase exponentially with the length of the string,
making accurate estimation nearly impossible. The Markov assumption was introduced
to address this challenge: the probability of a random word appearing is only related to
the finite number of N − 1 words that appear that precede it. This statistical LM based on
the above assumption is called the N-gram LM. Using N-gram, the probability of a word
sequence W = (w1, w2, . . . , wn) is expressed as follows:

P(W) = P(x1 = w1, . . . , xn = wn)

= P(w1)P(w2|w1)P(w3|w2
1) . . . P(wn|wn−1

n−N+1)

=
n

∏
k=1

P(wk|wk−1
k−N+1)

(5)
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where:

P(wk|wk−1
k−N+1) =

count(wk−1
k−N+1wk)

count((wk−1
k−N+1)

(6)

From the perspective of model performance, the larger the value of N, the better its perfor-
mance. However, as N is increased, the extent of performance improvement decreases.

Neural network-based LMs represent a significant leap forward. Unlike traditional
N-gram LMs, these models leverage deep learning techniques such as recurrent neural
networks (RNNs) or transformers to comprehensively and intelligently understand and
predict text. One key advantage of these neural network-based LMs is their ability to
capture context within text sequences beyond considering the current vocabulary item.
They excel at predicting the next vocabulary item through effective context modeling,
enhancing ASR accuracy.

The task of the LM involves predicting a sequence where each result relies on preceding
data. RNN is a model that is used to solve sequence problems, where all previous words
will affect the prediction of the present word. Therefore, using RNN to predict the current
word using historical vocabulary in sentences, LM can be constructed. RNN has a broad
output layer, which covers the vocabulary LM uses. The output of each node represents
the probability of the generated word P(wk|w1, w2, . . . , wk−1), and P(W) can be calculated
as follows:

P(W) =
n

∏
k=1

P(wk|w1, w2, . . . , wk−1) (7)

The RNN LM can use the same neural network to process any length of historical
information, while the size of the N-gram LM exponentially increases as N increases. The
N-gram LM stores the possibilities of various vocabulary combinations, which can be
directly edited, such as N-gram LM fusion of different domains, new word addition, etc.
However, parameters in the RNN LM cannot be modified, making it challenging to expand
new words. When using RNN LM, P(wk|w1, w2, . . . , wk−1) is temporarily calculated, which
leads to low real-time performance. On the contrary, P(wk|wk−1

k−N+1) is directly stored in
the N-gram LM, which saves decoding time.

Pre-trained LMs are a type of LM that has recently emerged, with bidirectional encoder
representations from transformers (BERT) [13] being a prominent example. These models
are trained on extensive text data to learn contextual information from the text. They can
be fine-tuned for specific tasks like ASR. They often perform exceptionally well because
they can grasp the deep semantic structures of the text.

2.1.3. Lexicon

In ASR, a lexicon is a table that maps words to pronunciations. It contains a vocabulary
list encompassing all possible words that the ASR system needs to recognize, along with
their pronunciation information. Additionally, the lexicon may include other linguistic
features of words, such as stress patterns, parts of speech, variants, etc., to aid the system
in better understanding and transcribing the speech signals accurately.

Using a lexicon, the mapping relationship between AM modeling units and LM
modeling units is obtained, which connects AM and LM to form a search space for decoding
by the decoder. A precise and comprehensive lexicon can significantly enhance the system’s
recognition rate and adaptability, especially when dealing with various speech signals,
accents, language variations, and application scenarios.

2.1.4. Decoder

The ASR decoder is a critical component that is responsible for transforming acoustic
feature sequences into textual output. Its primary function is to find the optimal transcrip-
tion result using a search algorithm, given the acoustic input. The objective of the search
algorithm is to identify the word sequence with the highest probability, considering the
combined influence of the AM (typically representing phoneme probability distributions),
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the LM (which models language structure and context in the text), and the lexicon. This
search for the highest-probability word sequence is often accomplished using algorithms
such as the Viterbi algorithm. These algorithms leverage the collaborative interaction of
the AM, LM and lexicon to determine the most likely transcription of the acoustic input.

The function of the decoder is to select a W that maximizes P(W|X); that is, to
search for the optimal path in the search space. The Viterbi algorithm is widely employed
for HMM-based ASR systems. It efficiently finds the most likely sequence of hidden
states given the observed acoustic features [14]. Beam search is an optimization of the
Viterbi algorithm, where a beam width parameter limits the number of candidate paths
considered during decoding. This reduces the computational complexity while maintaining
a good performance. The breadth-first search is used in the dynamic decoder to generate
multiple hypotheses simultaneously in the original search network, and it relies on pruning
algorithms to prevent the network from becoming too large. A static network is constructed
and called directly by extracting and compiling dynamic knowledge sources, which can
accelerate decoding speed.

2.2. End-to-End Model

Traditional statistical ASR models have made significant advances in various fields but
still exhibit several critical limitations. Firstly, the statistical ASR systems involve multiple
components, including AMs, LMs, lexicons, and decoders, making system development and
maintenance cumbersome. Additionally, building these models requires the involvement of
domain experts who manually design acoustic and language models, limiting the system’s
applicability and flexibility. Furthermore, traditional ASR methods are highly demanded
for large-scale annotated speech data, which are costly and time-consuming to acquire and
label. Moreover, acoustic feature engineering is a necessary step in traditional ASR methods,
which entails converting audio signals into feature representations that are suitable for model
processing, potentially leading to information loss. Additionally, traditional ASR methods
typically rely on external language models and phonetic dictionaries, which may not be
suitable for specific application scenarios. Finally, these methods are sensitive to noise and
speaker variations, which can result in decreased performance in real-world applications.

Modern ASR research has adopted E2E approaches to overcome these limitations,
which directly map audio signals to text, bypassing multiple intermediate steps. The E2E
models simplify the ASR pipeline by optimizing the entire network with a single objective
function aligned with the ASR objective [4]. Some of the most commonly used E2E tech-
niques for ASR include: (1) connectionist temporal classification (CTC) [15], (2) attention-
based encoder–decoders (AEDs) [16] and (3) recurrent neural network transducers (RNN-
T) [17]. This section briefly describes CTC, which is used for ASR in the ATC domain.
Figure 3 shows the architecture of CTC.

The CTC technique for ASR was designed to create CTC paths that map the input
speech sequences into output label sequences. The input speech sequence is denoted as
X, while the original output label sequence is represented by W, and all CTC paths that
are mapped from W are denoted as B−1(W). The encoder network transforms the acoustic
feature Xt into a sophisticated representation Ht. The CTC loss function is utilized to
determine the negative logarithmic probability of the correct labeling of speech sequences
based on the input data:

LCTC = −lnP(W|X) (8)

with:
P(W|X) = ∑

Q∈B−1(W)

P(Q|X) (9)

where Q is a CTC path. With the conditional independence assumption, the expression
P(Q|X) can be broken down into a series of frame posteriors as follows:
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P(Q|X) =
N

∏
n=1

P(qn|X) (10)

where N is the length of the speech sequence. The encoder in an E2E model is a critical
component that transforms input speech sequences into feature representations at a high
level. The typically used encoder is a multi-layer bidirectional LSTM (BiLSTM).

Encoder

Xt

Softmax

Ht

P(Wt|Xt)

Figure 3. The architecture of connectionist temporal classification.

3. Application
3.1. Overview

The utilization of ASR in the ATC domain aims to enhance flight safety, increase ATC
efficiency, and reduce the workload of ATCos. This section summarizes the findings of
nearly all published papers in recent years, as presented in Table 1.

Table 1. Automatic speech recognition in air traffic control.

Papers Technique Details Research Groups or Projects

[18] Construction of the ATCOSIM corpus Eurocontrol
[19] HMM and cross-task adaptation Polytechnic University of Madrid
[20] Construction of a Spanish and an English corpora separately Polytechnic University of Madrid
[21] HMM and PPRLM, construction of corpora for tower control Polytechnic University of Madrid
[22,23] Human interface, callsign recognition, reduction of ATCos’s workload CRIDA
[24] Combination of AMAN and ASR AcListant
[25] Construction and annotation of corpora AcListant
[26] Construction of a simulated corpus with German and Czech accents AcListant
[27] ABSR, improvement of the corpus to distinguish between male and female AcListant
[28–30] Demonstration of reducing the workload of ATCos AcListant
[31] Instruction error correction for ATCos FAA
[32] Semantic understanding to reduce WER Østfold University College
[33] Proposal of the pseudo-pilot concept Optimal Synthesis
[34] Publication of the AIRBUS-ATC corpus AirBus
[35] A challenge competition AirBus
[36] Proposal of an advanced ASR architecture for ATC AirBus
[37] Repetition detection matching Civil Aviation University of China
[38] DNN-HMM Civil Aviation University of China
[39] Construction of the MALORCA corpus MALORCA
[40] Proposal of the command prediction model MALORCA
[41] Semi-supervised training to expand unlabeled data MALORCA
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Table 1. Cont.

Papers Technique Details Research Groups or Projects

[42] The generalization of ASR MALORCA
[43] Use of domain knowledge MALORCA
[44] Use of iterative methods to utilize unannotated data MALORCA
[45] Proposal of an ontology for data transcription CWP HMI
[46] Use of a commercial framework for easy implementation CWP HMI
[47] Proposal of the command extraction model CWP HMI
[48] Proposal of a method to reduce speech rate Nanyang Technological University
[49] Combination with commercial software Robust Analytics
[50,51] Proposal of a comprehensive method for constructing a corpus University of West Bohemia
[52] Use of an end-to-end ASR model NUAA
[53] Use of a cascading model to solve the multilingual problem Sichuan University
[54] Proposal of a method for feature extraction Sichuan University
[55] Use of one model to recognize both Chinese and English languages Sichuan University
[56] Construction of the ATCSpeech corpus Sichuan University
[57] Optimization of the language model Sichuan University
[58] Use of unsupervised pretraining and transfer learning Sichuan University
[59] Combination of self supervision, unsupervised learning and supervised learning Sichuan University
[60] Proposal of a comprehensive system Sichuan University
[61] Proposal of a language model containing callsigns Sichuan University
[62] Use of a residual network Sichuan University
[63] Proposal of a method for multitasking learning Sichuan University
[64] Use of multiple corpora MIT
[65] Use of a hybrid model and LF-MMI ATCO2, HAAWAII
[66] Callsign recognition ATCO2
[67] Tower command recognition HAAWAII
[68] Remote tower HAAWAII
[69] Added a pilot role in the speech HAAWAII
[70] Evaluation indicators with repetition recognition HAAWAII
[71] Multi-task AM HAAWAII
[72] Decoder ATCO2, HAAWAII
[73] Use of semi-supervised learning ATCO2, HAAWAII
[74] Data annotation ATCO2
[75] Proposal of a comprehensive model with contextual information ATCO2
[76] Data augmentation and BERT ATCO2
[77] Callsign recognition with contextual information ATCO2
[78] Discussion of the amount of data required for ASR in ATC ATCO2, HAAWAII
[79] Proposal of a hybrid model combining CNN, TDNN and LM ATCO2, HAAWAII
[80] Data augmentation and BERT ATCO2, HAAWAII
[81] Construction of the ATCO2 corpus ATCO2, HAAWAII

Researchers have long recognized the benefits of using ASR in the ATC domain and
have conducted exploratory research. The ATCOSIM project, funded by Eurocontrol,
assessed the need for ASR corpora and constructed a professional ATC corpus [18]. A
corpus comprising both the English and Spanish languages has been developed to cover
all stages of tower control, and the ASR was performed using a combination of HMM-
based AM and parallel phone recognition (PPR)-based LM [19–21]. CRIDA implemented
ASR for callsign recognition, aiming to reduce the workload of ATCos [22,23]. In the
AcListant project, the ASR technology was utilized to aid the arrival manager (AMAN)
and ATCos by reducing manual data input requirements [24–30]. As part of this project,
an ATC corpus was created, incorporating accents from German and Czech speakers.
Furthermore, the project has succeeded in reducing ATCos’ workloads. The FAA in the
United States also conducted ASR research to check for incorrect instructions issued by
ATCOs [31]. Nguyen et al. proposed a method to reduce word error rates (WER) using
semantic understanding [32]. Optimal Synthesis presented the concept of the pseudo-pilot,
used a comprehensive ASR model and evaluated the workload of ATCos [33].
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With advanced deep learning technology, DNNs have also been widely used in
ASR research in the ATC domain. The ATCAIR-BUS corpus was built by Airbus, and
the ASR Challenge was organized based on this corpus, resulting in various advanced
models in 2018 [34–36]. Additionally, the Civil Aviation University of China conducted
a study on repetition checking, but only matched through templates without utilizing
ASR technology [37]. They also leveraged DNN-HMM to enhance ASR performance in
the ATC domain [38]. The MALORCA project was oriented towards leveraging machine
learning algorithms to create a cost-effective and adaptable approach for assistant-based
speech recognition (ABSR) in specific environments [39–44]. The ATC corpus of the Prague
and Vienna airports has been constructed based on this project. Additionally, various
training methods based on deep learning have been proposed. The CWI HMI project
aims to increase the productivity of ATCos and support ASR industrialization in the ATC
domain [45–47]. Research in this stage encompasses a range of innovative ideas, including
reducing the speed of speech to improve the recognition accuracy [48], combining with
commercial software [49] and constructing a comprehensive corpus [50,51], among others.

With the development of E2E models and the growing maturity of DNNs, many
advanced ASR studies have emerged in the ATC domain since 2019. These studies focused
on constructing a comprehensive corpus, improving recognition performance, and prac-
tical applications. The Nanjing University of Aeronautics and Astronautics used an E2E
model that combines CNN, BiLSTM and CTC [52]. Sichuan University made outstanding
contributions in corpora, models, algorithms and applications [53–63]. They built an ATC
corpus called ATCSpeech that includes Chinese utterances and English utterances with
Chinese accents, and it is a multilingual corpus [56]. A hybrid E2E model [54,55,59–62]
and a cascaded [53,57,58] model were proposed, significantly improving ASR performance.
In addition, the ASR system was applied and continuously improved in the operation
department of ATC [10]. MIT also designed an advanced model and validated it using
different corpora [64]. The ATCO2 project mainly focused on constructing a corpus, pro-
viding a detailed description of the construction methods and data requirements for the
corpus [65,66,72–81]. The HAAWAII project, on the other hand, leaned towards application,
focusing on improving safety and reducing the workload of ATCos [65,67–73,78–81].

This section delves into the essential components of ASR in the ATC domain. The
analysis is based on paper research and highlights the importance of corpus construction,
models and their extensions, evaluation measures and application scenarios.

3.2. ATC Corpora

The corpus serves as the cornerstone for implementing ASR and sets the ATC corpus
apart significantly from general corpora. Collecting and annotating data in ATC commu-
nication voices poses formidable challenges due to the inherent characteristics of noise,
unstable speech rates, and code-switching. Early ATC corpora varied widely in scope,
technical conditions and accessibility to the public. The ATCOSIM corpus aims to bridge
the gaps left by these earlier corpora. In the realm of ASR research within the ATC do-
main, a range of outstanding ATC corpora, such as AcListant, AIRBUS-ATC, MALORCA,
HAAWAII, ATCO2, ATCSpeech and others, were meticulously constructed. Table 2 in this
article provides a summary of the ATC corpora discussed.

Early ASR research in the ATC domain predominantly depended on general corpora,
with minimal emphasis on ATC-specific corpora. Consequently, ASR performance in the
ATC domain has consistently fallen short of expectations. The Air Traffic Control Com-
plete Corpus (LDC94S14A) [82] was produced in 1994, composed of recordings of 70 h of
utterances at three airports in the US. The database is formatted according to NIST Sphere
standards and contains complete transcripts as well as precise start and end times for each
transmission. It is a valuable resource for speech recognition research, but it has limitations
such as limited diversity and a relatively small dataset size. The NATO research group has
created the NATO Native and Non-Native (N4) Corpus [83], which encompasses multiple
languages and accents from NATO member countries to represent the diversity of interna-
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tional military communications. Its advantages include extensive coverage across various
languages, offering a rich resource for multilingual ASR research. However, its drawbacks
may include high costs associated with data collection and maintenance, as well as potential
security and access restrictions due to its involvement in military communications. The
HIWIRE corpus [84] comprises 8,099 studio-recorded utterances spoken by non-native
speakers, with artificially added cockpit noise. Another corpus includes 7.1 h of Spanish
and 4.7 h of English utterances, encompassing various aviation scenarios at the Madrid
airport, such as clearances, takeoffs, arrivals and taxiing [21]. Additionally, the Madrid
ACC corpus, totalling 100 h of utterances, covers en-route and approach communications
during regular operations at the Madrid Area Control Center [22,23].

Table 2. Corpora of ASR in the air traffic control domain.

Corpora Language and Accent Real/Simulated ATC Phase Data Size Used in Papers

LDC94S14A US, English Real Tower, approach 72.5 h [64–66,78,80]

N4 NATO
Canadian, German, Dutch
and British-accented
English

Simulated Military 9.5 h [66,73]

HIWIRE French, Greek, Italian and
Spanish-accented English Simulated Military 28.3 h [65,66,73]

Madrid airport Spanish, English Real Ground, tower 11.8 h [19–21]
Madrid ACC Spanish, English Real Approach, en-route 100 h [22,23]

ATCOSIM German, Swiss, and
French accented English Simulated En-route 10.7 h [18,33,50,64–

66,73,78]

AcListant German and
Czech-accented English Simulated Approach 8 h [24–30]

DataComm US, English Simulated Tower, approach,
en-route 144 × 50 min [31]

ATCSC English Simulated Clearance 4800 utterances [32]

AIRBUS-ATC French-accented English Real Tower, Approach,
ATIS 59 h [34–36,64–

66,74,77]

MALORCA German and
Czech-accented English Simulated Approach 10.9 h [39–44,46,47,65,66,

72,74,76,77,79]

UWB-ATCC Czech-accented English Real Tower, approach,
en-route 179 h [50,51,64–66,78]

SOL-Twr Lithuanian-accented
English Real Tower 1993 utterances [67]

SOL-Cnt German-accented English Real Approach 800 utterances [76,80]

HAAWAII Icelandic and
British-accented English Real Tower, approach,

en-route 34 h [69,70,76,78–80]

ATCO2 English Real Ground, tower,
approach, en-route 4+5281 h [71,75,76,78,80,81]

ATCSpeech Mandarin Chinese,
English Real Ground, tower,

approach, en-route 58 h [53–63]

LiveATC Real Ground, tower,
approach, en-route

[50,71,72,74,75,77–
80]

The ATCOSIM corpus [18] aims to provide authentic ATC speech, accurately repre-
senting speaking style, languages, noise and stress levels across various situations. This
extensive data repository comprises 10 h of utterances information recorded during au-
thentic ATC simulations utilizing a close-talk headset microphone. The utterances are
pronounced by ten non-native speakers in English. Remarkably, it stands as the inaugural
civil aviation ATC corpus that is freely available for download, serving as a foundational
resource for training and testing purposes in numerous subsequent studies.

In the AcListant project, a corpus was created through a standard process that involves
simulation, transcription and annotation [25]. The corpus consists of recordings of three
ATCos—a male German, a female German and a male Czech native speaker—issued in
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English. The ATCSC corpus includes 4800 clearances generated using ICAO standardized
phraseologies [32].

The AIRBUS-ATC corpus [34] considers the specific features of ATC, including non-
native speech, poor audio quality, code-switching and rapid speech rates, which is designed
to develop an ASR system that is capable of processing ATC communications. In the Airbus
Air Traffic Control Speech Recognition 2018 Challenge, the corpus was partitioned into
three datasets for training, testing and validation [35]. In recent years, this corpus has also
become a commonly used benchmark dataset in various research studies.

The Prague and Vienna approach datasets were collected as part of the MALORCA
project [39]. Both datasets contain ATCos speech only and have a high signal-to-noise
ratio (SNR), making them high-quality corpora. Transcribing and annotating ATC com-
munication voices demand substantial personnel involvement and time resources. A
noteworthy contribution of this project lies in the utilization of a semi-supervised learning
algorithm that effectively incorporates numerous unlabeled data to complement the limited
labeled data.

UWB-ATCC [50,51] is a publicly available corpus of ATC communication recordings
between ATCos and pilots, which was recorded at the Air Navigation Services of the Czech
Republic and manually annotated. It is designed to assist researchers in developing and
evaluating UWB-ATCC system components, including speech recognition, communication
quality and overall performance, to meet the high demands of flight safety and control
efficiency. It includes separate sets for training, development and testing.

SOL-Twr [67] and SOL-Cnt [76,80] were recorded and collected during SESAR-2020-
funded industrial research projects. The ATC communication voice in SOL-Twr originated
from the Lithuanian Air Navigation Service Provider (ANSP), whereas the ATC commu-
nication voice in SOL-Cnt was sourced from the Vienna approach. The SOL-Twr voice
recordings exhibit lower noise levels than SOL-Cnt due to the controlled laboratory record-
ing environment.

The corpus used in the HAAWAII project was collected and annotated by the London
approach (NATS) and Icelandic en-route (ISAVIA) [76]. Approximately 19 h of voice
recordings were manually transcribed and annotated for the NATS portion, while the
ISAVIA segment offers 15 h of similarly transcribed and annotated voice data [78].

Two corpora were constructed in the ATCO2 project. The ATCO2 test set corpus
was built to develop and evaluate ASR technology for English ATC communications.
The data in this corpus was transcribed and annotated, with 1.1 h being free and the
other 3 h requiring purchase. The ATCO2-PL-set corpus represents a substantial and
notable collection, comprising an extensive repository of over 5281 h of ATC utterances
originating from 10 different international airports. This corpus stands as a significant
achievement, representing the largest and most comprehensive ATC dataset currently
available. Notably, the data within this corpus were automatically transcribed without the
inclusion of manual annotations.

ATCSpeech is a specialized data collection that trains accurate ASR systems specifically
for ATC purposes [56]. It is the only publicly available corpus for the ATC application with
accented Mandarin Chinese and English utterances. It includes 39 h of Chinese and 19 h of
English utterances, covering the ground, tower, approach and en-route phases.

LiveATC [85] is an online platform dedicated to providing real-time recordings of ATC
communications. It depends on the generous contributions of community members resid-
ing in close proximity to airports, who graciously lend their VHF receivers to capture and
archive stream recordings. This coverage spans various types of control, including tower
control, ground control, approach control and more. Although this dataset contains raw
speech data that have not been transcribed or annotated, available data can be selected to
supplement the corpus due to its comprehensiveness and richness. On the one hand, it can
be manually transcribed and labeled. On the other hand, semi-supervised or unsupervised
learning algorithms can be used to utilize unlabeled data.
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There have been many achievements in corpus construction. In accordance with ICAO
regulations, English serves as the prescribed language for ground–air communication in
international flights, while native languages are permissible for domestic flights. These
constructed corpora typically encompass both standard English and English with various
accents. A select few also incorporate native languages such as Chinese and Spanish,
ensuring diversity. These corpora cover all four phases of ATC, including ground, tower,
approach and en-route. Speech data can be obtained through actual operation or simulation.
A corpus constructed using actual data meets the speech rate, noise and code-switching
demands, but its acquisition is difficult. Simulation data are generally obtained in a
laboratory environment, with good speech quality, but they do not conform to the actual
operation of ATC. The availability of these corpora varies, with some being freely accessible
and others requiring payment. Researchers can select specific corpora based on their
study objectives or employ multiple datasets for comprehensive training, testing and
validation. Additionally, LiveATC offers a unique opportunity where speech recordings
can be downloaded, transcribed and annotated, serving as a supplementary resource to
enrich existing corpora.

The researcher can construct the ATC corpus themselves [33,37,38,52]. To ensure the
quality and relevance of the corpus, data collection should align closely with the study’s
specific scope, avoiding the inclusion of excessive data with limited value. Subsequently,
the collected data must undergo transcription and annotation processes. Transcription
involves the systematic conversion of spoken words into written form, serving as a fun-
damental step in corpus creation. Annotation, following transcription, takes this a step
further by associating spoken words with pertinent ATC concepts, enhancing clarity and
comprehensibility. It goes beyond mere textual representation of utterances and includes
additional context, such as identifying segments corresponding to callsigns, command
types, command values and more. A data augmentation technique can be implemented
to counteract issues within the training sets [76]. In the case of insufficient labeled data, a
semi-supervised learning method can use unlabeled data effectively.

3.3. Models and Their Extensions

A model tailored to the specific problem is necessary to utilize an ASR system effec-
tively. It can be achieved through various options, including traditional HMM models,
E2E models and cascaded/hybrid models. The appropriate model selection will depend
on the nature of the problem being addressed and the application’s specific requirements.
The ASR models used in the ATC domain consist of feature extraction, acoustic models,
language models and decoders. The models utilized in the research articles featured in this
review are summarized in Table 3.

Table 3. ASR model in the ATC domain.

Papers Feature
Extraction Acoustic Model Language Model Decoder

[19] CMVN HMM \ \
[20,21] CMVN HMM Stochastic bigram LM \
[22,23] \ HMM Grammar LM \
[24] \ GMM-HMM \ WFST
[25] \ GMM-HMM Grammar LM WFST
[26] \ GMM-HMM Grammar LM Context-dependent WFST
[27] \ GMM-HMM N-gram LM WLD
[32] \ Generic AM N-gram LM N-best
[33] Non-specific Generic AM Not given Non-specific
[34] Non-specific TDNN 4-gram LM \
[35] Multiple Multiple Multiple Multiple
[36] MFCC BiLSTM RNN LM N-best
[38] MFCC+CMVN CDNN-HMM Non-specific \
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Table 3. Cont.

Papers Feature
Extraction Acoustic Model Language Model Decoder

[39] \ DNN-HMM 3-gram LM, Context-aware rescoring N-best
[40,42,44] \ DNN-HMM N-gram LM \
[41] \ DNN-HMM 3-gram LM \
[43] \ DNN-HMM 3-gram LM Domain knowledge-based N-best
[47] \ DNN-HMM N-gram LM Command extractor
[48] STRAIGHT \ \ \
[50] \ DNN-HMM 3-gram LM, oracle \
[51] \ DNN-HMM N-gram LM \
[52] \ E2E model (CNN+BiLSTM+CTC) LSTM LM CTC-decoder

[53] MFCC
Cascade model
(CNN+BiLSTM+CTC) PLM+WLM, PM CTC-decoder

[54] CNN E2E model (CNN+BiLSTM) \ CTC-decoder
[55] \ Hybrid model (CNN+BiLSTM) RNN LM CTC-decoder
[56] \ DNN+CTC N-gram LM CTC-decoder

[57] MFCC
Cascade model
(MCNN/AP+BLSTM+CTC)

RNN LM(PLM+WLM),
MTPM Generic decoder

[58–60] MFCC
E2E model
(MCNN/AP+BLSTM+CTC) \ CTC-decoder

[61] \ E2E model (CNN+RNN) Context-aware LM Context-aware decoder
[62] HFE E2E model (CNN+RNN) \ CTC-decoder
[64] MFCC RNN+CTC N-gram Generic decoder
[65] \ TDNNF SRI trained N-gram \
[66] \ TDNN N-gram WFST
[67] \ CNN+TDNNF and DNN-HMM N-gram \
[70,71] \ CNN+TDNNF 3-gram \
[72] MFCC CNN+TDNNF 3-gram \
[73] MFCC CNN+TDNNF 3-gram WFST
[74] MFCC CNN+TDNNF Context-aware 3-gram WFST
[75] MFCC+CMN CNN+TDNNF 3-gram WFST
[78] \ E2E model \ \
[79] MFCC CNN+TDNNF 4-gram Context-aware WFST
[80,81] MFCC CNN+TDNNF 3-gram WFST

3.3.1. Feature Extraction

Feature extraction plays a crucial role in ASR within the context of ATC. The feature
extractor converts analogue speech signals into acoustic feature vectors, commonly using
filter banks (FBanks) or Mel frequency cepstrum coefficients (MFCCs) to reduce training
and decoding time [86].

The MFCC feature extraction method transforms the raw audio waveform into a
series of feature vectors that contain spectral information. This is achieved through several
steps, including segmenting the audio signal into frames and applying a short-time Fourier
transform (STFT). MFCC features are then computed from these frames and used as inputs
to train ASR models. However, this approach may result in the loss of some fundamental
speech information, as it is based on the human ear’s response to audio [36].

Cepstral mean and variance normalization (CMVN) is a common technique used to
normalize the MFCC features to make them consistent for ASR tasks [19–21]. Cepstral mean
normalization involves calculating the mean of the MFCC coefficients over a specified con-
text window. This mean is then subtracted from each frame’s MFCC coefficients. Cepstral
variance normalization, on the other hand, calculates the variance in the MFCC coefficients
over a context window. This variance is then used to scale the MFCC coefficients for each
frame. The MFCC processed using the CMVN technique can be utilized to normalize
the features at the utterance level’s mean and variance statistics while training the mono-
phoneme model [38]. Applying CMVN to MFCC features enhances their robustness against
variations in speech recordings, environmental conditions and speaker characteristics.
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CNNs can be used to extract learnable features from raw waveforms, supporting
acoustic modeling in ASR. A novel feature learning block was proposed to extract infor-
mative features from raw waveforms. It involved concatenating feature maps derived
from multiple learning paths, including SincNet and conventional convolutional paths [54].
A hybrid speech feature was innovatively developed for utilization as input in E2E ASR
models to tackle challenges related to suboptimal speech quality and limited feature dis-
tribution. This approach effectively enables the model to learn underlying patterns from
diverse feature engineering types. The hybrid feature-embedding block utilized CNN
layers to establish spatial correlations and reduce data size [62]. These advancements in
feature extraction through CNNs and hybrid feature embeddings contribute significantly
to the evolution of ASR systems in the ATC domain, enabling them to adapt to diverse
speech conditions and yield improved performance.

3.3.2. Acoustic Model

The utilization of AMs in ASR research within the ATC domain aligns with the broader
developmental trajectory of ASR technology. In the nascent phases of ASR research, the
conventional GMM-HMM model was predominantly employed. However, during this
period, there was a notable absence of significant innovations or enhancements to the
model. As deep learning gained prominence and reshaped the landscape of ASR, the
DNN-HMM model also found its application in the ATC domain. Nonetheless, the DNN
model primarily adopted a fully connected (FC) structure without incorporating novel
architectural designs or structures.

CNN and LSTM are two significant categories of DNNs and have been widely used
in ASR research in recent years. These two types of neural networks can be employed
independently, such as using LSTM [36,64] alone or using CNN alone [38]. However, the
most advanced research projects, including those conducted by Sichuan University, the
HAAWAII project and the ATCO2 project, utilize a combination of models. Due to the
development of CTC attention, in recent hot research on E2E models, an FC is also used to
connect CTC after the CNN and LSTM layers. CTC serves not only as part of the AM but
also operates as a decoder.

Sichuan University developed two distinct ASR architectures: the cascade model [53,57]
and the E2E model [54–56,58–62]. Both the cascade model and the E2E model employed an
identical AM, comprising a CNN, BiLSTM layers and CTC, as illustrated in Figure 4. An
architecture utilizing a multiscale CNN (MCNN) and average pooling (AP) was designed
to address specific challenges encountered in ASR in the ATC domain. This architecture
effectively leverages spatial correlations within spectrograms and adeptly handles complex
background noise and high speech rates. The MCNN emphasizes the construction of vari-
ous resolutions along the frequency dimension while simultaneously modeling correlations
along the temporal dimension. The AP operation selectively filters out high-intensity noise,
enhancing the clarity of human speech and facilitating the extraction of discriminative
features that are crucial for subsequent sequential modeling. Temporal dependencies
among speech frames were analyzed through the incorporation of BiLSTM layers within
the MCNN/AP architecture, accounting for their temporal characteristics. The CTC loss
function was then employed to quantify the disparity between predicted outputs and actual
labels, facilitating the training of the neural network.

A novel approach to address multilingual ASR challenges was introduced by the
cascade model, which consolidated multiple components into a single unified model. It
included an AM, a pronunciation model (PM) and phoneme- and word-based LMs. Given
the linguistic diversity encountered at international airports and routes, where ATCos
communicate in Chinese for domestic flights and English for international flights, this
cascading model effectively tackles multilingual ASR problems in a streamlined manner.
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Figure 4. Acoustic model in the cascade model and E2E model.

A standard E2E mode, which solely relies on an AM composed of a CNN, an LSTM
and a CTC, was initially proposed [54]. However, this model’s performance was found
to be less than satisfactory. To enhance its capabilities, an improvement was introduced
by incorporating an RNN-trained LM after the E2E model for better performance [55].
However, due to the use of an LM, it is not strictly an E2E model. In their subsequent
research, a complex framework was proposed to augment the E2E model’s performance,
as shown in Figure 5. This comprehensive approach centers around a CTC-based E2E
model, serving as the backbone network. Developing a speech representation learning
(SRL) model is a crucial focus aimed at capturing robust and discriminative features
from unlabeled audio data through a wave-to-feature paradigm. This approach involved
applying self-supervised learning to optimize the model, resulting in a highly effective
solution. A solution was introduced to tackle the issue of limited labelled ASR data in the
ATC domain, involving an unsupervised pretraining strategy. This strategy optimized
the backbone network through feature-to-feature training using unlabeled audio data.
Furthermore, optimizing the ASR model incorporated transfer learning for subdomain
adaptation through supervised learning. These combined efforts aim to deliver a practical
and reliable ASR system that fulfills the specific requirements of the ATC domain.

Feature encoder

Context decoder

SRL
E2E model
(backbone)

Prediction

Supervised ASR

Latent 
representations

Self-supervised learning

MCNN/AP

Reconstruct

BiLSTM

Unsupervised pretraining

Optimized model transfering

Figure 5. The improved E2E model.

In the ATCO2 and HAAWAII projects, the time delay neural network (TDNN) [87]
framework was mainly used to construct an AM, including HMM-based TDNNF and
CNN-based TDNNF [88]. TDNN is a feedforward neural network that processes sequential
data by applying different weights to input features at various time steps, capturing
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temporal dependencies in the data. It involves a modular and incremental design that
enables the creation of more extensive networks by combining sub-components. TDNNF
is a compressed TDNN with semi-orthogonal matrix constraints that is trained randomly,
providing substantial improvements over TDNN.

While enhancing the AM can effectively address speech rate and noise issues in the
ATC domain, it does not directly tackle the core challenges associated with code-switching
and domain-specific characteristics. Consequently, most efforts in this domain have focused
on fine-tuning the AM’s neural network structure or incorporating auxiliary modules. More
improvements are being made to the LM for ASR in the ATC domain.

3.3.3. Language Model

The LM incorporates the specific vocabulary and phraseology used in ATC com-
munication, following standard syntax and grammar structures. It also includes logical
relationships, probabilistic modeling and language restrictions, rendering it an indispens-
able tool for ASR in the ATC domain.

In the early stage, grammar, which defines the language rules and structure of the
ATC commands, was mainly used as the LM. It was designed to ensure that the generated
text or speech adheres to proper syntax, semantics and grammatical constraints. In the
context of ASR, a grammar LM plays a crucial role in enhancing the accuracy and fluency
of transcribed or recognized speech by favoring grammatically correct sequences of words
and phrases.

An innovative approach involving a stochastic bigram was employed to overcome the
limitations of traditional rigid grammar files. This bigram covered the standard predefined
protocol sentences and accounted for nuanced and individual syntactic variations [20,21].
The AcListan project utilized grammar as a decoding graph component that was consis-
tently updated with context-dependent versions in ASR [26].

ATC data showed that more than one-fourth of the issued commands do not follow
the standard ICAO phraseology, making it difficult to create proper grammar-based LMs
and substantially decreasing ASR performance. Consequently, N-gram models emerged
as the predominant choice for ASR in the ATC domain and have been widely adopted
in various studies. They predict the next word based on the frequency of vocabulary
sequences observed in previous textual data, helping capture common phrases and usages
in ATC communication. They enhance the ASR system’s understanding of specific terms
and phrases, thereby improving recognition accuracy. However, due to factors like limited
training data or infrequent word sequences, certain word combinations may not be well-
represented in the training text. Different smoothing algorithms, such as interpolation and
back-off, can be applied to address this.

One effective method for establishing contextual relationships is through the use of
a neural network, which is capable of modeling nonlinear features with excellent profi-
ciency. In particular, an RNN is a common architectural choice for language modeling
due to its ability to account for sequential correlations between various vocabulary words.
Consequently, the LM trained by RNN was used in some studies and achieved a good
performance [36,55,57]. Additionally, an LSTM-based LM was also proposed for the ATC
task’s particular word pronunciation and grammatical features [52].

A cascade model proposed by Sichuan University includes sub-models for an AM,
phoneme-based LM (PLM), PM and word-based LM (WLM) [53], as shown in Figure 6.
The PLM and WLM were specifically designed to facilitate and enhance ASR decoding,
with a primary focus on effectively handling code-switching words. These models are then
utilized to refine and adjust the AM and PM output under the ATC application’s unique
characteristics. The input of PLM is a phoneme sequence, and its output is a phoneme unit,
while the input of WLM is a word sequence, and its output is a word unit.

The primary role of the PM is to convert the phoneme sequence generated by the
AM or the phoneme unit transformed by the PLM into a sequence based on words, which
accurately represents human understanding, enhancing the system’s overall effectiveness.
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The machine translation PM (MTPM) was built on the concept that phonemes and words
are representations of spoken language. It involved mapping a variable-length phoneme
sequence to an equivalent variable-length word sequence.

In addition to LM, context information and domain knowledge can be used to improve
ASR performance, as shown in Figure 7. Context information and domain knowledge are
essential factors that enhance ASR performance within the ATC domain. The ATC system is
intricately connected to surveillance systems like ADS-B or radar, which provide essential
data about aircrafts, airports, and flight routes. By establishing a connection between the
surveillance system and ASR and cross-referencing contextual information with the ASR
recognition text, errors can be detected and corrected, improving ASR accuracy. Domain
knowledge is based on a given environment, which includes the runway names, handover
frequency values, waypoint names and coordinates, pronunciations, etc. [43]. These need
to be manually added to the lexicon, together with its possible pronunciations, to improve
the performance of the ASR system in specific ATC regions or scenarios. Strictly speaking,
context information and domain knowledge are not part of ASR but can enhance the
performance of ASR in the ATC domain.

MCNN/AP BiLSTM FC

Acoustic model

PLM

Encoder

Machine translation PM

CTC loss

Phoneme sequencePhoneme unit

DecoderContext vector

Word sequenceWord unit
WLM

Figure 6. Procedure for the cascade model.
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Figure 7. Context information and domain knowledge used in ASR.

3.3.4. Decoder

The decoder is a component that is responsible for translating the model’s output
into text or commands. The primary function of the decoder is to translate audio signals
into understandable language for communication with pilots or recording purposes. The
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decoders used in the ASR in the ATC domain include the weighted finite-state transducer
(WFST) [89] and CTC decoders.

WFST is typically used in traditional ASR systems, and it is a directed graph data
structure used to represent AMs, LMs and the decoding process. It can handle the transcrip-
tion and decoding of audio signals, allowing for the incorporation of LM information, thus
improving recognition accuracy. It is suitable for tasks that require consideration of context
and LMs. The decoding graph for WFST is constructed from the four essential components:
H, C, L and G. The components designated as H and C primarily focus on the phone-level
representation of speech. Specifically, the transducer H facilitates the conversion of HMMs
to GMMs. Meanwhile, transducer C plays a crucial role in introducing phone context de-
pendency by transforming context-independent phones into context-dependent ones. The
L component serves as the pronunciation lexicon within the decoding graph, facilitating
the translation of phone sequences into their corresponding words. Ultimately, the G com-
ponent features a WFST representation of the grammar or LM utilized for recognition. The
H, C, L and G components are integrated to construct the decoding graph for recognition.
The equation used in constructing the final decoding graph is as follows:

HCLG = det(H ◦min(det(C ◦min(det(L ◦ G))))) (11)

CTC in the E2E model is divided into two components: label alignment and loss
function calculation during training, and generating the final prediction during decoding.
Following the computation of output results by the AM, the CTC decoder comes into
play for decoding purposes, employing either a greedy search or beam search decoding
strategy. Greedy search stands out as the simplest decoding method within the realm of
CTC decoding algorithms. It involves selecting the best option at each time step, where
the symbol with the highest probability in each time step is chosen as the final result
during decoding.

The drawback of greedy search decoding lies in its straightforward approach of
selecting the element with the highest probability at each time step, resulting in an output
composed solely of characters with the highest individual probabilities. This method
lacks the ability to fully harness contextual information and make context-aware selections
for the most suitable output character. The improved CTC decoder uses a beam search
algorithm, which accumulates the probabilities of all character occurrences in the final
decoding result and sorts them according to the size of the probability values to provide
users with multiple choices.

3.3.5. Training Algorithm

Training algorithms are adopted to train the ASR model using datasets to maximize
model performance. Supervised learning is one of the fundamental training algorithms that
are commonly used for training the AM, relying on labeled training data. However, when
labeled data are limited, unsupervised learning and semi-supervised learning become valu-
able options, with the former allowing for feature extraction or language modeling from
unlabeled data, and the latter combining labeled and unlabeled data. Transfer learning
enables knowledge transfer from one domain to another related domain, boosting per-
formance. Self-supervised learning involves learning by maximizing the self-consistency
of input data and enhancing feature representations. Reinforcement learning is utilized
to train decoders to maximize recognition accuracy. Multi-task learning allows for the
simultaneous training of multiple related tasks, which can be leveraged to improve ASR
performance. The choice of these algorithms depends on task requirements, available data,
and model architectures, often requiring balance and experimentation between different
algorithms and strategies to find the most suitable training approach for a specific ASR task.

In the early stage, ASR research in the ATC domain focused on building corpora,
with less attention devoted to the development of pioneering training algorithms. In the
follow-up research, training algorithms have been enhanced to address the challenges
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encountered through semi-supervised learning, transfer learning, lattice-free maximum
mutual information (LF-MMI), and a combination of different algorithms.

The supervised learning process is costly due to the need for labeled data, while unsu-
pervised learning methods may not consistently yield optimal outcomes. A viable solution is
to utilize semi-supervised learning, which offers a beneficial compromise [41,42,44,50,58,74].
Semi-supervised learning aims to leverage large amounts of unannotated data to enhance
the performance of the ASR models trained using supervised methods.

Through the utilization of pre-training techniques and the sharing of parameters in
a transferred model, the ASR model is able to effectively capture both the data patterns
previously learned from the baseline model’s corpus as well as speech representations from
a specific unlabeled speech corpus. The transfer learning technique is accomplished via a
comprehensive process of supervised learning, wherein the entire model is trained on a
unified corpus formed by combining the training data from the baseline model with newly
transcribed samples acquired from the target dataset [58,65].

The CTC loss function is instrumental in training E2E models and enhancing ASR
performance by automatically aligning speech and label sequences, even when their lengths
differ. This loss function quantifies the disparity between predictions and actual labels,
facilitating backpropagation to optimize the model’s preceding layers. Several techniques,
such as L2 regularization, Gaussian weight noise and frame skipping, have been shown
to improve CTC attention performance [52]. The TDNNF-based AM is trained using the
LF-MMI approach [90], which involves implementing discriminative sequence training
for neural network AMs. This approach eliminates the requirement for pre-training with
frame-level cross-entropy.

3.4. Evaluation Measures

Evaluation measures have a significant impact on assessing ASR performance within
the ATC domain, serving a dual function. Firstly, they gauge the effectiveness of ASR
systems in this specialized field. Secondly, they offer valuable insights, highlighting
specific areas for enhancement for ASR developers. The current evaluation measures
for ASR in the ATC domain mainly contain general measures, including word error rate
(WER)/character error rate (CER); sentence error rate (SER); F1 score; real-time factor (RTF);
ATC key information measures, including concept error rate (ConER); command error
rate (CmdER), callsign accuracy (CSA); and application measures for the ATC domain,
including repetition intention accuracy (RIA), acceptable detection rate and workload
measurements. The evaluation measures summarized in this article are shown in Table 4.

Table 4. Evaluation measures for ASR in the ATC domain.

Measure Classification Evaluation Measure Used in Papers

General ASR measure

Word/character accuracy/error rate [19–21,24–27,29,32,35,36,38,39,41–44,51–58,61–67,71–75,77–79]
Sentence accuracy/error rate [20,21,24,52]
F1 score [35,36,53,55,63,66,75,76]
Real-time factor [26,38,39,53]

ATC key information
measure

Concept error rate [24,26,27,39,41–43,64]
Command error rate [25–27,29,39,44,46,67]
Callsign accuracy [61,63,67,70,72–75,79]

Application measure
Repetition intent accuracy [55,63]
Acceptable detection rate [22,23,31]
Workload measurements [29,30]

General ASR evaluation measures include WER/CER, SER, F1-score and RTF. The
WER, which measures the difference between predicted and actual labels, is a standard
metric for ASR applications, as shown below:

WER =
Wi + Wd + Ws

W
× 100% (12)
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where Wi, Wd, Ws and W denote the replaced, deleted, inserted and total number of words,
respectively. The CER, similar to WER, stands as a prevalent metric for evaluating the
precision of ASR systems when it comes to recognizing spoken characters. However, due to
variations in corpora utilized by different ASR systems or even when using the same corpus
with different test sets, it is challenging to measure system performance by comparing
WERs in various studies.

SER is a metric that is used to evaluate the performance of ASR in recognizing entire
sentences. It quantifies the error rate at the sentence level, measuring how accurately the
system recognizes sentences. It measures the rate of sentences containing at least one error,
as shown below:

SER =
Se

S
× 100% (13)

where Se denotes the number of incorrectly recognized sentences, and S denotes the total
number of sentences. A lower SER indicates a better performance, as the system correctly
recognizes a higher percentage of sentences. However, in ATC scenarios, ConER and
CmdER are commonly used instead of SER due to high safety requirements.

The F1 score is a metric used to assess the performance of recognition models, used in
conjunction with recall and precision, providing a comprehensive insight into performance.
Recall measures the proportion of actual positive cases correctly identified by the model.
It focuses on the model’s ability to capture true positives among all actual positives. It is
typically calculated using the following formula:

Recall =
TP

TP + FN
(14)

where TP represents the correctly identified positive cases, and FN represents the positive
cases missed by the model. Precision measures the proportion of correct positive predictions
made by the model. It focuses on the model’s accuracy in labeling samples as positive. It is
calculated using the following formula:

Precision =
TP

TP + FP
(15)

where FP represents the negative cases incorrectly labeled as positive. The F1 score is a
metric that combines both recall and precision to provide a balanced assessment of a model’s
performance. It is the harmonic mean of recall and precision, and it is calculated using the
following formula:

F1-score =
2× Recall × Precision

Recall + Precision
(16)

The F1 score ranges between 0 and 1, with higher values indicating a better overall perfor-
mance in terms of both coverage and accuracy.

RTF is used to measure the effectiveness of the ASR system, which is calculated as
follows:

RTF =
Td
Ds

(17)

where Td and Ds are the calculation time and duration of the ATC speech, respectively.
In the ATC domain, the accurate identification of concepts takes precedence over

the exact recognition of every word [24]. The ConER metric offers a keyword-focused
evaluation approach that concentrates exclusively on the keywords within a given utterance.
Concepts are formed by including the callsign information or the remaining command
elements. For instance, in the utterance, “Good morning Air China one two tree climb level
one two zero”, the concept “CCA123 CLIMB FL 120” is extracted, and the ConER quantifies
this metric. The CmdER metric is a binary measure that checks the correctness of the entire
sequence of concepts, similar to the commonly used SER.

To provide a clearer understanding, take the example of “DLH24F TURN LEFT HEAD-
ING 320” for better intuition. This recognition hypothesis has two concepts: “DLH24F” and
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“TURN LEFT HEADING 320”. In case the ATCo said, “Hello Lufthansa two four four turn
left heading three two zero”, the ConER score for this statement would be 50%, indicating
that half of the recognized concepts match the expected concepts. In contrast, the CmdER
score would be 100%. In the context of ATC applications, ConER and CmdER metrics prove
particularly useful for assessing ASR feedback on the relevant portions of an utterance for
the planning system. Recognizing errors in non-ATC contexts is comparatively less critical.

While both ConER and CmdER metrics consider ATC-related factors, it is essential
to conduct a comprehensive analysis and categorization of ATC concepts. The CWP HMI
project has proposed an ontology for transcribing ATC instructions, defining abstract con-
cepts related to ATC instructions and their interrelationships [45]. The critical components
of ATC instructions consist of the callsign, command and condition, as shown in Figure 8.
Each ATC instruction includes a command and one or more optional conditions. The
command itself includes a type, one or more associated values and a unit of measurement.
Additionally, an optional qualifier may also be included. It is important to note that a
conditional clearance granted by an ATC officer only takes effect if specific requirements
have been fulfilled. This ontology provides a detailed decomposition of ATC instructions,
enlightening for applying ASR in the ATC domain. However, it has not been reflected in
evaluating ASR systems so far.

ATC instruction

Type: Altitude, heading, 
taxi, ......

Callsign Command

Condition(s)

Value(s): FL value, 3 
digits, TX-points, ......

Unit: FL, meters, knots, 
none, ......

Qualifier: Below, left, 
Expedite, ......

Conjunction: Until, 
if, when, ......

Requirement: 
Value, ready, 
established, 

reaching, passing, 
completed, ......

Figure 8. Elements of an ATC instruction.

The accurate recognition of callsigns holds paramount significance within ATC. It is
crucial that all relevant details, including the airline name and flight number, are precisely
identified to guarantee valid and efficient outcomes. The calculation of CSA is shown below:

CSA =
CCallsigns

TUtterances
(18)

The variables CCallsigns and TUtterances indicate the count of accurately identified callsigns
and the total number of utterances in the test dataset, respectively.

Sichuan University’s research led to the development of specialized measures tailored
to the ATC domain. The multilingual recognition performance in the ATC domain was
considered, evaluating the ASR system by constructing indicators for Chinese characters
and English words [54,61]. Additionally, to evaluate how well the ASR system performs
during various control phases, the WERs for recognizing ground, tower and area speech
were separately counted, facilitating the analysis of details [58]. Furthermore, the efficacy of
the ASR approach was validated through its generalization and subsequent testing across
various open corpora, thereby rendering it well-suited for real-time implementation in
support of ATC applications [57,59].

Certain researchers have put forth evaluation metrics for ASR systems that are tailored
to specific application objectives. The RIA measures the accuracy of repeating intentions
and is calculated as follows:

RIA =
Cintents

TUtterances
(19)
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where Cintents represents the number of utterances whose intents are correctly recog-
nized [62]. Acceptable detection rates include the word detection rate, event detection rate
and false positive rate, which are used to evaluate the application performance of com-
mercial or open-source ASR software in real ATC communication [22,23]. The workload
measurements show how much extra work ATCos can handle on top of their preparatory
work [29,30].

While specific ATC-specific criteria exist, evaluating ASR systems within the ATC
domain predominantly relies on generic metrics. Despite the proposal of an ontology
for ATC instruction transcription, there is a notable absence of corresponding evaluation
metrics, which is not facilitative to the targeted improvement of the ASR system. Therefore,
it is necessary to improve the evaluation architecture to improve the performance of the
ASR system in response to specific issues in the ATC domain. An evaluation framework is
proposed in this review, as detailed in the next section.

3.5. Application Scenarios

Due to its promising potential for application in the ATC domain, ASR is currently
being adopted across multiple ATC scenarios. These scenarios encompass ATC automation
system integration, workload measurement and reduction for ATCos, callsign detection,
read-back checking, pseudo-pilot, speaker role identification and command prediction, as
shown in Table 5.

Table 5. Application scenarios of ASR systems in the ATC domain.

Application Used in Papers

ATC automation system integration [24–30,39–44]
Measurement and reduction of workload for ATCos [22,23,29,30,46]
Callsign detection [22,23,35,36,61,66,72–75,77]
Read-back checking [37,55,63,70]
Pseudo-pilot [33,51,60,63]
Speaker role identification [71,75,76,80]
Command prediction [42–44,68]

The AcListant and MALORCA projects aim to integrate ASR systems into the ATC
automation systems to enhance overall ATC efficiency. In the AcListant project, the imple-
mentation of speech recognition served to streamline air traffic management, benefiting
both ATCos and the AMAN system. The incorporation of ASR technology within the
ATC environment improved the utilization of AMAN, providing ATCos with timely and
consistent support while reducing the reliance on manual inputs. This, in turn, resulted in
enhanced system efficiency and accuracy. The MALORCA project is initiated to automate
the adaptation process of AcListant, replacing the resource-intensive manual adaptation.
As part of this project, a series of machine learning mechanisms were developed to facilitate
the seamless and automatic adaptation of AcListant to specific environmental conditions.

Irrespective of the original motivations behind ASR research, the ultimate objective is
to enhance flight safety and operational efficiency. ATCo workload is identified as one of
the main limiting factors to increasing overall system capacity and adequately matching
it to demand. ASR technology in the ATC domain plays a pivotal role in automating
the transcription of communication and effectively detecting control events executed by
ATCos using voice commands. This, in turn, allows for the measurement of ATCos’
workload. An encompassing efficiency metric, which amalgamates throughput, flown
distance, flight time and the availability of radar label information, has been defined [30].
The implementation of an ASR system brings significant relief to ATCos by reducing the
time required for command input, minimizing discrepancies, and curbing the time spent
rectifying radar label clearances. This not only streamlines their workload but also frees
up cognitive resources, enabling them to handle a more substantial number of consecutive
ATC commands. By harnessing the advantages of ASR technology, ATCos can enhance
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their operational efficiency and deliver a more efficient and effective air traffic management
experience [29].

A callsign serves as a distinctive identifier for aircrafts, typically comprising the
airline name’s abbreviation as its first part and the flight number as the last part. This
callsign information constitutes critical data for ATC commands, demanding a high level of
recognition accuracy. The exploration and implementation of advanced callsign detection
technology can significantly reduce the workload of ATCos and enhance ATC safety.
Typically, callsign detection implementations incorporate contextual information, such
as radar or ADS-B data. This approach offers dual benefits: it enhances the accuracy of
callsign recognition and verifies the correctness of the callsign voice by cross-referencing it
with contextual information [66,72,74].

Following receipt of a command from an ATCo confirming with the pilot that the
command has been accurately conveyed and comprehended is a crucial step, achieved
through a read-back check. Read-back checking employs two primary methods: semantic
matching [37] and ASR [58,63,70]. ASR-based read-back checking demands a high accu-
racy, a low rate of false alarms, and near real-time availability. Despite the seemingly
straightforward nature of the read-back process, it has diversity and complexity in ASR
tasks. Transcription and annotation effectively improve read-back checking performance in
ASR tasks [70].

ATCos undergo rigorous training using simulation devices to acquire the qualifications
necessary for their demanding roles in a realistic ATC environment. This training necessi-
tates the involvement of a dedicated individual, often referred to as a pseudo-pilot, who
simulates operational scenarios, resulting in additional training costs. The autonomous
training process for ATCos is shown in Figure 9. An ATCo’s issued command is first
converted into text using the ASR module. Subsequently, a text-based read-back instruction
is generated. This text-based read-back instruction is then synthesized into speech and
conveyed to the ATCo. Finally, the ATC command is executed within the simulator upon
extraction. This comprehensive training approach ensures that ATCos are well-prepared to
excel in their critical roles within the ATC domain.

ATCos

Simulator

ASR

ATC situation

Command 
execution

Read-back instruction 
generation

Speech Synthesis
Command 
extraction

Virtual-pilot

ATC Command

Read-back

Figure 9. The autonomous training process for ATCos.

Identifying the speaker’s role involves answering the fundamental question of “Who
spoke when?” This process comprises several crucial components, including speech activity
detection, segmentation or speaker change detection, embedding extraction, clustering,
and labeling. On the other hand, command prediction entails generating hypotheses about
the commands that the ATCo will likely issue soon. The utilization of an ASR system
with command prediction capabilities leads to a significant reduction in the command
recognition error rate [68].
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An ASR software is developed by Sichuan University and used in real-world ATC
scenarios [91]. It serves as a cornerstone for a wide range of critical applications within the
ATC domain, offering substantial benefits to safety and operational efficiency. The core
applications of this new system include normative instruction confirmation, aircrew read-
back confirmation, conformance between ATCo intent and actual flight behaviors, potential
conflict detection, runway incursion alert, similar callsign alert, speech rate measurement,
and scene data storage. This ASR software presents a comprehensive suite of applications
that have the potential to significantly bolster traffic safety, reduce workload burdens on
ATCos, and proactively identify and address potential risks in ATC operations.

The gradual application of ASR in the ATC domain is of great help to the work of
ATCos. By automating conventional communication tasks, ASR enables ATCos to focus
on more critical air traffic management tasks. This not only improves efficiency but also
helps reduce human errors caused by fatigue and information overload. However, the
application of ASR may also have some negative effects on ATCos. When the ASR system
cannot accurately recognize voice commands, ATCos need to spend more time and effort
correcting these errors, increasing their workload and pressure. ASR systems perform
differently in various noise environments and accents, which may introduce uncertainty
and reduce ATCos’ trust in the system, thereby affecting their work efficiency and decision
accuracy. On the other hand, overreliance on ASR technology may lead to the degradation
of ATCos’ skills, especially in handling non-standard speech or unexpected situations.

In summary, although ASR offers significant advantages in the ATC domain, its
application must be cautious to ensure it effectively reduces ATCos’ workload rather than
adding new challenges. For instance, ASR must adapt to local accents and speech patterns
to operate effectively. ASR should also possess error handling capabilities and provide
mechanisms for ATCos to quickly correct errors. Additionally, appropriate training is
essential to ensure ATCos can proficiently use ASR and fully harness its potential.

4. Evaluation Framework and Measurement for ASR Systems in the ATC Domain

In this section, we establish an evaluation methodology for ASR systems within the
ATC domain. This methodology comprises a designated test corpus and a comprehensive
evaluation framework. Evaluating the performance of an ASR system involves collecting
recognition results generated by the ASR system within the test corpus and subjecting
them to assessment through the evaluation framework. By meticulously analyzing the
outcomes of this evaluation, ASR developers gain invaluable insights that empower them to
implement precise modifications and enhancements, ultimately elevating the performance
of the ASR system in the ATC domain.

4.1. Test Corpus for Evaluation

The choice of a test corpus for evaluating ASR systems is of paramount importance.
It must be representative and diverse, encompassing various speech sources, speakers,
pronunciations, and environmental conditions. This ensures that evaluations are based
on real-world diversity and authenticity rather than being limited to specific scenarios.
Moreover, the test corpus should be designed for repeatability, allowing other researchers
or labs to replicate and validate the evaluation results. Additionally, it should cover the
specific domain requirements, such as including relevant ATC instructions, flight numbers,
and airline names in the case of ATC evaluations. The test corpus serves as the foundation
for defining performance metrics and conducting comprehensive error analysis, providing
valuable insights for system improvements. Ultimately, it empowers ASR developers to
enhance system performance and meet the demands of specific domains.

To construct a comprehensive test corpus, it is imperative to encompass all elements
of ATC speech that faithfully represent the structure and characteristics of ATC instructions
and discourse. The categorization of the test corpus consists of the control phase, noise
level, speech rate, control area, and gender, with each speech belonging to only one category
in each classification. Taking China’s ATC as an illustration, according to the approximate
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proportion of ATC commands, the proportion of each category in the test corpus aligns
with the distribution of ATC commands, as depicted in Table 6. Control areas are divided
because of the varying accents and waypoints found in different regions. In this section,
the test corpus is divided equally according to the structure of Chinese civil aviation and
includes English with Chinese accents as additional material.

To comprehensively evaluate the ASR systems in the ATC domain, each speech in the
test corpus is annotated with a three-level label. At the first level, a full-text annotation is
applied to each speech, providing a general ASR annotation that facilitates the calculation
of word and sentence error rates compared to the recognized text. The second-level label
involves text classification, categorizing different segments of an ATC command, such as
callsign, command type, command content, meteorological information, identification and
transfer, fixed-name information, other key information and miscellaneous content. This
classification serves the purpose of evaluating ASR performance on distinct components of
ATC commands, providing insights into recognition accuracy for various ATC command
elements. The third level of annotation includes auxiliary labels indicating the control
phase, noise level, speech rate, control area and speaker gender. Adding these labels allows
for a deeper evaluation of the tested ASR system’s performance in specific categories,
guiding developers in making targeted improvements. This three-level labeling system
ensures a comprehensive evaluation of ASR systems in the ATC domain, covering various
aspects of recognition accuracy and providing valuable insights for system enhancement.

Table 6. Composition of the test corpus.

Classification Items Proportion

Control phase

Ground 8%
Tower 30%
Approach 30%
Area 30%
Emergency 2%

Noise
Clean 20%
Low noise 50%
High noise 30%

Speech rate
Slow 20%
Normal 40%
Fast 40%

Control area

Northeast China 13%
North China 13%
Northwest China 13%
East China 13%
Southwest China 13%
Central and South China 13%
Xinjiang, China 13%
Chinese-accent English 9%

Gender Male 70%
Female 30%

4.2. Evaluation Framework

The evaluation framework comprehensively evaluates an ASR in the ATC domain. It
serves as a multifaceted tool for analyzing the performance of these systems across various
dimensions, ultimately guiding their enhancement. This evaluation framework includes
three key components: ASR general accuracy, which gauges the system’s overall recognition
performance; ATC key information accuracy, ensuring the correct understanding of vital
details; and assisted evaluations that provide insights from diverse perspectives. To gain a
visual understanding of this framework, refer to Figure 10.

ASR general accuracy measures the recognition of an entire speech, excluding the
evaluation of ATC-specific content recognition. This metric evaluates the precision of
recognizing words and sentences in multilingual contexts. English is the prescribed lan-
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guage for ground–air communication in international flights, while native languages are
permissible for domestic flights. Due to variations in grammar and pronunciation among
different languages, it is advisable to evaluate recognition results separately for a more
comprehensive understanding. For instance, in the context of ATC operations in China,
ASR accuracy comprises assessments of total word accuracy, total sentence accuracy, En-
glish word accuracy, English sentence accuracy, Chinese character accuracy and Chinese
sentence accuracy.

A typical ATC utterance comprises crucial information, such as callsigns, and non-
critical elements, like “hello” or “goodbye”. Ensuring the complete and accurate recognition
of all key information within an ATC utterance is imperative, with even minor deviations
from expected recognition considered as failures. Presently, ASR research in the ATC do-
main primarily focuses on recognizing callsigns, emphasizing the importance of achieving
a high recognition accuracy for this critical element. Notably, in the CWP HMI project, an
ontology was proposed to facilitate the translation of ATC speech commands [45]. However,
the key information of ATC has not yet been integrated with ASR.

C1 Evaluation framework of ASR systems in the ATC domain

C1.1 ASR general accuracy C1.2 ATC key information accuracy
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Figure 10. Evaluation framework of ASR systems in the ATC domain.

Different components within ATC commands exhibit distinct characteristics in terms
of semantics and pronunciation. Evaluating the recognition performance of ASR for each
component individually is valuable for developers seeking targeted improvements. In
this context, we categorize these evaluation indicators into specific components, including
callsign, command type, command content, meteorological information, coordination and
transfer, fixed-name information, other key information and other content. This categoriza-
tion enables a more precise assessment of ASR systems’ recognition capabilities for various
ATC key information elements, facilitating performance enhancement efforts. The com-
mand type refers to ATC commands such as taxi, approach, departure, altitude adjustment,
speed adjustment, heading adjustment, etc. The command content refers to the adjusted
values and units under the command type. In ground–air communication, meteorological
terms usually differ from other communication terms and are listed separately for recogni-
tion accuracy evaluation. Fixed-name information includes the airport, aircraft type, route
and waypoint, which can be queried in the information database for direct matching.

ATC speeches can also be classified according to the control phase, noise level, speech
rate, gender and control area, each exhibiting distinct characteristics. When considering
the control phase, ground control involves clearance and taxiing commands, tower control
handles takeoff and landing commands, while the approach and area phases primarily
deal with aircraft maneuver commands. Classification according to noise level or speech
rate reveals variations in ASR system performance, with some systems excelling in low-
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noise and slow-speech scenarios but struggling in high-noise or rapid-speech situations.
Furthermore, differences in pronunciation characteristics between male and female ATCos
may impact ASR system performance. Not all ATCos use standard Mandarin in different
control areas, and various regional accents may be present. It is essential to conduct
evaluations based on control areas. These assessments offer insights into the ASR system’s
strengths and weaknesses, allowing for a more comprehensive analysis beyond just ASR
accuracy evaluation.

ASR general accuracy serves as a metric to gauge ASR performance, while ATC key
information accuracy dissects the speech into ATC elements, evaluating their recognition
performance individually. Assisted classification indicators assess recognition performance
based on non-speech attributes of ATC speech, yielding more nuanced evaluation results.
Employing these three categories of metrics for ASR system evaluation offers a more
comprehensive approach than conventional methods.

5. Discussion
5.1. Challenges of ASR in the ATC Domain

While ASR in the ATC domain has achieved noteworthy milestones, its widespread
adoption in real ATC scenarios remains challenging. This section expands upon the chal-
lenges identified in previous studies [7,10], including unsatisfactory recognition accuracy,
the extra workload for ATCos, non-standard speech, incomplete corpus, poor generaliza-
tion, unprofessional evaluation methods, impact on current ATC operations and some ASR
technical issues.

• Safety stands as a paramount criterion in ATC operations. Despite achieving an
impressive ASR recognition accuracy of approximately 96%, there remains a residual
error rate of around 4%. In real ATC scenarios, such error rates can foster distrust in
ASR among ATCos. On the one hand, they must contend with correcting recognition
errors, and on the other hand, they also need to verify accurate recognition. This not
only fails to reduce ATCos’ workload but also adds to their burdens.

• One of the purposes of implementing ASR is to reduce the workload of ATCos,
particularly when integrated with ATC automation systems. However, recognition
errors can result in either missed alarms or false alarms. Missed alarms pose safety
hazards to aircraft operations, while false alarms place an additional burden on ATCos.

• In real ATC scenarios, not all sentences spoken by ATCos adhere to standardized
protocols. This is particularly evident during emergencies, where ASR systems may
struggle to recognize and interpret ATCo communications accurately.

• The quality of the ATC corpus significantly affects ASR performance, making it
challenging to collect sufficient training samples to develop a capable ASR system.
Annotating the training samples for ASR in the ATC domain requires significant exper-
tise and knowledge of ATC principles. Such expertise may only be readily available
to some staff, and specialized training may be necessary to ensure competence in
this area.

• Generalization is significant to ASR research in the ATC domain. It is essential to
recognize that the vocabularies used in different control centers or locations may
exhibit unique and distinct characteristics. Consequently, enhancing the generalization
capabilities of ASR systems across diverse control centers or areas becomes a crucial
technique for broadening the applicability of ASR technology.

• The use of ASR will have an impact on existing ATC operations. The ASR system
needs to consider effective interaction with ATCos during design, including voice
command confirmation, error correction and system feedback, in order to improve
user experience and operational efficiency. Therefore, the introduction of ASR systems
may require adjustments and redesign of existing operational processes to adapt
to the use of speech recognition technology. ATCos needs to receive training and
an adaptation period on new technologies to proficiently use the ASR system and
understand its limitations and correct usage methods.
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In addition, the ATC domain presents several common challenges, including noise
interference, unstable speed rates, multilingual speech, accented speech, code-switching,
etc., which will not be reiterated in this article.

5.2. Approaches to Improve ASR Performance

In response to the challenges faced, the following approaches can be applied to
improve the performance of ASR in the ATC domain.

• To ensure consistency between label text and recognition text, and to accurately
represent the intent of ATCos in the recognized text, it is essential to establish design
specifications for data annotation and transcription. This standardization plays a
crucial role in minimizing recognition errors attributable to non-technical factors. For
example, should “Air China 4137” be labeled as “CCA 4137” or “AIR CHINA FOUR
ONE THREE SEVEN”.

• Training samples should be thoughtfully chosen to reasonably cover various ATC
scenarios, focusing on different control phases, control areas, speech rates, and noise
levels. An ASR system trained using a corpus with well-balanced coverage and
standardized annotation can significantly enhance its recognition performance in
real-world ATC scenarios.

• To tackle the challenge of limited generalization, it is crucial to establish an information
database that encompasses control units, airline information, waypoints from various
control areas, and route names. During the ASR process, the recognized text can be
cross-referenced with the information stored in the database. This approach enhances
the generalization capabilities of ASR systems, allowing systems trained for one
control area to be effectively utilized in other regions as well.

• Choosing appropriate metrics and developing an evaluation framework aligned with
specific application requirements is a crucial step. This process aids in pinpointing
shortcomings in ASR performance and facilitates necessary adjustments and improve-
ments. For example, although the lower the WER or SER, the better, considering the
limitations of current technological means, they should be set at an achievable and
reasonable level. The remaining measures should be selected and set according to
actual application requirements.

• In specific ATC speech scenarios, the content can become ambiguous and challenging
to recognize accurately without proper context. Integrating contextual information,
including system-level integration with surveillance systems and ATC automation
systems, as well as ASR-level integration with pre-speech data, can enhance the
semantic understanding and intention recognition of ATC speech.

• Implementing a graded alarm mechanism is crucial for minimizing false alarms and
missed alarms. In actual ATC scenarios, using different levels of alarms for different
types and degrees of risks can enable ATCos to effectively allocate attention and
resources, thereby reducing security risks and preventing additional workloads.

• Although not used in the ATC domain, audiovisual speech recognition (AVSR) has
shown potential. Currently, ATCos operate in a video surveillance environment, so
a combination of audio and video can be used to improve recognition accuracy. In
noisy and multiplayer environments, visual signals, such as lip-reading signals, can
provide additional sources of information and enhance speech recognition capabilities.
When using AVSR in the ATC domain, attention should be paid to issues such as data
security and privacy, system complexity and increased costs, real-time performance,
and audio–video synchronization [92–94].

• With the development of big data, artificial intelligence, E2E and other advanced
technologies, ASR technology is evolving and improving. It is imperative to stay
current with these advancements and incorporate advanced ASR technology into the
ATC domain to enhance overall performance.

• Expanding the functions related to human factors is crucial for improving ASR per-
formance. By analyzing the speech characteristics of ATCos, ASR systems can detect



Sensors 2024, 24, 4715 30 of 35

fatigue, stress and emotions, issue timely warnings and help manage work tasks.
Conducting ASR trials and training with ATCos provides feedback for improvement
and enhances adaptability. This approach not only boosts ASR performance but also
ensures better integration into real-world ATC environments.

6. Conclusions

ASR has been studied in the ATC domain for many years and has achieved fruitful
achievements. This review presented a thorough overview of the current research on ASR
in the ATC domain. We delved into various contributions, encompassing aspects such
as corpora, models and their extensions, evaluation measures and application scenarios.
Moreover, we analyzed the evaluation metrics for ASR in the ATC domain and constructed
an evaluation framework. Additionally, this review further elucidated the challenges faced
while implementing ASR technology in realistic ATC scenarios and provided valuable
insights for future research and development initiatives.

The applicability of ASR systems in ATC scenarios is still an area of ongoing explo-
ration. Nevertheless, it is evident that continued advancements in the ASR field hold the
potential to overcome these challenges in the near future. This review intends to provide
inspiration to researchers and promote further developments in ASR research within the
ATC domain. We anticipate that our findings will contribute to fruitful outcomes in future
research endeavors.
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ATCos Air traffic controllers
BERT Bidirectional encoder representations from transformers
CER Character error rate
CMVN Cepstral mean and variance normalization
CNNs Convolutional neural networks
CmdER Command error rate
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CSA Callsign accuracy
CTC Connectionist temporal classification
DNN Deep neural networks
E2E End-to-end
FAA Federal Aviation Administration
FBank Filter bank
FC Fully connected
GMM Gaussian mixture model
HMM Hidden Markov model
ICAO International Civil Aviation Organization
LF-MMI Lattice-free maximum mutual information
LM Language model
LSTM Long short-term memory
MCNN Multiscale CNN
MFCC Mel frequency cepstrum coefficient
MTPM Machine translation PM
PLM Phoneme-based LM
PM Pronunciation model
PPR Parallel phone recognition
RIA Repetition intention accuracy
RNNs Recurrent neural networks
RNN-T Recurrent neural network transducer
RTF Real-time factor
SER Sentence error rate
STFT Short-time Fourier transform
TDNN Time delay neural network
VHF Very high frequency
WER Word error rate
WFST Weighted finite-state transducer
WLM Word-based language model
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