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Abstract: China has identified the synergistic reduction of pollution and carbon emissions as a crit
ical component of its environmental protection and climate mitigation efforts. An assessment of this
synergy can provide clarity on the strategic management of both air pollution and carbon emissions.
Due to the extensive regional differences in China, the spatial effects of influencing factors on this
synergy exhibit variation across different provinces. In this study, the reduction indexes of PM2.5

and CO2 were calculated based on their reduction bases, reduction efforts, and reduction stabilities
across provinces. Then, the synergistic reduction effect was assessed using an exponential function
with the PM2.5 reduction index as the base and the CO2 reduction index as the exponent. Next, the
MGWR model was applied in order to analyze the influencing factors of the synergistic reduction
effect, considering natural settings, socioeconomic conditions, and external emission impacts. Finally,
the k-means clustering method was utilized to classify provinces into different categories based on
the degree of impact of each influencing factor. The results indicated that air circulation, vegetation,
tertiary industry ratio, and emission reduction efficiency are major impact indicators that have
a positive effect. The topography and emissions from neighboring provinces have a statistically
significant negative impact. The spatial influences of different factors exhibit a distribution trend
characterized by a high-high cluster and a low-low cluster. A total of 31 provinces are divided into
three categories, and suggestions on the corresponding category are proposed, to provide a scientific
reference to the synergistic reduction of PM2.5 and CO2.

Keywords: synergistic reduction; evaluation index; influencing factors; spatial effects; zoning
strategies

1. Introduction

China is facing the dual pressures of reducing air pollution and carbon emissions [1,2].
In response to this challenge, a series of policies have been implemented by the Chinese
government. The Air Pollution Prevention and Control Action Plan was issued in 2013,
followed by the Three-Year Action Plan for Winning the Blue Sky Defense Battle in 2018,
aiming to improve nationwide air quality [3]. Meanwhile, China has acknowledged its
commitment to reducing CO2 emissions to combat global warming, as stipulated in the
Paris Agreement. For example, China has formally committed to “double carbon” targets,
striving to achieve a carbon peak by 2030 and carbon neutrality by 2060 [4]. For a long
time, air pollution and carbon emissions were treated as two separate issues with different
strategies [5]. Actually, air pollutants and CO2 are derived from similar sources and are
released simultaneously, implying that effective management of both air pollution and
carbon emissions can result in a synergistic reduction [6]. In 2022, the Chinese government
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announced the Implementation Plan for Synergic Efficiency in Reducing Pollution and
Carbon, explicitly promoting a strategy for the synergistic reduction of air pollutants and
CO2 emissions. Given China’s extensive regional differences in terms of meteorological
conditions, topography, population density, economic growth, energy structure, energy
efficiency, technological innovation, etc., the directions and mechanisms of the impacts of
different factors on the synergistic reduction may vary between provinces. Combining vari-
ous drivers with positive and negative effects can reveal the spatial disparity of synergistic
reduction effects at the provincial level in China, thereby avoiding a one-size-fits-all policy.

Since air pollution and greenhouse gas emissions have the same origin and spatial
consistency, they should be assessed together rather than separately [7,8]. Existing studies
have confirmed that there is a synergistic reduction between air pollutants and greenhouse
gases, and often focus on the magnitude of the decrease in emissions [9–11]. It is feasible to
quantify the degree of synergistic reduction by constructing and calculating an indicator
or index. Ref. [12] captured the damage value weights of air pollutants and CO2 and
combined all the emissions as an air pollutant equivalence (APeq) to reflect the co-control
effect. The co-reduction coordinate system and cross-elasticity are also commonly used for
evaluating synergies [13–15]. Ref. [13] analyzed the co-benefits of reducing air pollutants
and CO2 emissions from electric private cars, taxis, and buses by using the co-control
coordinate system and pollutant reduction cross-elasticity. Ref. [15] applied different
cross-elasticities to quantitatively assess the co-benefits of lowering CO2 and atmospheric
pollutants of various measures in the Air Pollution Prevention and Control Action Plan
in the Jing-Jin-Ji region of China. These two methods can show the positive and negative
effects of synergies based on the reductions in air pollutants and CO2. Other scholars
analyzed the effect with models such as life cycle assessment (LCA) [16], greenhouse gas
and air pollution interactions and synergies (GAINS) [17,18], and the long-range energy
alternatives planning system (LEAP) [19,20]. Much of the literature focuses on the synergies
between air pollutants and CO2 in terms of the quantities of reductions. Actually, according
to China’s 2030 carbon peaking plan, carbon emissions are expected to continue rising in the
coming years [21], leading to the carbon reduction that is encouraged but not compulsory.
Therefore, negative synergies may be a prevalent phenomenon, meaning a decrease in
air pollutants with a concomitant increase in carbon emissions. Additionally, extensive
research observes the synergistic effect from a single perspective by examining the actual
emission reductions, but ignores the contribution of emissions at the initial time point
and how the reduction stability changes over time. The actual emission reductions reflect
the direct effectiveness of a region, but if the initial emissions are disregarded, it tends to
exaggerate the reduction efforts of the region and weaken the need for emission reductions.
Furthermore, a consistent decrease in emission reduction levels or pollution concentrations
within a certain area can also suggest that reduction policies and measures have played a
stabilizing role without being ineffective.

The emissions of air pollutants and CO2 are closely related to fossil fuel consumption.
The increase in energy demand during rapid economic development is a driver of air pollu-
tion and CO2 emissions [22,23]. Burning coal produces about 70% of the CO2 released into
the air in China [24], and more than 80% of PM2.5 pollution comes from the coal used in the
electricity and metal industries [25]. Therefore, coal combustion is considered an important
factor in air pollution and CO2 emissions. Previous studies have also revealed that the
expansion of PM2.5 and CO2 emissions is attributed to economic growth [26–28]. Particu-
larly, the secondary industry in China includes energy-intensive and high-polluting sectors,
indicating that the augmentation of the proportion of secondary industry contributes to
air pollution and CO2 emissions [26,27]. Ref. [29] found that several factors—such as
urbanization, industry, economy, energy, and so on—influenced the synergistic degree of
air pollution control and CO2 reduction, thereby causing regional disparities. Additionally,
the synergistic reduction of air pollutants and CO2 can be achieved through technological
innovation [30]. For example, digital technologies have been used to monitor and analyze
energy consumption in real time by many companies, enabling more efficient minimization
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of air pollution and carbon emissions [31,32]. Several researchers believe that the imple-
mentation of relevant policies for emission reduction is an important reason for the change
in synergistic benefits, such as the Air Pollution Prevention and Control Action Plan [3],
environmental protection tax [33], carbon pricing policy [34], low-carbon city pilot [35], etc.
Generally, the existing studies focus on exploring the impacts of socioeconomic influencing
factors on the synergistic reduction of air pollutants and CO2, but few investigate how
natural factors such as meteorological and topographical conditions influence this synergy.
In addition, research on influencing factors has only been carried out in a certain region,
which fails to deal with the impact of emissions from adjacent areas.

In this study, an evaluation index was developed to comprehensively reflect the
effectiveness of synergistic PM2.5 and CO2 reductions in each region. Compared with
previous studies, the index integrates and quantifies PM2.5 emissions, PM2.5 annual average
concentration, and CO2 emission intensity in terms of the reduction basis, reduction efforts,
and reduction stability. In addition, this study thoroughly examines the impacts of the
natural environment, socioeconomic conditions, and external emission factors on the
spatial variations in the effectiveness of synergistic emission reductions across different
areas. The findings can serve as a guide for the future implementation of tailored emission
reduction policies.

The rest of the paper is organized as follows. Section 2 describes the methodology in
detail, which mainly consists of the multiscale geographically weighted regression (MGWR)
model and the k-means clustering method. In addition, data sources are represented in
this section. Section 3 presents the outcomes of the spatial distribution patterns, including
constructed indexes, coefficients of affecting factors, and zoning information. Discussions
based on the results and conclusions are provided in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Data Collection

The study covered 31 provinces in China, except for Hong Kong, Macau, and Taiwan,
due to insufficient data. PM2.5 and CO2 emission data were taken from the Multi-Resolution
Emission Inventory for China (http://meicmodel.org.cn (accessed on 5 July 2024)), estab-
lished by Tsinghua University. The annual average concentration of PM2.5 was derived
from reports on the state of the ecology and environment in 31 provinces, published by
the provincial Department of Ecology and Environment. Boundary layer height and wind
speed were collected from the ERA5 database (https://cds.climate.copernicus.eu (accessed
on 5 July 2024)). The information on the Digital Elevation Model (DEM) and Normalized
Difference Vegetation Index (NDVI) was obtained from the Resource and Environment
Science and Data Center (https://www.resdc.cn (accessed on 5 July 2024)). Data on eco-
nomic development, energy consumption, and forest cover were obtained from the China
Statistical Yearbook and the China Energy Statistical Yearbook, released by the National
Bureau of Statistics of China. All the data contain values spanning from 2016 to 2020.

2.2. Evaluation Index for PM2.5 and CO2 Reductions

This study evaluates the relative effects of PM2.5 and CO2 reductions on different
emitting entities during a given period from three perspectives: the targeted reduction, the
actual reduction, and the fluctuation. PM2.5 reduction includes the decrease in emissions
and annual concentration, and CO2 reduction refers to the decrease in emission intensity.
The target reduction is the difference between the emission result of an emitting entity
and the corresponding standard in the starting year, which mainly assesses the basis for
reductions in the emitting entity. Corresponding standards can be explicitly issued by the
state—for example, ambient air quality standards, or those that are difficult to specify at
this stage but are considered theoretically necessary to achieve, e.g., zero emissions. The
actual reduction refers to the difference in emission results between the starting year and
the target year, and is used to evaluate reduction efforts. The fluctuation value means the
disparity between the sum of the absolute value of the actual reduction over a specified

http://meicmodel.org.cn
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period, such as one year or one month, and the absolute value of the actual reduction over
the entire period. The stability of reductions by emitting entities is primarily measured by
the fluctuation value.

Since PM2.5 and CO2 reductions involve variables with different scales and units, they
need to be converted to the same range for comparison and analysis. This will eliminate the
discrepancy between scale and unit. The Sigmoid function will be able to map a number to
the interval (0,1). Compared to the Min-Max Scaling normalization method, the Sigmoid
function is not affected by extreme values and is more resistant to interference. However,
the Sigmoid function belongs to the one with a saturated S-curve at both ends, and when
the values on both sides of the definition domain exceed a certain range, the Sigmoid
function curve tends to flatten. Therefore, the Sigmoid function input values need to be
scaled by the same proportion. In this study, the Sigmoid function was used to calculate
the targeted reduction index, the actual reduction index, and the fluctuation rate, based on
which the reduction index was obtained. The equations are as follows:

ITR =
1

1 + e(x1−xs)/m
(1)

IAR =
1

1 + e(xn−x1)/m
(2)

FR =
1

1 + e

(
|xn−x1|−

n
∑

i=2
|xn−xn−1|

)
/m

(3)

IR = ITR + IAR − FR (4)

where ITR is the targeted reduction index; IAR is the actual reduction index; FR is the fluctu-
ation rate; IR is the reduction index; xs is the corresponding standard value, xs = 35 µg/m3

(for PM2.5 annual average concentration) or xs = 0 (for PM2.5 emissions and CO2 emission
intensity); x1 is the actual value in the starting year; xn is the actual value in the target year;
m is the scaling factor, m = 10 (for PM2.5 emissions and annual average concentration) or
m = 1 (for CO2 emission intensity). In the study, the starting year is 2016 and the target year
is 2020.

During this study, the evaluation index for PM2.5 and CO2 reductions was calculated in
the form of an exponential function. For the exponential function y = ax, when 0 < a < 1 and
x ≥ 0, the exponential function has the following properties: (1) y takes on the range of (0,1];
(2) the function monotonically decreases; and (3) if x is the same, y increases as a increases.
In this study, the PM2.5 reduction index and CO2 reduction index have values in the range
of [0,1] basically, which can be used as the base and exponent of the exponential function to
convert the final evaluation result to the (0,1] interval. The reduction index is a positive
indicator—the greater the number, the better. However, the decreasing monotonicity of the
function implies that the smaller the value at the exponential position, the better. Therefore,
it is necessary to transform the PM2.5 reduction index or CO2 reduction index located at
the exponential position. According to the property (3), the base and the function value
keep the same increase and decrease. For the reduction index at the base position, it can
be intuitively reflected as a positive indicator without the need for formal transformation.
Compared with CO2 emissions, PM2.5 emissions have a more direct and intense impact on
public health and socioeconomic development. China has been carrying out nationwide
PM2.5 pollution control since 2013, and it was not until 2020, when the “dual carbon” target
was proposed, that CO2 emission reduction was elevated to the same importance as PM2.5
pollution control. Therefore, the PM2.5 reduction index was applied as the base and the
CO2 reduction index as the exponent. Since PM2.5 reduction includes emissions and annual
concentration, the PM2.5 reduction index was calculated by using the exponential function,
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with the PM2.5 concentration reduction index as the base and the PM2.5 emission reduction
index as the exponent. The equations are as follows:

IR_PM2.5 = IRC
(1−IRE) (5)

EIPC = IR_PM2.5
(1−IR_CO2 ) (6)

where IR_PM2.5 is the PM2.5 reduction index; IR_CO2. is the CO2 reduction index; IRC is the
PM2.5 concentration reduction index; IRE is the PM2.5 emission reduction index; EIPC is the
evaluation index for PM2.5 and CO2 reductions.

2.3. Multiscale Geographically Weighted Regression

Ordinary least squares (OLS) is a global regression model that overlooks differences in
variables due to spatial locations. Geographically weighted regression (GWR) extends OLS
by assuming that the relationships between the response variable and explanatory variables
change over space. Hence, GWR estimates a separate model with local parameters for
each geographical location [36]. The bandwidth of an explanatory variable indicates its
spatial scale of influence. GWR considers a fixed bandwidth for all parameters. Actually,
a fixed bandwidth is not valid when phenomena involve multiple spatial processes with
diverse explanatory variables [37]. MGWR allows relationships between the response
variable and explanatory variables to change at different spatial scales [38,39]. This multi-
bandwidth approach produces a more accurate result for the regression, representing
spatial phenomena in the real world. The equation is as follows:

yi = β0(ui, vi) +
m

∑
k=1

βbwk(ui, vi)xik + εi (7)

where ui and vi are the coordinates of each explanatory variable at position i; β0(ui, vi) is
the intercept value at position i; bwk is the bandwidth of the kth explanatory variable at
position i; βbwk(ui, vi) is the regression coefficient of the kth explanatory variable at position
i; m is the number of explanatory variables; εi is the error value.

In this study, EIPC was utilized as the response variable for MGWR. According to
the previous studies [27–30] and the data availability, explanatory variables comprised air
circulation level (ACL), topographical relief level (TRL), NDVI, forest coverage rate (FCR),
stock volume of forest (SVF), gross domestic product (GDP), proportion of the tertiary
industry (PTI), emission reduction efficiency (ERE), PM2.5 emissions from neighboring
provinces (ENP), and net electricity demand from other provinces (NED). The variables
mentioned in the MGWR model were computed as the average values across the years 2016
to 2020. ACL is constructed by multiplying boundary layer height by average wind speed,
which determines the dispersion of pollutants. For two places with identical emissions
levels, the one with a higher ACL experiences lower PM2.5 pollution [40]. TRL is the average
of the difference between the DEM of each city boundary in a province and the average DEM
of the plains within that city. A greater TRL indicates that the province may possess more
cities of the basin type, which can result in the accumulation of pollutants. Vegetation plays
an important role in absorbing carbon dioxide and reducing the concentration of particles.
Its growth stage and health level also affect its ability to eliminate CO2 and particles [41].
NDVI is often used to assess the spatial distribution and growth status of vegetation.
However, NDVI is processed using nonlinear stretching in the calculation process, resulting
in a low sensitivity to highly vegetated areas. Combining other data can provide more
comprehensive vegetation information. Forests, as one of the most important components
of ecosystems, are vital for carbon sequestration and particle removal compared to other
vegetation systems, such as grasslands. FCR is the ratio of forest area to total land area
within the administrative region, and SVF refers to the total stock volume of tree trunk
timber in a given forest area. These two indicators reflect, to some extent, forest resources
in terms of quantity and quality. China is currently in the industrialization stage and
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relies on substantial energy inputs, resulting in a certain positive correlation between
economic development and air pollution and carbon emissions. Increased PTI contributes
to improved energy efficiency and reduced energy use, lowering pollutants and carbon
emissions from industrial production [30]. One region is susceptible to PM2.5 emissions
from neighboring provinces due to atmospheric transport. NED is the difference between
annual electricity consumption and annual electricity generation. A positive value indicates
that electricity needs to be imported from other provinces, resulting in the transfer of air
pollution and carbon emissions from electricity-consuming to electricity-producing areas.
ERE suggests the efficiencies of technologies and management levels in the process of
PM2.5 and CO2 emission reductions while keeping all inputs constant. In this paper, ERE
was calculated by adopting the data envelopment analysis (DEA) approach. DEA does
not require prior assumptions of functional relationships between inputs and outputs,
and can avoid man-made subjectivity for parameter weighting [42]. This model has been
extensively utilized to assess energy efficiency and CO2 emission efficiency [43]. In the
developed DEA model, PM2.5 and CO2 emission reductions were taken as outputs, while
coal consumption for thermal power, coal consumption for industry, coal consumption
for residents, and completed investment in projects for treating waste gases were viewed
as inputs.

2.4. K-Means Clustering

The k-means clustering method involves an unsupervised recognizable pattern in
which the objects prepared to be classified in a data set are efficiently computed and catego-
rized into proper groups. The classification of objects is based on several types of indicator,
which are appropriate for describing the characteristics of objects. In this study, the regres-
sion coefficients for different explanatory variables of each province were generated by the
constructed MGWR model. These regression coefficients are the classification criteria of the
k-means clustering. Provinces are categorized into corresponding categories to identify the
similarities and distinctions observed among diverse groups.

As the k-means clustering method requires the user to prespecify the number of
clusters, it is indispensable for measuring the clustering quality. The silhouette coefficient
combines both cohesion and separation, and is rather independent of the number of clusters.
The optimal clustering number can be obtained by calculating the average silhouette
coefficient of all the provinces. For one cluster with k categories, the average silhouette
coefficient refers to the average of the silhouette coefficients of provinces belonging to the
cluster [44].

3. Results
3.1. Spatial Characteristics of Reduction Indexes

The reduction index values have the potential to range from 0 to 1. A province’s effec-
tiveness in reduction increases as the value approaches 1. The values were categorized using
the natural breakpoint classification method in the ArcGIS 10.6 software(Environmental
Systems Research Institute, Redlands, CA, USA). For the PM2.5 reduction index, Xinjiang
has the lowest value and is categorized separately (Figure 1). Four provinces have a value
greater than 0.81 and are deemed to have relatively better effectiveness in controlling PM2.5,
namely Xizang (0.9999), Hainan (0.9820), Fujian (0.8724), and Qinghai (0.8453) (Table 1
and Figure 1). The values are generally higher in the provinces of the southwestern and
southern regions compared to those in the provinces of the northern and central areas. For
the CO2 reduction index, the results for Ningxia and Inner Mongolia are below zero be-
cause of the significant fluctuations in their annual falls of CO2 emission intensity (Table 1).
Seven provinces have a rating above 0.34 and are considered more successful in managing
CO2 emission intensity, namely Beijing (0.4327), Shanghai (0.3848), Guangdong (0.3674),
Chongqing (0.3533), Zhejiang (0.3532), Sichuan (0.3531), and Hunan (0.3485) (Table 1 and
Figure 2). The southern provinces outperform the northern provinces in reducing CO2
emission intensity. For the evaluation index of PM2.5 and CO2 reductions, Xinjiang is the



Toxics 2024, 12, 498 7 of 16

region with the lowest value (0.0006) and is classified as its own category. Tibet, Hainan,
and Fujian obtained scores exceeding 0.9 and are recognized as top performers (Table 1 and
Figure 3). Furthermore, approximately half of the provinces achieved moderate outcomes
in terms of synergistic reductions in PM2.5 and CO2, with scores between 0.57 and 0.74.

Figure 1. Spatial characteristics of PM2.5 reduction index 2016–2020.

Figure 2. Spatial characteristics of CO2 reduction index 2016–2020.
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Figure 3. Spatial characteristics of evaluation index for PM2.5 and CO2 reductions from 2016–2020.

Table 1. Evaluation results of reduction indexes of 31 provinces from 2016 to 2020.

Province IR_PM2.5 IR_CO2 EIPC

Beijing 0.6605 0.4327 0.7904
Tianjin 0.5300 0.3364 0.6562
Hebei 0.6113 0.1506 0.6584
Shanxi 0.3606 0.0936 0.3967

Inner Mongolia 0.6098 −0.0811 0.5858
Liaoning 0.3454 0.1966 0.4256

Jilin 0.5822 0.2624 0.6710
Heilongjiang 0.5740 0.2189 0.6482

Shanghai 0.6794 0.3848 0.7883
Jiangsu 0.5363 0.3307 0.6590

Zhejiang 0.7799 0.3532 0.8515
Anhui 0.3954 0.2522 0.4997
Fujian 0.8724 0.3249 0.9120
Jiangxi 0.6252 0.2989 0.7194

Shandong 0.3494 0.2634 0.4610
Henan 0.4785 0.3177 0.6047
Hubei 0.5522 0.3300 0.6717
Hunan 0.4253 0.3485 0.5729

Guangdong 0.8002 0.3674 0.8685
Guangxi 0.6613 0.2397 0.7302
Hainan 0.9820 0.3174 0.9877

Chongqing 0.5416 0.3533 0.6726
Sichuan 0.6730 0.3531 0.7740
Guizhou 0.7849 0.2572 0.8353
Yunnan 0.7389 0.2510 0.7972
Xizang 0.9999 0.3347 0.9999
Shaanxi 0.4152 0.2403 0.5129
Gansu 0.6817 0.1421 0.7198

Qinghai 0.8453 0.2822 0.8863
Ningxia 0.3973 −0.3884 0.2776
Xinjiang 0.0005 0.0293 0.0006
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3.2. Spatial Characteristics of Coefficients in MGWR

Table 2 compares the fitting results of the OLS, GWR, and MGWR models. The outputs
suggest that the MGWR model outperforms OLS and GWR, with lower AICc and higher
R2 and Adj-R2. The AICc, R2, and Adj-R2 values offer more precise assessments of the
model fit. The lower AICc value and higher R2 and Adj-R2 values indicate a superior fit.

Table 2. Model diagnostics for OLS, GWR, and MGWR.

Diagnostic Information OLS GWR MGWR

AICc 82.605 82.390 76.671
R2 0.778 0.807 0.928

Adj. R2 0.667 0.684 0.857

The coefficients’ statistical results are presented in Tables 3 and 4. Each explanatory
variable’s coefficient was classified into five levels based on the natural breakpoint approach
(Figure 4). In the MGWR model, the coefficient of ACL is positive and statistically significant
at the 1% level. The coefficient varies between 0.5682 and 0.5692, showing a decline from
the northeast to the southwest of the country. For the TRL, the coefficient is negative
and statistically significant at the 1% level, with values ranging from −0.4233 to −0.4248.
Significant relationships mainly occur in the southwestern and southern provinces of China.
The coefficients for NDVI and FCR are both positively and significantly correlated at the 1%
level. The western regions are more responsive to NDVI changes. The significant impacts
of the latter are mainly located in the northeastern and northern regions. The regional
differentiation of the SVF coefficient is comparable to that of the ACL, demonstrating a
positive and statistically significant relationship at the p < 0.1 level, with values ranging
from −0.1803 to −0.2160. The PTI has a positive coefficient that spans 0.1706 to 0.1715,
which is statistically significant at the p < 0.1 level. There is a decreasing tendency observed
from the west to the east. For the ERE, the positive coefficient is statistically significant
at the 1% level, and there are considerable variations among the provinces, varying from
0.2507 to 1.2097. The western and northern provinces have a greater coefficient than the
other provinces. The ENP coefficient is negatively significant at the p < 0.1 level, indicating
a more obvious negative impact in southern areas. There is no statistically significant
difference in the coefficients for GDP and NED.

Table 3. Descriptive statistics of coefficients in the MGWR model.

Variable Maximum Minimum Mean Standard Deviation

ACL 0.5692 0.5682 0.5686 0.0002
TRL −0.4233 −0.4248 −0.4241 0.0003

NDVI 1.1436 1.1422 1.1429 0.0003
FCR 0.8499 0.8475 0.8490 0.0005
SVF 0.2160 0.1803 0.1972 0.0083
GDP −0.1266 −0.1290 −0.1279 0.0006
PTI 0.1715 0.1706 0.1709 0.0001
ERE 1.2097 0.2507 0.5887 0.2110
ENP −0.0158 −0.6201 −0.1100 0.1231
NED 0.1603 0.1592 0.1598 0.0002

Table 4. Coefficients of explanatory variables for OLS, GWR, and MGWR.

Variable
OLS GWR MGWR

β p-Value β (Mean) p-Value (Mean) β (Mean) p-Value (Mean)

ACL 0.398 0.070 *** 0.405 0.062 *** 0.569 0.001 *
TRL −0.371 0.044 ** −0.370 0.043 ** −0.424 0.001 *

NDVI 0.961 0.008 * 0.967 0.009 * 1.143 0.000 *



Toxics 2024, 12, 498 10 of 16

Table 4. Cont.

Variable
OLS GWR MGWR

β p-Value β (Mean) p-Value (Mean) β (Mean) p-Value (Mean)

FCR 0.880 0.003 * 0.873 0.004 * 0.849 0.000 *
SVF 0.277 0.054 *** 0.273 0.056 *** 0.197 0.073 ***
GDP −0.137 0.434 −0.133 0.430 −0.128 0.281
PTI 0.196 0.147 0.191 0.148 0.171 0.062 ***
ERE 0.786 0.000 * 0.762 0.000 * 0.589 0.005 *
ENP −0.041 0.095 *** −0.032 0.080 *** −0.061 0.058 ***
NED 0.180 0.356 0.177 0.348 0.160 0.255

* indicates a statistically significant p-value (p < 0.01); ** indicates a statistically significant p-value (p < 0.05);
*** indicates a statistically significant p-value (p < 0.1).

Figure 4. Spatial characteristics of statistically significant coefficients in MGWR 2016–2020.
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3.3. Clustering and Zoning of Provinces

The MGWR model generated numerous local coefficients, which can be divided into
different categories according to their correlations. The k-means clustering analysis was
conducted using the statistically significant coefficients from 31 provinces in China. Given
the number of provinces, the zoning number should be less than 10 [44]. The clustering
analysis was carried out on 2 to 10 clusters using Python, and the average silhouette
coefficient versus the clustering number was plotted, as shown in Figure 5. A higher value
represents better clustering quality. The average silhouette coefficient reached its peak at
0.402 when k = 3. Therefore, the optimal clustering observed at k = 3 was used for the
zoning, i.e., categorizing 31 provinces into 3 sub-areas (Figure 6).

Figure 5. Average silhouette coefficient versus clustering number.

Figure 6. Zoning result of provinces.
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4. Discussion
4.1. Analysis of Influencing Factors and Their Spatial Effects

The northeastern part of China has been an important base for heavy industry, while
the Beijing–Tianjin–Hebei and Yangtze River Delta urban agglomerations are characterized
by developed economies and large populations. Moreover, central heating in northern
areas requires a large amount of coal burning. Therefore, these regions are important
sources of PM2.5 and CO2 emissions and are more sensitive to air circulation. Enhanced
air circulation facilitates the dispersion of atmospheric pollutants, leading to a notable
reduction in pollution levels. The southwestern region is dominated by plateaus and basins,
featuring mountainous terrain and significant differences in elevation. The topography of
basins causes air pollution to accumulate, making it challenging to disperse and remove.

Western China experiences arid conditions—characterized by plateaus and deserts,
including the Gobi Desert—which significantly restrict vegetation development. Air pollu-
tion and carbon reduction are more sensitive to spatial changes in vegetation form, cover
degree, health state, and other properties. Hence, a one-unit rise in NDVI results in a
more pronounced increase in the reduction index as compared to the eastern region. In
some eastern provinces like Shandong and Jiangsu, where FCR and SVF have low national
rankings, the advantages of forest resources for carbon reduction and particle removal are
not obvious. Therefore, there is a greater potential to enhance the quantity and quality of
forest resources to decrease pollution and carbon emissions.

The tertiary industry has developed rapidly in the eastern provinces. The tertiary
sector’s share in the western region is typically lower than in the eastern region, although
there is a higher likelihood of the ratio rising. Thus, the evaluation index for PM2.5 and
CO2 reductions is more responsive to increases in PTI in western areas. Climate mitigation
and pollution control policies result in geographical variations in technology efficiency and
management levels due to the optimization of energy structures and environmental protec-
tion investments. In northern and western regions, there is a noticeable beneficial effect,
highlighting the necessity to improve the effectiveness of technology and management.

The joint prevention and control of regional air pollution has been a key focus for im-
proving regional air quality since China issued the Action Plan for Air Pollution Prevention
and Control in 2013. The Beijing–Tianjin–Hebei, Yangtze River Delta, and Fenhe–Weihe
River Plain regions have experienced the most serious air pollution problems. Adjacent
cities in these areas are more inclined to collaborate on environmental management strate-
gies and establish targets with consistent levels of strictness. Therefore, the effects of PM2.5
emissions from neighboring provinces are less remarkable.

4.2. Zoning Features and Policy Implications

Category one is a region characterized by its sensitivity to environmental factors,
mostly found in the northern and eastern provinces. Air circulation and forest growth
play a significant role in reducing PM2.5 and CO2 levels in this area. On the one hand,
establishing ventilation corridors is crucial. A multi-level ventilation corridor system is
constructed in the city based on the prevailing wind direction and existing natural cold
sources such as green areas, parks, forests, rivers, and lakes. Building new high-rise
structures along these ventilation corridors is strictly prohibited. On the other hand, forest
conservation efforts need to be improved. Activity involving greenery and afforestation
initiatives should be increased, focusing on reforesting shallow and barren slopes and
expanding forested areas in the plains. The use of equipment and infrastructure to improve
technical capacity for managing and monitoring forest resources should be expanded. The
surveillance, prevention, and management of wildlife disease reservoirs to promote the
health of forest ecosystems should also be enhanced.

Category two denotes the integrated sensitivity type, primarily affecting provinces
in northwestern China. Variables such as vegetation cover, the proportion of tertiary
industry, and emission reduction efficiency have an important effect on air pollution
and carbon reductions in these provinces. Firstly, afforestation, returning farmland to
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forests, returning pasture to grassland, and other greening efforts will be consistently
implemented. Secondly, this category focuses on developing tourism, culture, exhibition,
and other industries based on available resources and comparative advantages. It also aims
to strengthen logistics, commerce, finance, and information services to enhance the tertiary
industry’s development and competitiveness. Thirdly, the region should accelerate the
transition of energy systems and enhance the development of clean energy. Furthermore,
enterprises should be incentivized to enhance reduction efficiency through strategies
including process improvement, energy substitution, energy saving, and a more thorough
approach to treatment.

Category three is classified as a passive influence and is mainly located in the southern
and southwestern provinces. This group shows better a performance in PM2.5 and CO2
reduction, and the influence of topographical relief and PM2.5 emissions from neighboring
provinces is relatively greater. However, these provinces find it challenging to alter or adapt
to these pressures by changing themselves. Therefore, regional joint prevention and control
is necessary to establish a unified planning, monitoring, supervision, and evaluation mecha-
nism among provinces. This involves categorizing areas into key control zones and general
control zones based on geographic features, socioeconomic development levels, atmo-
spheric pollution degrees, city distributions, and atmospheric pollutant transport patterns.
Targeted pollution prevention and control strategies can then be developed accordingly.

4.3. Research Limitations and Future Prospects

The data used in this study were collected at the provincial level and represent each
province’s average. In provinces with vast land areas like Inner Mongolia, specific variables
like ENP might either enhance or diminish their impacts on other provinces, thereby causing
a bias in the regression outcomes. The influencing factors selected are not comprehensive
enough. For instance, the ERE indicator should also consider the emission reduction
efficiencies of transportation and industrial end-of-pipe measures. In addition, economic
policies such as environmental taxes and carbon emissions trading were not included as
influencing factors due to data availability.

A city is characterized by high-density human socioeconomic activities, and is the
primary source of air pollutants and CO2 emissions. Consequently, a city is the most critical
entity in effectively managing local air pollutants and CO2 emissions, as well as the solution
to the issues associated with air pollution and climate change. In further studies, detailed
data will be gathered for research on an urban scale. Reduction measures will be refined,
such as upgrading industrial boilers, promoting clean fuels in the residential sector, phasing
out yellow-label and old vehicles, revising economic policies, etc. This may offer valuable
insights into the regional variations in the driving effects of synergistic reduction, as well
as insights into appropriate strategies for the co-control of local air pollutants and CO2.

5. Conclusions

In this study, the reduction indexes of PM2.5 and CO2 were calculated by carefully
considering their reduction bases, reduction efforts, and reduction stabilities. Then, the
synergistic reduction effect was evaluated by an exponential function with the PM2.5 reduc-
tion index as the base and the CO2 reduction index as the exponent. The results indicate
that, except for the southeastern and southwestern provinces, the remaining provinces are
ineffective in synergizing PM2.5 and CO2 reductions. Next, the elements concerning the
synergistic reduction effect were analyzed based on natural settings (air circulation, topog-
raphy, and vegetation), socioeconomic conditions (economic level and emission reduction
efficiency), and external emission impacts. The MGWR model was utilized to examine
the directions and magnitudes of the impacts of various influencing factors. The results
demonstrate that air circulation, vegetation, tertiary industry ratio, and emission reduction
efficiency are major impact indicators that have a positive effect. The topography and
the emissions from neighboring provinces have a statistically significant negative impact.
The varying degrees of influence from different factors exhibit a spatial distribution trend



Toxics 2024, 12, 498 14 of 16

characterized by high-high aggregation and low-low aggregation. Finally, the k-means
clustering method was applied in order to identify the similarities and differences between
the coefficients of influencing factors across the 31 provinces. A silhouette coefficient was
created to assess the quality of clustering and identify a suitable number of clusters. The re-
sults prove that the highest average silhouette coefficient occurs when k = 3, indicating that
the most ideal clustering number is 3. Thus, the 31 provincial administrative regions were
divided into three categories. Following this, suggestions on the corresponding categories
have been proposed, to provide a scientific reference to the synergistic reduction of PM2.5
and CO2. The relevant findings can clarify the direction of the synergistic management of
air pollution and carbon emissions across different regions, in light of their natural envi-
ronmental characteristics and socioeconomic development conditions. On this basis, more
scientific and reasonable policies and measures for synergistic reduction can be formulated
to achieve optimal allocation and efficient utilization of resources in all aspects.
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