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Abstract: Real-world understanding serves as a medium that bridges the information world and the
physical world, enabling the realization of virtual–real mapping and interaction. However, scene
understanding based solely on 2D images faces problems such as a lack of geometric information
and limited robustness against occlusion. The depth sensor brings new opportunities, but there
are still challenges in fusing depth with geometric and semantic priors. To address these concerns,
our method considers the repeatability of video stream data and the sparsity of newly generated
data. We introduce a sparsely correlated network architecture (SCN) designed explicitly for online
RGBD instance segmentation. Additionally, we leverage the power of object-level RGB-D SLAM
systems, thereby transcending the limitations of conventional approaches that solely emphasize
geometry or semantics. We establish correlation over time and leverage this correlation to develop
rules and generate sparse data. We thoroughly evaluate the system’s performance on the NYU Depth
V2 and ScanNet V2 datasets, demonstrating that incorporating frame-to-frame correlation leads
to significantly improved accuracy and consistency in instance segmentation compared to existing
state-of-the-art alternatives. Moreover, using sparse data reduces data complexity while ensuring
the real-time requirement of 18 fps. Furthermore, by utilizing prior knowledge of object layout
understanding, we showcase a promising application of augmented reality, showcasing its potential
and practicality.

Keywords: real scene analysis; instance segmentation; RGBD SLAM; augmented reality

1. Introduction

The deep integration of technologies such as computer simulation and augmented
reality with manufacturing has accelerated the development of intelligence and precision
in the consumer electronics manufacturing industry, leading to a surge in digital twin
technology. The core of intelligent manufacturing is to achieve interaction and integration
between the digital world and the physical world [1,2]. It demands a precise perception
of real-world geometric and semantic information, enabling the extension of new func-
tionalities to physical entities through data parsing, virtual simulation, and virtual–real
interaction. This integration empowers intelligent manufacturing to operate with enhanced
efficiency and effectiveness. Therefore, building a real 3D scene semantic model is the pri-
mary task in establishing a high-density and real-time connection between the information
and physical worlds. First and foremost, it is essential to achieve the reconstruction of
large-scale and dense geometry to simulate the real world. Specifically, a comprehensive
scene-understanding capability to discern individual objects becomes crucial for facilitating
reality–virtual interaction. The most prevalent approach involves utilizing RGB sensors
to perceive the 3D world through image sequences and processing the data stream into
a digitized representation. This process entails reconstructing a dense geometric model,
identifying objects of interest within a scene, and categorizing these objects into specific
categories. Although RGB images are commonly used for analyzing scene content, their

Sensors 2024, 24, 4756. https://doi.org/10.3390/s24144756 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24144756
https://doi.org/10.3390/s24144756
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4334-6103
https://doi.org/10.3390/s24144756
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24144756?type=check_update&version=2


Sensors 2024, 24, 4756 2 of 17

ability to provide comprehensive and accurate analyses is limited by the absence of stereo
information. To overcome this limitation, there has been significant attention towards
indoor scene understanding based on RGBD images [3,4]. The comprehensive analysis
must understand the geometric structure and the object layout relationship.

Several simultaneous localization and mapping (SLAM) methods have been proposed
to leverage depth sensors, like Microsoft Kinect for camera motion estimation and dense
geometric model reconstruction. Methods such as KinectFusion [5], BundleFusion [6], and
OcclusionFusion [7] have achieved real-time performance. Significant progress has been
made in 2D semantic analysis tasks like object detection [8] and instance segmentation [9],
contributing to developing a knowledge model. However, these remarkable achievements
have primarily focused on geometric or semantic understanding separately. In other words,
the reconstructed geometric models lack semantic information, and the semantic labels are
limited to individual RGBD frames.

To reconstruct a 3D scene model with geometric and object-level semantic information,
we propose a novel approach combining instance segmentation with SLAM, resulting in
an object-level RGBD SLAM system. The current semantic-level SLAM systems primarily
generate sparse maps. The main improvements have been focused on three aspects:
utilizing semantic information for real-time performance [7], enhancing the accuracy of
camera localization [9], and ensuring data stability during the reconstruction process in
large-scale scenes [10]. However, the main challenge lies in designing a real-time instance
segmentation network that can be seamlessly integrated with the SLAM algorithm. In
particular, existing semantic instance segmentation methods often fall short when applied
independently to single images without contextual information. Since consecutive frames
in a video stream typically exhibit small camera motion amplitudes resulting in highly
similar images, it is natural to leverage this similarity to relate previous segmentation
results to the current frame. Additionally, the distribution of different objects within a scene
tends to be sparse. Inspired by the characteristics of sparse convolution, we investigate an
enhanced sparse convolution technique for efficient instance labeling.

Our work introduces a real-time instance-level RGBD SLAM system based on sparse
convolution. Our system captures a sequence of RGBD input frames, such as those obtained
from a Kinect sensor. It performs the following tasks: computing 6-degrees of freedom
(6DoF) rigid poses, labeling object instances, and reconstructing 3D semantic instance
models. To incorporate contextual relevance, we propose a deep network architecture
called the Sparsely Correlated Network (SCN) for labeling object instances in each RGBD
frame. Firstly, we employ a series of 2D convolutions to extract texture and geometric
features from RGBD images. Additionally, we leverage the projection correspondence to
establish feature associations across time. For data spaces that lack contextual relevance,
we record their coordinates following a predefined rulebook, resulting in sparse data
representation. Next, we employ spatially sparse convolution to extract features and use
a region proposal network to infer the bounding box locations and semantic labels for
object instances. Finally, we fuse the consecutive instance segmentations into a consistent
instance map.

To sum up, our contributions are the following:

• We introduce a novel neural network architecture called SCN, which utilizes sparse
convolution for online instance segmentation. Combining the instance segmenta-
tion network with an RGB-D SLAM system achieves scene understanding at the
object level.

• We recognize projective associations between contexts and use hash tables to organize
sparse data without association. We also design a sparse convolution architecture to
process data without context relevance, which satisfies the real-time requirement.

• We devise a sparse rule for sparse convolution and develop a grouping strategy for dense
data by leveraging spatial topological structures and temporal correlation properties.
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2. Related Work

Dense RGB-D SLAM.

The Visual SLAM has a long-standing history of tracking camera motion and re-
constructing sparse model maps. The emergence of consumer-grade depth cameras has
advanced research in this area, enabling dense and real-time scene mapping. Recent meth-
ods have demonstrated accurate mapping of indoor environments, which in turn has
addressed the major requirements in fields such as industrial production and intelligent
manufacturing. These advancements have paved the way for further developments and
applications in these domains. KinectFusion [5] harnesses the advantages of the truncated
signed distance function (TSDF) and regularized voxel grid representation to achieve real-
time camera tracking and robust scene mapping. To overcome the limitations of space
representation, subsequent studies [6,11] extended these principles to large-scale envi-
ronments by utilizing data structures such as hash tables. Furthermore, an alternative
representation based on surfels [12,13] has been proposed to approximate sparse point
clouds, where attributes such as normal and radius encode associations between points
and surfaces, thereby reducing data redundancy and optimizing data space utilization.

Instance Segmentation.

In recent years, convolutional neural network architectures have significantly ad-
vanced object detection [14] and instance segmentation [15]. These advancements have
greatly improved the accuracy and efficiency of these tasks, pushing the boundaries of
computer vision research.

Early instance segmentation methods mainly concentrated on single RGB images and
can be classified into two categories: two-stage methods [16] and one-stage methods [17].
The two-stage methods generally achieve higher segmentation accuracy, while the one-
stage methods pursue real-time performance. However, RGB-based instance segmentation
methods often suffer from severe error segmentation in low-contrast scenes, as the texture
information struggles to reflect the geometric topology between object instances. With the
advent of consumer-grade depth sensors, integrating depth information with color and
texture has been demonstrated to improve semantic segmentation accuracy [18,19]. In
addition, instance segmentation approaches targeting 3D models can provide more com-
prehensive global information in practical applications. Voxel-based methods represent
voxel data in a format suitable for neural network processing. For instance, VoxNet [20]
applies convolutions and pooling operations in three dimensions to capture spatial features
within 3D data. Voxelization [21] transforms 3D voxel data into a fixed-size voxel grid,
making it compatible with input to neural networks. Inspired by PointNet [22], point
clouds have gained significant attention due to their advantage of low model represen-
tation complexity [23,24]. RandLA-Net [23] proposed a local feature aggregation module
to capture the relative positional relationships between points in a local neighborhood,
enhancing the efficiency of point cloud recognition by establishing associations between
central points and neighboring points. On the other hand, KPConv [24] introduces a vari-
able point convolution that calculates the kernel transformation matrix using an arbitrary
number of kernel points, thereby extracting local compelling features in the spatial domain
of the point cloud. These point-based methods leverage the spatial information inherent in
the point cloud data to perform instance segmentation tasks.

From the perspective of candidate box generation, instance segmentation methods can
be categorized into anchor-based detection and anchor-free grouping methods. Anchor-
based detection utilizes a predefined set of anchors to generate a proposal and perform
classification and pixel-level segmentation for each candidate box. Faster R-CNN [25]
proposes a region proposal network (RPN) to generate candidate boxes, speeding up the
region proposal process by sharing convolutional layers. Integrating feature extraction,
candidate box selection, classification, and bounding box regression into a single end-to-
end network effectively enhances detection accuracy and efficiency. He et al. [26] extend
Faster R-CNN with a segmentation branch, forming Mask R-CNN, which generates masks
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for pixels within each candidate box, enabling simultaneous object detection and instance
segmentation, thus enhancing segmentation accuracy and precision. Sparse R-CNN [27]
replaces the dense anchors in the RPN network with a fixed set of candidate regions,
enabling a transition from dense to sparse representation. In contrast to anchor-based
detection, anchor-free methods do not rely on predefined anchors but directly generate
bounding boxes and masks from the image. Jiang et al. [28] propose a bottom-up 3D
instance segmentation framework based on point cloud data, assigning points in the point
cloud to different object instances or semantic categories using adaptive neighborhood
clustering and global optimization, effectively handling 3D instance segmentation tasks.
Zhong et al. [29] introduce a hierarchical point grouping algorithm called MaskGroup.
They also present a novel MaskScoreNet to generate binary point masks for all grouped
instances, eliminating noisy points. Additionally, MaskScoreNet predicts confidence scores
for the final instances to refine the segmentation results further.

Semantic RGBD SLAM.

From the semantics perspective, previously proposed semantic mapping systems can
be categorized into two main approaches: the dense labeling and the object-level, as shown
in Table 1. SemanticFusion [30] combines the VGG16 network architecture to achieve
pixel-level semantic segmentation. Additionally, it updates the class probability distribu-
tion using a Bayesian model, enhancing the accuracy and reliability of the segmentation
results. DA-RNN [31] introduces data-associated RNNs to establish spatiotemporal associ-
ations, achieving more accurate and consistent results through global feature preservation.
However, these approaches primarily address scene-level semantic labeling and do not
explicitly address the localization and distinction of individual objects within the scene.
SLAM++ [32] is a real-time object-level incremental SLAM system. This method constructs
an object model library and continuously detects the actual object in the model library
to feed into a pose graph. Tateno et al.’s approach [33] is used for rigid body instance
segmentation but requires a prior model. These previous methods focus on object-level
analysis but limit the categories of objects to the 3D object database. MaskFusion [34],
Fusion++ [35], and MID-Fusion [36] have taken advantage of the advantages of using
instance-level semantic segmentation and building object-oriented map representation.
MaskFusion [34] goes beyond the traditional system of outputting only geometric maps
and integrates multiple tasks such as identifying, partitioning, and assigning semantic
classes to different moving objects. However, the quantitative detection accuracy is not
outstanding because it mainly concerns the camera trajectory accuracy. PanopticFusion [37]
achieves comprehensive 3D geometrical and semantic volumetric mapping, enabling the
discrimination of individual objects based on Mask R-CNN [26]. Additionally, it applies a
fully connected conditional random field (CRF) model to regularize the map by panoptic
labels. This regularization step enhances the consistency and coherence of the resulting
map, further improving the accuracy of object discrimination and semantic understand-
ing. However, the time efficiency cannot meet the real-time requirement because it takes
235 ms in the object detection network stage. By integrating a two-stream object detection
network with a SLAM system, Li et al. [38] achieved dense construction and specific objects
while maintaining a sparse global map. This approach successfully improves memory
requirements and computational complexity. However, global sparsity mapping limits
its potential applications in digital twins. In contrast to the studies mentioned above, our
method mainly considers the time requirement of the system, recognizes the context data
association relation of the video stream data, and reconstructs a 3D semantic model with
global consistency.



Sensors 2024, 24, 4756 5 of 17

Table 1. Semantic mapping methods comparison.
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SemanticFusion [30]
√ √ √ √

DA-RNN [31]
√ √ √

SLAM++ [32]
√ √

Tateno et al. [33]
√ √ √

MaskFusion [34]
√ √ √

Fusion++ [35]
√ √ √

MID-Fusion [36]
√ √ √ √

PanopticFusion [37]
√ √ √ √ √

Li et al. [38]
√ √ √

3. Method

The system framework of our approach is illustrated in Figure 1. Building upon the
RGBD reconstruction method [15], we incorporate an instance segmentation module into
our pipeline. Our approach begins by estimating the camera motion and computing the
6DOF pose (Section 3.1). Subsequently, we input the current RGBD frame into SCN net-
works to obtain pixel-wise object instance labels, fused to generate accurate segmentation
results (Section 3.2). To ensure robust tracking, the instance labels are carefully referenced
against the volumetric map at that particular moment. Furthermore, we integrate the
probability distributions of class labels into the map, incorporating depth measurements
for improved accuracy (Section 3.3).

Figure 1. Overview of our object-level RGBD SLAM based on SCN. In three steps, the input RGBD
data stream is used to achieve 3D semantic model reconstruction. Step 1: frame-by-frame camera
localization is performed. Step 2: camera positions and image data are fed into the SCN network to
obtain per-pixel object semantic information. Step 3: the current-time semantics are transformed into
global semantics.

3.1. Camera Tracking

To obtain the corresponding vertex map at time t, we transform the raw depth image
Dt using the camera intrinsic parameters K, resulting in Vt(u) = DtK−1 ∈ R3. Additionally,
we calculate a normal map Nt using the method proposed in [7]. To estimate the six-degrees
of freedom camera pose T = [R|t], which includes rotation matrix R ∈ SO3 and translation
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vector t ∈ R3, we utilize an iterative closest point algorithm similar to the one described
in [39]. This algorithm iteratively refines the pose estimation by aligning the observed 3D
points with the reconstructed model.

3.2. Instance Segmentation

After estimating the camera’s motion, we need to predict pixel-wise object instance
labels. Our network architecture is also shown in Figure 1. It consists of four primary
components: a feature extractor (Section 3.2.1) for transforming raw RGB and depth images
into a more meaningful and representative format, sparse rule generator (Section 3.2.2)
for associating data with geometric consistency (i.e., data that the camera have already
observed) and recording newly observed data, sparse convolution layers (Section 3.2.3) for
learning the feature description of newly generated data, and object proposal (Section 3.2.4)
like object detection for identifying the object instance and predicting semantic class. In the
following, we will outline the critical components of our architecture design.

3.2.1. Feature Extractor

For the initial frame at time t = 0, the detection accuracy plays a critical role in the
subsequent online learning process. To achieve this, we utilize the Mask R-CNN [26] to
generate pixel-level segmentation results, including the object category L1(u) ∈ L; the
object instance ID Z1(u) ∈ Z ; the surrounding bounding box B1 = {< △x1

1,△y1
1, w1

1, h1
1 >

, ...,< △x1
numo ,△y1

numo , w1
numo , h1

numo >} representing the coordinates of each bounding box,

respectively; and the feature map f rgbd
1 , obtained by fusing the RGB and depth modalities

resulting in a comprehensive representation that encompasses both visual and geometrical
information. In the context of our method, L = {l1, ..., lnuml} represents a collection of all
possible object types in the indoor scene, where l1 to lnuml denote the individual object
types. The numl represents the total number of object species. The Z = {1, ..., numo}
represents a set of object IDs, ranging from 1 to numo, where numo corresponds to the total
number of objects. The u = (x, y) denotes the pixel location. Overall, Mask R-CNN enables
us to obtain accurate object segmentation results, including object categories, instance
IDs, bounding boxes, and fused feature mappings. These results are the foundation for
subsequent online learning and further analysis of our method.

We employ the ResNet architecture for the subsequent frames to generate initial 2D
feature maps. In Figure 2, the 2D network architecture separately takes the H × W RGB
and depth image as inputs. We extract multi-modality features: f r

n (H × W × c) from the
RGB encoder and f d

n (H × W × c) from the depth encoder. These feature maps capture
meaningful representations of the input data. To fuse these features, we use a concatenation
layer, which combines the feature maps into a single input f̂ rgbd

n (H ×W × cin) for the sparse
convolution layers. This input retains the spatial dimensions (H × W) but has a different
number of channels (cin) determined by the concatenation of the RGB and depth features.

Figure 2. ResNet blocks for 2D feature learning.
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3.2.2. Sparse Rule Generator

The composite features need to correlate the feature information in the previous part
through the projection and organize sparse data for unrelated data. Minimal camera motion
at adjacent moments leads to high similarity in the image, as shown in Figure 3. At times
t and t + 1, the new data collected by the camera only account for about 15 percent of
the entire image and are distributed discreetly. Therefore, it is unnecessary to calculate
the image feature description repeatedly for data with geometric consistency. We project
the current coordinates back to the previous time to establish the temporal connection
relationship. For each pixel position ut and the corresponding vertex map Vt(u), we
calculate the world coordinates Wt(Vt(u)) based on the current camera pose. Next, we
aim to find the projection location u∗

t−1 at the previous time step, i.e., Wt−1(Vt−1(u∗)) ≈
Wt(Vt(u)). We can associate the feature between the two consecutive frames by establishing
this projection relation.

Figure 3. Image differences at different time intervals.

Complete convolution operations are not appropriate when dealing with data that lack
inherent correlation due to their discrete distribution. We can employ sparse convolution,
as described in [40], for deep feature learning. This approach requires designing rules
to organize discrete data as sparse, as depicted in Figure 4. The size of the input data
is denoted as N × Cin, where N = hin × win represents the field size and Cin denotes
the number of feature map channels. The filter kernel size is given by (Cin, Cout, k × k, s),
where k denotes the size of the convolution kernel and s represents the stride. We apply
this filter to the input data results with an output data size of Cout × hout × wout, with
hout = (hin − k)/s and wout = (win − k)/s.
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We utilize a hash table structure to organize the input data as sparse data. This hash
table is responsible for recording the positions of the sparse data during the convolution
process. More specifically, the input data Fin have a size of M × cin and only retain in-
formation about the sparse data. Each row vector in Fin represents the feature vector of
M sparse pixels across all cin channels. Furthermore, we introduce another hash table
called R, which records the location map of the sparse pixels in the raw input data as
{(x, y), value}. Here, (x, y) indicates the pixel position and value is the row index in Fin.
The maximum size of the hash table R is hin × win, which typically occurs during the initial
object detection phase when there are the most sparse pixels in the data. We multiply the
weight matrix parameter W with Fin, and the output feature map Fout has a size of M × cout.
The weight matrix W has dimensions cin × f × f × cout, and W(i,j) has a size of cin × cout,
where (i, j) represents the offset to the center of the convolution kernel. For a specific offset
(i, j), the input feature matrix can be fetched using R(i,j)(:, 0). After multiplying it by the
corresponding weight parameters W(i,j), the output data are scattered and constructed as
the output feature matrix according to the output pixel index in R(i,j)(:, 1). In summary, we
can effectively address the challenges associated with data lacking inherent correlation by
incorporating sparse convolution techniques and designing rules to organize discrete data.

Figure 4. Specific rules for sparse data convolution.

3.2.3. Sparse Convolution Layers

Following the rules mentioned above, the sparse convolution layers leverage the fused
input to learn and extract relevant features. These layers operate sparsely, focusing on
specific regions of interest rather than processing the entire input space. This approach
allows the network to effectively capture and encode the most informative aspects of the
data while minimizing computational overhead. Building upon these sparse convolution
rules, we construct the pyramidal feature hierarchy network named Sparse Correlated
Network (SCN), as shown in Figure 5.
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Figure 5. The detailed architecture of Sparse Correlated Network.

We establish connections between the four pyramidal levels to produce high-level
feature maps, which use convolutional layers with stride sizes of (8, 8), (4, 4), or (2, 2) to
capture multi-scale feature details. Combining the associated features from the previous
frame with the current sparse features after performing a series of sparse convolutions is
crucial to ensure a complete feature map. Specifically, we partition the dense feature maps
into two datasets, denoted as O and N. Let us assume that un = (xn, yn) represents the
pixel position index in the nth frame’s depth image Dn. Using the camera extrinsic Tn, we
can obtain the coordinates Wn(un) at the world coordinate system for the point un. If in
the (n − 1)th frame’s depth image there exists a point Wn−1(un−1) such that it is equal to
Wn(un), then we update the O set as follows: O = O ∩ f rgbd

n−1 (un−1). Otherwise, we update

the N set: N = N ∩ f̂ rgbd
n (un). N is the SCN input and accomplishes local feature extraction

by employing sparse convolution. These extracted features are subsequently processed
through the data association module, creating a dense feature map. Ultimately, the feature
map is outputted using a concatenation layer and represented as f rgbd

n .

3.2.4. Object Proposal

To optimize computational efficiency, we introduce several steps in our approach.
Firstly, we transform the center coordinates (△xn−1

i ,△yn−1
i ) of each bounding box in the

set Bn−1 to the world coordinate system and project them onto the corresponding positions
(△xn

i ,△yn
i ) in the nth frame. Compared to the anchor mechanism with no prior knowledge,

we initialize the bounding box set as B∗
n = {b1, ..., bi, ..., }, where each bi is represented as

bi =< △xn
i ,△yn

i , wn−1
i , hn−1

i >. Next, we compute the Intersection over Union (IoU)
between each bi in B∗

n and each aj in the anchor set A. This calculation is performed using
the formula IoU(bi, aj) = |bi ∩ aj|/|bi ∪ aj|. If the resulting IoU value exceeds a predefined
threshold θU , denoting significant overlap, we remove the corresponding anchor aj from the
anchor set A. Finally, we employ a bounding box regressor to obtain comprehensive object
instance information that refines the remaining anchors in A. This regression process helps
refine the localization and characteristics of the detected objects. By incorporating these
optimization techniques, our method effectively reduces the computational burden and
improves the overall efficiency of the system while accurately identifying object instances.

3.3. Data Integration

Semantic reconstruction involves continuously updating and fusing depth image
data, known as incremental modeling [39]. Each captured depth image frame is fused
into a globally consistent 3D voxel-based model according to the camera pose. The TSDF
measures the distance between each voxel grid in the model and the model representation,
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ensuring geometric consistency constraints. Additionally, semantic elements such as class
probabilities and instance bounding boxes are incorporated into the voxel grid to ensure
semantic consistency. Through these steps, a 3D model is generated that satisfies both
geometric and semantic consistency.

4. Evaluation
4.1. Dataset

The proposed methods are validated using the ScanNet v2 dataset [41]. This large-
scale RGB-D dataset is used for indoor scene understanding and reconstruction. It primarily
consists of diverse indoor scenes such as offices, homes, stores, and schools. The dataset
comprises 1201 training scenes and 312 open test scenes. For each scene, it provides camera
poses, semantic labels, instance labels, and surface normals. For testing purposes, we
also utilize the NYU Depth v2 dataset [42], which includes 1449 RGBD images covering
40 common semantic types.

4.2. Network Details

We utilize the ResNet architecture to process the 640 × 480 RGB image and depth
map separately. These inputs are passed through the network, resulting in two features of
dimensions 320 × 240 × 32. The features are then stacked, resulting in a 64-channel feature.
For optimization, we employ the ADAM optimizer with a momentum of 0.9, a learning
rate of 0.0002, a batch size of 5, and a sequence length of 10. Our network trains on an
NVIDIA GeForce RTX 3090 GPU, taking approximately two days to complete 1800 epochs.

4.3. Quantitative and Qualitative Results

To evaluate the effectiveness of SCN, we measure its segmentation accuracy using the
mean Average Precision (mAP) of bounding boxes on two datasets: NYU Depth v2 [42]
and ScanNet v2 [41]. The performance of SCN on the NYU Depth v2 is presented in Table 2.
Our method demonstrates superior performance, primarily due to Mask R-CNN’s inability
to consider the correlation between detection results from consecutive frames in the scene.
This confirms the validity of our bounding box generation strategy proposed in the object
proposal module, which initializes the t = n frame using the bounding box from the
t = n − 1 frame.

Table 2. Comparison of semantic segmentation results between SCN and Mask R-CNN on NYU
depth v2 dataset.

Method Input Baseline mAP (%)

Mask R-CNN [26] RGB + Depth VGG 56.9

Mask R-CNN [26] RGB + Depth ResNet-101 62.5

SCN RGB + Depth VGG 63.4

SCN RGB + Depth ResNet-101 71.2

To evaluate the influence of inter-frame correlations on segmentation accuracy, we
select two sets of data with different perspectives of the same scene, as seen from Figure 6.
Both Mask R-CNN and SCN accurately segment the chair enclosed by the yellow box in
view 1. However, there is a discrepancy in the segmentation results of these two methods
in view 2. Mask R-CNN makes it difficult to retain the compelling features extracted in the
segmentation process from the previous perspective, resulting in incorrect segmentation,
which verifies the necessity of SCN to improve the accuracy of instance segmentation.
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Figure 6. Comparison of semantic segmentation accuracy in NYU depth dataset.

We have also applied our SCN method to the ScanNet v2 dataset [41], yielding instance
segmentation results. Figure 7 demonstrates the semantic segmentation outcomes of an
individual frame image, illustrating the improved accuracy achieved by our method
compared to Mask R-CNN [26]. Our results exhibit enhanced correctness in semantic
segmentation. Moreover, to establish the global effectiveness of our approach, we have
fused the segmentation results from various scenarios into semantic and instance-level 3D
models, as depicted in Figure 8. This fusion serves as evidence of the semantic consistency
attained by our approach.

Figure 7. Comparison of semantic segmentation accuracy in ScanNet dataset.

For quantitative evaluation, we compare our results with per-voxel class accura-
cies, following the evaluation metrics used in previous works such as Mask R-CNN [26],
PanopticFusion [37], Sparse R-CNN [27], PointGroup [28], and Mask-Group [29]. Table 3
numerically compares the mean average precision with the IoU threshold of 0.5 over
19 classes of our method against other deep learning approaches. For instance segmenta-
tion, PanopticFusion utilizes Mask R-CNN as the baseline network, Sparse R-CNN adopts
sparse convolution techniques, and PointGroup and Mask Group employ point cloud
grouping. These methods share similarities in design with SCN. The results highlight
that SCN has an advantage in segmenting objects that frequently repeat across multiple
frames, such as beds and desks. However, due to the low repeatability of small objects
in adjacent frames, the proposed approach for associating features between consecutive
frames may not perform optimally, resulting in suboptimal accuracy. Furthermore, Figure 9
demonstrates the object detection process SCN performs in a real indoor scene composed
of 4650 depth image sequences.
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Figure 8. Instance Segmentation results obtained with our network. The integrated geometric model,
semantic map, and instance map are displayed from left to right.

Figure 9. Online 3D semantic model generation based on camera motion.
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Table 3. Comparison of the mAP50 of our method against other referential approaches on ScanNet
v2 dataset.

Category Mask
R-CNN [26] PanopticFusion [37] Sparse

R-CNN [27] PointGroup [28] Mask-
Group [29] SCN

bathtub 0.333 0.667 1.000 1.000 1.000 1.000

bed 0.002 0.712 0.538 0.765 0.822 0.841

bookshelf 0.000 0.595 0.282 0.624 0.764 0.752

cabinet 0.053 0.259 0.468 0.505 0.616 0.620

chair 0.002 0.550 0.790 0.797 0.815 0.772

counter 0.002 0.000 0.173 0.116 0.139 0.163

curtain 0.021 0.613 0.345 0.696 0.694 0.685

desk 0.000 0.175 0.429 0.384 0.597 0.629

door 0.045 0.250 0.413 0.441 0.459 0.462

otherfurniture 0.024 0.434 0.484 0.559 0.566 0.495

picture 0.238 0.437 0.176 0.476 0.599 0.424

refrigerator 0.065 0.411 0.595 0.596 0.600 0.637

shower curtain 0.000 0.857 0.591 1.000 0.516 0.480

sink 0.014 0.485 0.522 0.666 0.715 0.692

sofa 0.107 0.591 0.668 0.756 0.819 0.820

table 0.020 0.267 0.476 0.556 0.635 0.661

toilet 0.110 0.944 0.986 0.997 1.000 0.960

window 0.006 0.359 0.327 0.513 0.603 0.721

mAP 0.058 0.478 0.515 0.636 0.664 0.656

4.4. Run-Time Analysis

Utilizing the parallel computing capabilities of CUDA 10.0 architecture, our RGBD
SLAM system achieves an impressive processing time of approximately 55 ms per frame,
which includes 5 ms for camera tracking, 30 ms for instance segmentation, and 20 ms for
data integration. In general, our indoor scene analysis system achieved a performance of
18 frames per second (fps), allowing for interactive rates of real-time processing. Table 4
compares the running time for object detection using SCN against the depth image sequence
in the ScanNet dataset. Our SCN method follows the two-stage detection idea of Mask R-
CNN but establishes spatiotemporal correlation within scenes, resulting in shorter running
time and higher detection accuracy. In comparison, PanopticFusion directly utilizes Mask
R-CNN for object detection in multi-frame depth images and then employs a CRF model
for global consistency of object detection results. Compared to PanopticFusion, our method
achieves improved detection accuracy and time performance.

Table 4. Time comparison.

Method FPS Time ms mAP%

Mask R-CNN [26] 8.6 116.3 5.8

PanopticFusion [37] 4.3 232.5 47.8

SCN 18.0 55.6 65.6
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4.5. AR Application

By leveraging existing semantic information, we can develop immersive augmented
reality applications. Our approach utilizes the spatial distribution of detected objects within
the scene, allowing us to seamlessly integrate virtual objects, such as robots and dinosaurs,
into the real environment. As shown in Figure 10, this fusion process ensures that virtual
objects are rendered realistically, seamlessly blending with the surrounding real scene.

Figure 10. AR applications that combine 3D instance mapping with virtual objects.

Furthermore, our system enables the replacement of semantically known objects in
the scene, such as desks and chairs, with corresponding semantic 3D models. Additionally,
we can enrich the scene presentation by adding semantically associated objects, such
as computers, to enhance the virtual reality experience further. Figure 11 demonstrates
this augmentation and enrichment of the scene. By incorporating these advancements,
our method can provide users with a highly realistic and interactive experience where
virtual and real elements coexist seamlessly. The combination of precise spatial alignment
and semantically meaningful object placement creates a truly immersive and captivating
augmented reality environment and introduces a crucial interface for interactive intelligent
manufacturing. This interface aims to redefine the production process. By seamlessly
integrating virtual operation commands with real-world industrial production floors,
we provide essential technological support for the digital twin platform in intelligent
manufacturing, propelling the manufacturing industry into a completely new paradigm.

Figure 11. Virtual–real substitution based on semantic association rules.

5. Conclusions

We present a new instance segmentation network called SCN, which incorporates
an object-level RGBD SLAM system. Our approach recognizes the significance of context
correlation in establishing relationships and distinguishing individual objects. In the
initial frame, we employ Mask R-CNN to generate the instance segmentation result and
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establish the mapping rule by leveraging inter-frame correlation during subsequent camera
movement. We adopt various feature generation methods to accommodate different
data attributes and effectively reduce computational complexity by integrating sparse
convolution. Experimental results demonstrate that our network outperforms or achieves
comparable performance to state-of-the-art methods regarding instance segmentation.
Furthermore, our network meets the required time performance criteria. In future work,
we will research dynamic industrial scenarios to enable intelligent analysis and facilitate
virtual reality interactions within large-scale complex scenes.
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