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Abstract: Wound dressings play a crucial role in promoting wound healing by providing a protective
barrier against infections and facilitating tissue regeneration. Electrospun nanofibers have emerged
as promising materials for wound dressing applications due to their high surface area, porosity,
and resemblance to the extracellular matrix. In this study, chitosan, a biocompatible and biodegrad-
able polymer, was electrospun into nanofibers for potential use in wound dressing. The chitosan
nanofibers were characterized by using various analytical techniques to assess their morphology and
biocompatibility. Scanning electron microscopy (SEM) revealed the formation of uniform and bead-
free nanofibers with diameters ranging from tens to hundreds of nanometers. Structural analysis,
including Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), elucidated
the chemical composition and crystalline structure of the nanofibers. Furthermore, in vitro studies
evaluated the cytocompatibility of the chitosan nanofibers with human dermal fibroblasts, demon-
strating cell viability and proliferation on the nanofibers. Additionally, antibacterial properties were
assessed to evaluate the potential of chitosan nanofibers in preventing wound infections. Overall,
the characterization results highlight the promising attributes of electrospun chitosan nanofibers as
wound dressings, paving the way for further investigation and development in the field of advanced
wound care. This study has been carried out for the first time in our region and has assessed the
antibacterial properties of electrospun chitosan nanofiber material. The created mat has shown
efficaciousness against bacteria that are both gram-positive and gram-negative.
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1. Introduction

Nanofiber materials have attracted significant attention due to their remarkable advan-
tages in various applications. The interaction between these materials and their environ-
ment occurs primarily on the surface, so an increased surface area significantly enhances
performance [1]. Research has shown that nanofibers have a much larger surface area
compared with bulk or 2D materials [1,2]. Despite this, they retain the inherent physical
properties of their base materials, which is crucial for applications demanding specific phys-
ical strength [3]. Nanofibers, ranging from a few nanometers to several micrometers, exhibit
high surface area-to-volume ratios, small pore diameters, high porosity, low density, and
superior mechanical properties, making them ideal for various applications [4]. They can
be produced through methods like template synthesis, drawing, self-assembly, electrospin-
ning, and phase separation [5]. Electrospinning is a highly effective method for producing
submicron-sized fibers, with some as thin as several nanometers [6]. In this technique, an
electric field applied between a needle capillary and a collector induces a surface charge on
a polymer fluid, deforming it into a conical shape. When the electric field exceeds a certain
threshold, electrostatic repulsion overcomes surface tension, ejecting a charged fluid jet
from the Taylor cone tip. This charge density interacts with the external field, creating an
instability that enhances a whipping mode, which stretches the polymer fibers and rapidly
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evaporates the solvent. Key parameters in electrospinning include polymer and solution
properties like molecular weight, viscosity, conductivity, and surface tension, along with
electrospinning conditions such as applied high voltage, tip-to-target distance, and flow
rate [7]. One of the key advantages of electrospinning is its ability to fabricate nanofibers
from a wide range of materials including synthetic polymers, natural polymers, and their
blends. This versatility allows for the production of nanofibers with tailored properties
suitable for various applications such as tissue engineering, drug delivery, filtration, and
wound dressing [8]. Chitosan is an N-deacetylated product of chitin, the second-most
abundant natural polysaccharide next to cellulose, which is embedded in a protein matrix
of a crustacean shell or a squid pen [9].

Chitosan has garnered significant attention in wound healing due to its biocompatibil-
ity, biodegradability, and antimicrobial properties [10] Wound healing is a critical biological
process integral to tissue regeneration and repair [11]. Traditional wound dressings often
fail to maintain moisture or provide antibacterial protection. For instance, gauze offers
limited protection due to poor hydrophilicity [12,13], while hydrogel dressings soothe
wounds but risk maceration and bacterial growth [14]. Alginate dressings accelerate heal-
ing but lack bacteriostatic effects [15], and collagen dressings promote healing but may
cause immune rejection [16]. Silver nanoparticles dressings are antibacterial but pose
health risks due to accumulation [17]. To enhance wound healing, dressings need to main-
tain moisture and offer antibacterial properties. Electrospun nanofiber dressings excel
in promoting tissue regeneration and wound healing by enhancing cell proliferation and
migration [18]. Chitosan-based dressings, being biocompatible, are especially effective [19].
Thus, electrospun nanofibers represent a promising advancement in wound care.

The synergy between chitosan and electrospinning presents a compelling strategy for
the development of advanced wound dressings. Chitosan-based nanofibers offer several
advantages, including high surface area-to-volume ratio, tunable mechanical properties,
and excellent biocompatibility, which are essential for promoting wound healing. Addi-
tionally, the antibacterial properties of chitosan make it particularly suitable for combating
infections in chronic wounds [20].

Chitosan-based nanofibers offer several advantages for wound healing. Their high
surface area-to-volume ratio provides an extensive contact area with the wound bed,
facilitating cell attachment, migration, and proliferation. The porous structure of these
nanofibers enables efficient moisture management and creation of a conducive environment
for wound healing by maintaining optimal moisture levels [21].

In summary, electrospun chitosan nanofibers hold great promise for wound dressing
applications, offering a combination of biocompatibility, antimicrobial activity, and me-
chanical properties essential for effective wound healing [22]. Porosity and wettability are
critical characteristics of chitosan nanofibers that significantly influence their performance
in various applications, particularly in fields such as tissue engineering, drug delivery, and
wound dressing. Wettability refers to the ability of the surface of a material to interact with
a liquid, determining whether the liquid spreads or beads up on the surface [23].

Chitosan nanofibers typically exhibit hydrophilic properties, which means that they
have a high affinity for water. Additionally, the hydrophilic surface of chitosan nanofibers
enhances the absorption and retention of wound exudate in wound dressing applications,
maintaining a moist wound environment conducive to healing. In summary, the porosity
and wettability of chitosan nanofibers play integral roles in their performance and func-
tionality across various applications. Their high porosity facilitates fluid transport and
molecular diffusion, while their hydrophilic nature promotes cell adhesion and wound
healing processes, making them versatile materials for biomedical and biotechnological
applications [24].

Antibacterial activity is highlighted for its significant impact on public health, hy-
giene, and safety across various domains including healthcare, the food industry, and
environmental protection. Antibacterial agents play a crucial role in preventing infec-
tions, promoting wound healing, curbing healthcare-associated infections, preserving food
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quality, and combating antibiotic resistance. Notably, various infectious bacterial species,
including both gram-positive (e.g., Staphylococcus aureus) and gram-negative (e.g., Pseu-
domonas aeruginosa), frequently infiltrate wound areas, hindering the healing process and
necessitating effective antibacterial strategies [25]. Because of its remarkable antibacterial
qualities—which are a result of interactions with bacterial membranes and the prolonged
release of active chitosan molecules—chitosan nanofibers have become more and more
popular in biomedical applications [26]. Because of their larger surface area and improved
interaction with bacterial cells, these nanofibers are more effective against bacteria than
bulk chitosan, which makes them useful for antimicrobial coatings, tissue scaffolds, and
wound dressings [27]. Chitosan nanofiber functionalization minimizes systemic effects by
encasing antibacterial compounds for targeted distribution [28]. The study emphasizes
how adaptable chitosan nanofibers are as strong antibacterial substances to fight illnesses
and improve public health [29]. Trifluoroacetic acid (TFA) provides exact control over the
morphology and content of chitosan nanofibers electrospun by [30]. TFA-based electrospin-
ning yields homogeneous nanofibers with a fine structure and advantageous mechanical
properties. Due to their high surface area-to-volume ratio, biocompatibility, and ability
to promote cellular functions, these nanofibers show tremendous promise in biomedical
applications such as tissue engineering, wound healing, and drug delivery [31].

The knowledgeable gap in the study of nanofibers used for wound dressing lies in
the lack of the comprehensive understanding of their properties, particularly in specific
geographical regions or contexts. While there exists research on chitosan-based wound
dressings and electrospun nanofibers, there may be limited studies focusing on the detailed
characterization of these materials fitted for wound dressing applications in certain regions.

This study focuses on the characterization of chitosan nanofibers for wound dressing
applications, particularly within the region of interest, aiming to contribute to wound care
technology advancement and innovative wound dressing development tailored to local
patient needs. The research outlined in the provided material delves into a systematic
exploration of how different operational parameters influence the morphology, wettabil-
ity and porosity of electrospun chitosan nanofibers. Detailed analysis is conducted on
parameters including applied high voltage, solution flow rate, solution concentration,
needle diameter, and tip-to-target distance. The primary focus of the current study is to
evaluate the appropriateness of these nanofibers for showcasing antibacterial properties.
More specifically, the research aims to assess their efficacy against both gram-positive and
gram-negative microorganisms.

2. Materials and Methods
2.1. Materials

Chitosan polymer (300–1000 cps) was obtained from Glentham Life Sciences Ltd.,
Corsham, UK, Trifluoroacetic acid (TFA), with a purity of ≥99.9%, and the salt tetrabuty-
lammonium bromide (TBAB), with a purity of ≥99% and a molecular weight of 322.4
g/mol, were provided by CARL ROTH, Karlsruhe, Germany

2.2. Determination of the Molecular Weight

To determine the average of molecular weight of the chitosan used in this work, we
employed the intrinsic viscosity method using an Ostwald viscometer at 25 ◦C. A buffer
solution composed of 0.15 M ammonium acetate and 0.2 M acetic acid was prepared.
To estimate the average molecular weight of the chitosan, the Mark–Houwink equation
[η] = k.Ma was used, where [η] is the intrinsic viscosity, M the viscosity-average molecular
weight, and k= 9.66 × 10−5 dm3/g and a = 0.742 and both are empirical constants [32]. The
calculated viscosity-average molecular weight of the chitosan used in this work was found
to be M = 418 kDa.
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2.3. Determination of Degree of Deacetylation (DD)

To determine the degree of deacetylation (DD) of the chitosan sample, we used
Fourier transform infrared (FTIR) spectroscopy transmission data with the formula [33],
[DD% = 100% − ((A1320/A1420 − 0.3822) / 0.03133)%]. A1320/A1420 is the absorbance ra-
tio of the band at 1320 cm−1 for N-acetylglucosamine to the reference peak at 1420 cm−1,
which was suggested by [34]. This method aligns with proton nuclear magnetic reso-
nance (¹H NMR) results, is unaffected by humidity and water content, and provides low
experimental error [33]. The determined value of DD was 89%.

2.4. The Preparation of Electrospinning Solutions

The preparation of 2%, 6%, and 8% chitosan solutions involved dissolving chitosan
in trifluoroacetic acid (TFA) and sonicating each solution separately for 3 h at 55 ◦C using
an ultrasonic cleaner (Model: VGA-1620 QTD) Gemini Lab Apeldoorn, The Netherlands.
The electrospinning process utilized stainless steel needles with sizes ranging from 0.3 to
0.6 mm, with the solutions loaded into 5 mL plastic syringes.

2.5. Electrospinning Process

The electrospinning system that was used in this study is shown in Figure 1. It consists
of three main parts, namely, the syringe pump type (ZS-100) Chonry, Baoding, China,
0–40 KV high voltage power supply Precision Pump Co., Ltd. Baoding, China, and a plate
collector covered by aluminum foil that was used as a target to collect electrospun non-
woven nanofibers. The target was enclosed within an airtight plastic chamber with glass
windows. The syringe pump was put outside of the chamber with its needle leaded through
the glass window into the chamber towards the plate collector. Throughout this study, the
distance between the needle tip and the collection was varied from 120 to 180 mm. Flow
rates ranged from 0.1 to 0.5 mL/h, and high voltages between 14 and 20 kV were applied.
Subsequently, the mats were extracted from the aluminum foil target post-electrospinning
and transferred to a desiccator for subsequent analysis.
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Figure 1. Electrospinning system.

2.6. Antibacterial Activity Method

Chitosan samples, comprising nanofibers and polymers, were manufactured according
to the proper procedures and aseptically in order to assess the antibacterial activity against
E. coli and S. aureus. The standard disc diffusion method was then used to test the samples.
Standard antibiotic discs were placed on the agar surface after bacterial suspensions at
uniform quantities were inoculated onto Mullar Hinton agar plates, manufactured by
Muller Hinton Agar, Difco, Detroit, MI, USA For the polymer samples, chitosan nanofibers
were directly deposited after 24 h of incubation at 37 ◦C. The inhibition zones surrounding
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the chitosan samples were assessed in terms of hours for bacterial growth to determine
whether there were any appreciable variations in the antibacterial activity of the polymer
and chitosan nanofiber samples against the two bacterial strains. The widths of these zones
were measured and statistically analysis was performed.

2.7. Characterizations
2.7.1. Scanning Electron Microscope

The surface morphology of the chitosan nanofibers was investigated using an The
SEM (scanning electron microscope) used is a Phenom Pro G6 model manufactured by
Thermo Fisher Scientific, which is based in Waltham, MA, USA. Image J software Java
1.8.0_172 (64-bit) was utilized to analyze the diameters of the chitosan nanofibers and
their distribution. To determine the mean diameter and standard deviation, approximately
one-hundred fibers were randomly selected from various regions of an SEM image.

2.7.2. Fourier Transform Infrared Spectroscopy (FTIR)Spectroscopy

The functional groups of the produced samples were recorded using a spectropho-
tometer (Model 1800) is manufactured by Shimadzu Corporation, based in Kyoto, Japan,
operating at wavelengths ranging from 400 to 4000 cm−1 with 100 scans. Subsequently,
Origin Pro 2021 Software was employed to plot the curve.

2.7.3. X-ray Diffraction (XRD)

To explore the crystallinity characteristics, the 2θ angles of the samples were measured
using a Philips diffractometer (model PW1730), Eindhoven, The Netherlands. Measure-
ments were taken within the range of 0 to 70 degrees at a speed of 0.02 s−1, with the
instrument operating at 35 kV and 25 mA.

3. Results and Discussion
3.1. Parameter Effects on Nanofiber Morphology
3.1.1. Effect of High Voltage

The effect of high voltage on nanofiber diameter is a critical aspect in the electrospin-
ning process. Generally, increasing the voltage leads to the elongation and thinning of the
polymer jet ejected from the spinneret. This results in the formation of finer nanofibers with
a reduced diameter. Higher voltages create stronger electrostatic forces, which cause the
polymer solution to stretch and elongate more, leading to thinner fibers. As the high voltage
varies, the diameter of produced nanofibers fluctuates while the extrusion rate remains
constant. Increasing the high voltage from 14 to 16, 18, and 20 kV resulted in a decrease in
nanofiber diameter. Figure 2 displays SEM micrographs of the produced nanofibers, along
with corresponding histograms illustrating the variation in diameter distribution for each
high voltage value. The decrease in nanofiber diameters can be attributed to changes in
electrostatic forces induced by the higher voltage, causing the solution to extrude more
rapidly from the needle. The voltage increase generates a stronger electric field, propelling
the jet ejected from the nozzle further towards the collector, ultimately producing finer
nanofibers. A similar trend was observed by [35]. in a previous study where they noted
a slight decrease in nanofiber diameters with an increase in applied voltage at a fixed
distance. Under constant distance and flow rate conditions, the average fiber diameter
decreased from 910 nm at 5 kV to less than 150 nm at 25 kV [35].
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Figure 2. Effect of high voltage on the average nanofiber diameter distribution ((a): 143, (b): 149,
(c): 160, and (d): 212 nm), respectively, from a 6% wt chitosan/TFA solution (tip-to-target distance:
10 cm; flow rate: 0.4 mL/h), high voltage: 20, 18, 16, and 14 kV.

3.1.2. Effect of Flow Rate

Variations in the flow rate of the precursor solution passing through the needle have a
notable impact on the morphology of electrospun nanofibers. As the flow rate increases
(ranging from 0.1 to 0.5 mL/h), there is a corresponding increase in the mean nanofiber
diameter, measured at 180, 184, 193, 198, and 209 nm, as illustrated in the SEM micrographs
and histograms presented in Figure 3. This increase is attributed to the expansion of the
initial radius and volume of the electrospinning jet. Achieving uniform, beadless electro-
spun nanofibers requires careful control of the precursor solution flow rate. Inadequate
withdrawal of solution from the nozzle tip may lead to intermittent leaking and bead
formation, as demonstrated by the observed impact of the flow rate on the electrospun fiber
diameter. At flow rates below 0.2 mL/h, the spinning fluid dries up and the electrospinning
process halts. Consequently, an increase in flow rate results in larger fiber diameters and a
wider distribution of fiber sizes. This effect may lead to the formation of larger-diameter
beaded fibers at higher flow rates due to a decrease in electrostatic density [36,37].
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Figure 3. Effect of flow rates on the average nanofiber diameter distribution ((a): 180, (b): 184,
(c): 193, (d): 198, and (e): 209 nm), respectively, from a 6% wt chitosan/TFA solution (high voltage:
20 kV; tip-to-target Distance: 10 cm), flow rate: 0.1, 0.2, 0.3, 0.4, and 0.5 mL/h.



Polymers 2024, 16, 1984 8 of 21

3.1.3. Effect of Tip-to-Target Distance

The influence of the distance between the needle tip and the collector is depicted in
Figure 4. As the distance increased from 12 cm to 14 cm, 16 cm, and 18 cm, the fiber size
decreased, measuring 258 nm, 256 nm, 228 nm, and 179 nm, respectively.. The distance
between the needle tip and the collector is influenced by various factors, including deposi-
tion time, evaporation rate, and the interval between whipping or instability. This distance
determines the speed of the jet and the distance it travels before settling on the collector,
allowing sufficient time for solvent evaporation [38–41].
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Figure 4. Effect of tip-to-target distance on the average nanofiber diameter distribution ((a): 258,
(b): 2556, (c): 228, and (d): 179 nm), respectively, from a 6% wt chitosan/TFA solution (high voltage:
20 kV; flow rate: 0.4 mL/h), distance: 12, 14, 16, and 18 cm.

3.1.4. Effect of Needle Diameter

SEM micrographs of chitosan nanofibers produced with four different needle sizes are
presented in Figure 5. The mean fiber diameters for samples a, b, c, and d were determined
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as 226, 218, 172, and 134 nm, respectively. This indicates a relationship between needle
diameter and fiber diameter. The increase in fiber diameter with larger needle sizes can be
attributed to the expanded size of the droplet at the needle tip. As the droplet size increases,
the surface tension decreases, requiring less columbic force to initiate jet formation under
the same applied voltage. Consequently, the jet accelerates more rapidly, giving the solution
less time to stretch and elongate before collection, leading to larger fiber diameters. This
finding is consistent with previous research [42], which observed that nanofibers produced
with smaller needle diameters exhibited smoother, thinner, bead-free characteristics and
showed no signs of agglomeration.
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Figure 5. Effect of needle diameter on the average nanofiber diameter distribution ((a): 226, (b): 218,
(c): 172, and (d): 134 nm), respectively, from a 6% wt chitosan /TFA solution (high voltage: 20 kV;
flow rate: 0.4 mL/h, tip-to-target distance: 10 cm), needle diameter: 0.6, 0.5, 0.4, and 0.3 mm.

3.1.5. The Effect of Solution Concentration

The findings reveal that nanofibers produced at different chitosan/TFA concentrations
exhibit consistent length, smooth texture, and absence of beads. Figure 6 demonstrates
the significant impact of polymer concentration on the average diameter of electrospun
chitosan-based nanofibers. As the chitosan/TFA solution concentration increases from 2%
to 6% and 8% by weight, the average fiber diameters noticeably increase, measuring 144,
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172, and 367 nm, respectively. This trend can be attributed to the elevated concentration
and viscosity of the polymeric solution, which impedes the stretching of the charged jet.
Consequently, polymer chains elongate and become more entangled to overcome surface
tension. The increased size and weight of the fibers result in denser mat formation during
electrospinning [43,44].
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Figure 6. Effect of solution concentration on the average nanofiber diameter distribution ((a): 144,
(b): 172, and (c): 367 nm), respectively, from a 2% wt, 6% wt, and 8% wt chitosan/TFA solution
(voltage: 20 kV; flow rate: 0.4 mL/h; tip-to-target distance: 10 cm; needle diameter: 0.6 mm).

3.1.6. Effect of High Voltage with Salt on Nanofiber Diameter

When employing a 6% solution with 0.0003 gm of tetra butyl ammonium bromide
(TBAB), the resultant nanofiber diameter varied with voltage changes while keeping the
extrusion rate constant. With high voltage increased from 14, 16, and 18 to 20 kV, the diam-
eter of the nanofiber decreased. SEM micrographs of the produced nanofibers are shown in
Figure 7, together with matching histograms that show how the diameter distribution of
the nanofibers varies for each high voltage value. A change in electrostatic forces caused by
the higher high voltage is responsible for the decrease in nanofiber diameters because it
causes the solution to extrude from the needle more quickly. The expelled jet travels farther
from the nozzle to the collector due to the stronger electric field created by the voltage
increase [45,46].
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Figure 7. Effect of high voltage with salt on the average nanofiber diameter distribution ((a): 161,
(b): 160, (c): 147, and (d): 112 nm), respectively, from a 6% wt chitosan/TFA solution (tip-to-target
distance: 10 cm; flow rate: 0.4 mL/h), high voltage: 20, 18, 16, and 14 kV.

3.2. Water Contact Angle Measurement

In biomedical applications, the wettability of nanofibers is an essential feature that
affects protein absorption and cell adhesion. The water contact angles of the nanofibers
were then measured by carefully dropping distilled water onto the sample surface. A
video monitor was used to measure contact angles, and several measurements were made
for every sample group. In order to comprehend the wetting behavior of the films, the
wettability of the samples was evaluated using the measurement of water contact angles.
The water contact angles values 35.6, 40.8, and 73.4 were significantly increased with
different concentrations of chitosan nanofibers (2, 6, and 8 wt%), as shown in Figure 8. On
the other hand, the water contact angle values decreased with increasing the high voltage
levels (14, 16, 18, and 20 kV), as shown in Figure 9 (97.0, 89.6, 78.3, and 73.4). The surface
became hydrophilic, and Figure 10 (15.5, 16.4, 19.2, 20.1, and 22.2) and Figure 11 (17.2, 18.4,
19.4, and 23.3) illustrate this pattern with higher flow rates (0.1, 0.2, 0.3, 0.4, and 0.5 ml/h)
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and variable needle diameters (0.3, 0.4, 0.5, and 0.6 mm). These results imply that when
the tip-to-target distance and high voltage are raised, the hydrophobic characteristics of
chitosan nanofibers may be connected to the surface roughness that is produced [47,48].
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Figure 8. Variation of the contact angle of water droplets on electrospun chitosan nanofiber mat with
the solution concentration.
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Figure 9. Variation of the contact angle of water droplets on electrospun chitosan nanofiber mat with
the high voltage.
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Figure 10. Variation of the contact angle of water droplets on electrospun chitosan nanofiber mat
with the flow rate.
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Figure 11. Variation of the contact angle of water droplets on electrospun chitosan nanofiber mat
with the needle diameter.

3.3. Impact of Nanofiber Porosity

Every nanofiber membrane in our investigation has a porosity greater than 30%. A
relationship between membrane porosity and nanofiber diameter wettability was found.
Since the random deposition of nanofibers occurs during electrospinning to generate the
non-woven nanofiber, the fibrous architecture should be related to the applied voltage, the
material dielectric characteristic, and the nanofiber. Additionally, it was shown that, as
predicted, a high porosity increased the permeability of the membrane to air and moisture.
The fiber diameter, which is mostly influenced by the flow rate during the electrospinning
process, has a significant impact on the porosity in the electrospun nanofiber [49]. By
modifying the electrospinning parameters such as solution concentration, applied voltage,
flow rate, tip-to-target distance, and all other solution and process factors it is possible to
control the fiber diameter. Controlling the porosity percentage in contrast to fiber diameter
is more challenging and closely correlated with the former [50].

The subsequent formulas were employed to calculate the porosity of the nanofiber
mat [51]

Porosity (%) = [1 − Densityapparent (g/cm3)/Densitymaterial (g/cm3)] * 100% (1)

Densityapparent (g/cm3) = Mass (g)/(Thickness (cm) * Area (cm2)) (2)

The sample has a thickness of 0.05 mm, a mass of 0.0016 g, and an area of 1 cm², with
a material density of 1 g/cm³. As observed in Figure 12, increasing the flow rate from
0.1, 0.2 to 0.3, 0.4, and 0.5 mL/h decreased the porosity. Figure 13 shows that the porosity
increased with an increase in the high voltage, but with adding salt the porosity increased
at 14,16,18 kV, then started to decrease after 18, 20, and 22 kV with salt (0.0003 g), while
Figure 14 shows a decrease in porosity with an increase in the needle diameter from 0.2 to
0.5 mm, and then a raise in porosity when the needle diameter increased from 0.5 to 0.6 cm,
and then stayed the same from 0.6 to 0.7 mm. In Figure 15, the porosity increased when
the concentration increased from 2% to 6%, then decreased at 8%, respectively, comparable
to [52].
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Figure 12. The effect of increasing flow rate on the porosity (%).
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3.4. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 16 shows that the Fourier transform infrared (FTIR) spectra of pure chitosan
and chitosan nanofibers reveal notable peaks indicative of their chemical compositions. In
pure chitosan, peaks at 3460 cm−1 and 2873 cm−1 signify O-H stretching vibrations and
C-H stretching vibrations in CH2 and CH3 groups, respectively. Peaks at 1647 cm−1 and
1577 cm−1 [53] correspond to the amide bands, specifically amide I and amide II, suggesting
the presence of protein-like structures. The peaks at 1423 cm−1 and 1381 cm−1 are associated
with CH2 and CH3 bending vibrations, while the peak at 1330 cm−1 represents amide III.
Comparatively, the FTIR spectrum of chitosan nanofibers exhibits similar peaks, albeit
with slight shifts and variations. Notably, the O-H stretching vibration peak shifts to a
lower wavenumber (3464 cm−1), indicating potential alterations in hydrogen bonding
interactions due to nanofiber morphology or structure. Despite these differences, common
features such as C-H stretching vibrations, amide bands, and glycosidic bond skeletal
vibrations persist in both spectra, signifying the preservation of the fundamental chitosan
structure. These spectral distinctions offer insights into the chemical composition and
structural modifications between pure chitosan and chitosan nanofibers.
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Figure 16. FTIR spectra of the chitosan powder (black) and chitosan nanofiber (red).

In comparing the FTIR spectra peaks of pure chitosan and chitosan nanofibers, no-
table differences and similarities emerge, shedding light on the structural transformations



Polymers 2024, 16, 1984 16 of 21

induced by the electrospinning process. In pure chitosan, characteristic peaks are observed
at 3460 cm−1 (O-H stretching), 2873 cm−1 (C-H stretching), 1647 cm−1 (amide I band), and
1577 cm−1 (amide II band), among others [54]. Conversely, chitosan nanofibers exhibit
shifts or alterations in these peaks, with notable peaks observed at 3464 cm−1, 2981 cm−1,
1573 cm−1, and 1423 cm−1, respectively [55]. These changes in peak positions or intensities
suggest modifications in the hydrogen bonding pattern, molecular conformation, and
chemical environment of chitosan molecules post-electrospinning. Shifts towards lower
wavenumbers in certain peaks may indicate increased interactions or structural rearrange-
ments induced by the electrospinning process. Additionally, variations in peak intensities
or shapes reflect alterations in functional groups or molecular configurations.

These spectral differences highlight the impact of processing techniques on the struc-
tural properties of chitosan nanofibers, offering valuable insights for their tailored design
and optimization for various applications.

3.5. X-ray Diffraction (XRD)

The XRD pattern for both of chitosan polymer and electrospun chitosan nanofibers are
depicted in Figure 17. The diffraction pattern of bulk chitosan shows a high-intensity broad
hump at the angle 2θ = 20◦ and a relatively smaller and yet broader hump at 2θ = 29◦. This
indicates that the chitosan used in this work has somewhat low oriented planes of small
crystallites at those angles. Furthermore, it has an amorphous structure. On the other hand,
the XRD pattern of the non-woven nanofiber mat of chitosan shows that the two humps
were diminished and disappeared. This implies that the electrospun nanofibers have a
great effect on the crystalline structure of chitosan by decreasing the preferred orientation
of reflection planes. This could be attributed to the compatibility of the electrospun chitosan
nanofiber mat that causes the disruption of the chitosan crystalline network in the presence
of nanofibers. The disappearing of XRD peaks in case of electrospun nanofibers can be
interpreted by the fact that, during electrospinning, the solution jet is elongated by the
effect of the electric field, and the solvent evaporates and nanofibers are solidified before
chitosan polymer macromolecules are arranged into crystals since they need days for
crystallization. Therefore, the chitosan nanofiber crystal structure is not observed within
the XRD pattern [56].
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3.6. Antibacterial Activity

The antibacterial activity of the produced nanofibers is shown in Figure 18 and Table 1.
The chitosan natural polymer showed relatively no antibacterial activity against E. coli
and S. aureus. On the other hand, results for the chitosan nanofibers revealed a noticeable
antibacterial potential against both tested gram-negative (E. coli) and gram-positive (S.
aureus) bacteria, as shown in Figure 18 and Table 1. Chitosan has been shown in numerous
investigations to have varying antibacterial effects against both gram-positive and gram-
negative bacteria. Many studies reported that chitosan showed variable antibacterial effect
against gram-negative and gram-positive bacteria. Using a range of testing methods, multi-
ple researchers have investigated the antibacterial activity of distinct chitosan molecules
from different sources. Molecular weight (Mw), the degree of deacetylation (DD), pH, test
strains, and other external and intrinsic variables were frequently the cause of differences
in the results obtained. Conversely, disparities in the outcomes of chitosan’s antimicrobial
susceptibility tests might also be caused by the use of different testing techniques [57,58]. In
the current study, the disk diffusion method was used to measure the in vitro susceptibility
of bacteria to chitosan, which is the most popular method used to examine the antimicrobial
activity of natural products including chitosan. This method measures the inhibition zone
size, which is then converted to categories of susceptible/intermediate/resistant based on
CLSI recommendations [59]. Additionally, it has been reported that chitosan as a natural
polymer (bulk chitosan) exhibits low-to-moderate antibacterial effectiveness compared
with that of the chitosan nanofibers, which are well known to exhibit high, enhanced,
and superior antibacterial effectiveness. This is mainly because chitosan nanofibers have
a significantly higher surface area compared with bulk chitosan, which allows for more
interactions with bacteria, potentially enhancing antibacterial activity. Further, due to
their nano-scale dimensions, chitosan nanofibers can provide better contact efficiency with
bacteria compared with bulk chitosan. This increased contact can lead to more effective
antibacterial action [60–62]. These results provide insights into the efficacy of chitosan as an
antibacterial agent against E. coli and S. aureus, and show its value in various biomedical and
industrial applications. Furthermore, it may suggest that the topology of chitosan-based
fibers presents a significant opportunity for creating flexible fibrous scaffolds for incorpo-
rating several antibacterial and bioactive substances into the chitosan-based structure of
fibers to boost the antibacterial effects and prevent bacterial infections.
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Table 1. Antibacterial test measurements.

Material S. areous E. coli

chitosan powder (CSP) 8 mm chitosan powder (CSP) 7 mm

chitosan nanofiber (CSN) 18 mm chitosan nanofiber (CSN) 11 mm

4. Conclusions

Electrospinning is a useful technique for utilizing biopolymeric ingredients to create
non-woven mats for wound healing. Throughout all of this research, electrospun chitosan
nanofibers were prepared successfully. In order to achieve the best fine, smooth, free-of-
beads chitosan nanofibers to be useful for an antibacterial wound dressing, investigations
of the effects of the applied high voltage, solution flow rate, solution concentration, the
tip-to-target distance, and the needle diameter on the morphology, wettability, and porosity
of the electrospun„ chitosan nanofibers were carried out. To summarize, the primary con-
clusions drawn from the study of electrospun nanofibers indicate that multiple parameters
significantly impact the morphology and quality of the nanofibers. First off, high voltage
during electrospinning has a major effect on nanofiber diameter; SEM study shows that
the higher voltage produces finer fibers because it enhances polymer stretching. Second,
the shape of the nanofibers is greatly influenced by changes in the flow rate of the pre-
cursor solution; greater flow rates result in bigger fiber diameters and possibly even bead
formation. Furthermore, the distance between the needle tip and collector is critical since
longer distances are associated with smaller fibers, which can be attributed to variables like
solvent evaporation rate and deposition duration. Moreover, the diameter of the needle
influences the morphology of the fiber; larger needles result in higher fiber diameters
because they produce larger droplets with a lower surface tension. Furthermore, the diam-
eter of the nanofibers is influenced by the solution concentration; higher concentrations
result in larger fibers because of higher solution viscosity. Lastly, nanofiber diameter is
influenced by both solution composition and voltage change; finer fibers are produced at
higher voltages. Comprehending and refining these parameters is crucial in customizing
nanofiber attributes for particular uses and refining electrospinning procedures to ensure
effective nanofiber generation. A significant relationship has been found between the
nanofiber diameter, wettability, and porosity. The wettability of nanofibers is a crucial
factor in determining the absorption of proteins and the adherence of cells in biomedical
applications. Wettability was evaluated by measuring water contact angles, which showed
important trends. A decrease in hydrophilicity was indicated by an increase in water
contact angles with increasing chitosan nanofiber concentrations (2%, 6%, and 8% wt%).
On the other hand, water contact angles dropped at higher voltages (14, 16, 18, and 20 kV),
indicating increased hydrophobicity. Higher flow rates and different needle diameters did
not change this tendency, suggesting a relationship between voltage, tip-to-target distance,
and hydrophobicity of the nanofiber. Furthermore, our study of nanofiber membranes
showed that porosity levels consistently exceeded 30%, which is directly related to the
wettability and diameter of the nanofibers. Porosity was difficult to control since fiber diam-
eter and porosity are closely related to the electrospinning parameters. The porosity levels
were found to be altered by changes in flow rate, voltage, salt addition, needle diameter,
and solution concentration. This indicates the intricate interaction of parameters involved
in maximizing membrane qualities for a range of applications. Based on the results, the
electrospun chitosan nanofiber mats showed effective antibacterial activity toward both
gram-positive and gram-negative bacteria. This work provides a basic understanding of the
design of an efficient nanofiber-based antibacterial wound dressing material. Furthermore,
chitosan nanofibers serve as a promising potential antibacterial agent.

Chitosan nanofibers, made via electrospinning, show promise for wound dressings.
Their advantages include built-in antibacterial activity, high surface area for better bacterial
interaction, and promotion of wound healing. They are biocompatible and biodegradable
too. However, limitations include potential limitations in broad-spectrum antibacterial ac-
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tivity, a delicate structure requiring reinforcement, and higher production costs. Chitosan’s
acidity might also irritate some wounds, and consistent nanofiber properties require careful
processing control.
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