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Abstract: Cognitive scientists believe that adaptable intelligent agents like humans perform spatial
reasoning tasks by learned causal mental simulation. The problem of learning these simulations is
called predictive world modeling. We present the first framework for a learning open-vocabulary
predictive world model (OV-PWM) from sensor observations. The model is implemented through
a hierarchical variational autoencoder (HVAE) capable of predicting diverse and accurate fully
observed environments from accumulated partial observations. We show that the OV-PWM can
model high-dimensional embedding maps of latent compositional embeddings representing sets
of overlapping semantics inferable by sufficient similarity inference. The OV-PWM simplifies the
prior two-stage closed-set PWM approach to the single-stage end-to-end learning method. CARLA
simulator experiments show that the OV-PWM can learn compact latent representations and generate
diverse and accurate worlds with fine details like road markings, achieving 69 mIoU over six
query semantics on an urban evaluation sequence. We propose the OV-PWM as a versatile continual
learning paradigm for providing spatio-semantic memory and learned internal simulation capabilities
to future general-purpose mobile robots.

Keywords: world models; open-vocabulary semantics; generative models; BEV generation; continual
learning; self-supervised learning; mobile robots; autonomous driving

1. Introduction

Cognitive scientists believe that adaptable intelligent agents like humans represent
the world internally using a small set of foundational cognitive components for perceiving
inanimate objects, external agents, numeric concepts, social relations, and spatial envi-
ronments [1]. These cognitive abilities allow intelligent agents to perform commonsense
physical reasoning and imagine counterfactual scenarios to facilitate task accomplish-
ment [2]. One of their key capabilities is predictive world modeling [3–6].

In contrast, mobile robots are conventionally designed and programmed for per-
forming a priori specified tasks in known environments. General-purpose mobile robots
on the other hand, aim to be flexible intelligent agents that can understand novel situ-
ations and complete a wide variety of tasks in new environments by leveraging world
knowledge. Large language models (LLMs) have emerged as a promising direction for
achieving general-purpose agents [7–15]. Core LLM agent abilities include understanding
weakly specified goals defined in natural language [7], performing hierarchical planning
through task decomposition [13,14,16–18] and program synthesis [12–14], and reasoning
with commonsense world knowledge [15].
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To complete a novel task in a new environment, a general-purpose mobile robot needs
to comprehend the environment through an a priori unknown set of semantics. Vision
language models (VLMs) [19–29] are a common approach to ground rich open-vocabulary
(OV) semantics in the observed environment and connect the internal reasoning processes
of LLM agents with the external world. However, spatio-semantic reasoning tasks may
require information beyond what is currently observed. Efficiently fetching an item out
of view requires a spatio-semantic memory of where the item is located [30]. Inferring
navigational patterns like road lanes may require predictive assumptions of the unobserved
environments behind obstructions [31]. A spatio-semantic memory [32] or scene repre-
sentations [33] allow an agent to query semantics from observational memory [34–36] to
navigate [37] and plan by reasoning [15]. Common representations of spatio-semantics
include 3D reconstructions [38], object-centric and topological maps [39], scene graphs [40],
and top-down metric grid maps [6].

The representation of spatio-semantic environment states for general-purpose agents
thus requires they have the following properties: an encoded open-ended vocabulary of
semantic concepts, the ability to represent and allow the querying of overlapping semantics
(e.g., a couch is also a piece of furniture), and the ability to store observations compactly.

Latent compositional semantics [41] satisfies the above requirements.
This work proposes an open-vocabulary predictive world model (OV-PWM) as a

spatio-semantic memory and internal simulator for general-purpose mobile robots. The
OV-PWM is a latent-variable generative model that learns from egocentric partial observa-
tions to predict complete environment states represented by grounded open-vocabulary
semantics. The OV-PWM functions as an implementation of an artificial hippocampus
that learns the distribution of compact latent codes, capturing the structure of observed
environments. See Figure 1 for an overview of the model.

The explicit open-vocabulary environment representations enabled by OV-PWMs
provide several potential advantages over implicit representations and conventional of-
fline map-based mobile robots with human-annotated semantics. First, the OV-PWM can
disambiguate an observed state by substituting unknown regions with plausible predic-
tions based on prior observational experience. Committing to a particular complete state
simplifies learning policies by removing the implicit marginalization of many plausible
underlying states for state transition modeling. Secondly, OV-PWMs can integrate conven-
tional map-based and perception-based planning and control methods. For example, safer
motion planning may be achieved by sampling diverse plausible structures for unobserved
regions and accounting for worst-case scenarios. Additional potential advantages include
improving localization by densifying observations, verifying offline map consistency with
the actually observed environment, and leveraging the highly expressive but compact
latent state for planning in latent space [42]. Thirdly, learning a world model based on
grounded open-vocabulary semantics allows us to optimize a single general OV-PWM for
multiple tasks requiring different semantic perceptual information. Fourthly, leveraging
unconditional open-vocabulary semantics supports the inferring of overlapping semantics
via sufficient similarity inference [41].

The contributions of our paper are threefold:

• We propose an open-vocabulary predictive world model (OV-PWM) capable of pre-
dicting a diverse set of complete environment states represented by compositional
latent semantic embeddings h∗ [41] by learning from observational experience only.

• We mathematically and empirically show that OV-PWMs can be learned end-to-end
in a single stage, in contrast to prior conventional closed-set semantic PWMs with a
two-stage optimization scheme [6].

• We empirically demonstrate that OV-PWMs can generate accurate and diverse plau-
sible predictions in a new urban environment with fine semantic detail like road
markings, reaching 69.19 mIoU on six query semantics.

We expand on our previous predictive world modeling conference paper [6] by ex-
tending our approach from probabilistic class semantics to open-vocabulary semantics,
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simplifying the learning method from a two-stage to a single-stage end-to-end paradigm
and adding theoretical background including connecting the world model representation
to the theory of latent compositional semantics [41], and provide experimental results
demonstrating the accurate and diverse generation of high-dimensional embedding maps
queryable by sufficient similarity semantic inference [41] using the CARLA (Car Learning
to Act) simulator [43].

The rest of this paper is organized as follows: Section 2 explains how OV-PWMs
connect several fields of artificial intelligence. In Section 3, we present how to translate
observations into partial world states based on the theory of latent compositional semantics.
In Section 4, we introduce the OV-PWM, including our training and inference methods. We
present our experiments and results in Sections 5 and 6 and summarize our findings in
Sections 7 and 8.
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Figure 1. The framework integrates open-vocabulary semantic point cloud observations into a
common vector space. A predictive world model samples a set of diverse plausible complete
world states from a partially observed state. The model improves through continual learning from
experience by comparing predicted and observed future states based on predictive coding. High-
dimensional semantic embeddings are projected as RGB color values for visualization.

2. Background and Related Works
2.1. Arbitrary Conditional Density Estimation

The goal of arbitrary conditional density estimation [44–46] is to model the probability
distributions p(xu|xo), where the random variables x are partitioned into observed xo
and unobserved xu subsets. This partitioning can be interpreted differently based on the
application domain. The methods for arbitrary conditional density estimation include
various assumptions about how x is divided into xo and xu. The primary objective is to
generate diverse predictions while maximizing the likelihood of the observed data. In some
applications, the partition of x into xo and xu can represent different states or transitions
between states. The techniques for arbitrary conditional density estimation aim to model
the conditional probability distribution p(xu|xo), where the observed variables xo serve as
conditioning factors for predicting the unobserved variables xu.

Image inpainting techniques aim to predict unobserved pixels xu from observed pixels
xo, which is analogous to the problem of predicting complete world states from partially ob-
served states. A prevalent approach involves training an autoencoder (AE) [47] to compress
partially observed images xo into compact latent codes z. These latent codes encode general
visual patterns learned from reconstructing complete images x by leveraging common
visual cues. The autoencoder is trained to reconstruct the complete image x from the
partially observed input xo, thereby enabling the prediction of unobserved pixels xu.

Optimizing image inpainting models solely based on pixel-wise reconstruction can
lead to a marginalization problem, where missing regions may be filled with multiple
plausible pixel configurations, resulting in blurry outputs that represent the mean prediction
when maximizing likelihood naively. To address this issue, several approaches have
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incorporated adversarial objectives. The Context Encoder [48] introduces an adversarial
loss to improve the texture realism of inpainted regions. GLCIG [49] employs a coarse-to-
fine generation scheme with diluted convolutions and two adversarial objectives: a global
objective to ensure coherence across the entire image and a local objective to enhance detail.
Yeh et al. [50] propose searching for the closest sample in an image database and using its
latent code for prediction. Contextual Attention [51] incorporates an attention mechanism
to facilitate long-distance information crossover and employs a two-stage coarse-to-fine
generation process. Other works leverage application-specific biases for learning, such as
facial semantic segmentation objectives [52]. In contrast, our framework demonstrates how
hierarchical variational autoencoders (HVAEs) [53] and latent compositional semantics [41]
enable the generation of structurally coherent environment representations with fine detail
in a principled end-to-end manner, without requiring an adversarial objective.

Alternative approaches to image inpainting propose learning mask-aware convo-
lutional filters. Liu et al. [54] introduce a special convolution filter and a mask update
rule for propagating information about observed elements. Yu et al. [55] propose gated
convolutions for learned mask updating. Our work demonstrates that open-vocabulary
semantic embeddings naturally encode information about unobserved elements as zero
vectors, distinct from the observed elements represented by unit vectors.

Pluralistic image inpainting focuses on stochastic state completion methods based on
generative models. Generative adversarial network (GAN)-based methods [56,57] generate
multiple plausible completions by conditioning on a random vector, often employing
coarse-to-fine approaches. Variational autoencoder (VAE)-based methods [58] replace
deterministic latent code with a sampling mechanism to allow for multiple plausible
predictions. Previous works have improved training stability by constraining the latent
distribution of partially observed images to match the distribution of fully observed images.
PIC-Net [59] trains separate encoders for observable and unobservable image regions and
matches the distributions between the two. UCTGAN [60] adds a cross-attention module
to mix the latent representations of partially and fully observed images. DSI-VQVAE [61]
applies VQVAE to stabilize training. Posterior matching [6,62] presents a method for the
arbitrary conditioning of HVAEs by optimizing an additional partially observed sample
encoder to match the latent distributions of a fully observed sample encoder. While
posterior matching requires fully observed samples for training, our work experimentally
demonstrates that HVAEs have the capacity to learn the high-fidelity generative models of
not only images but also high-dimensional open-vocabulary embedding maps.

An alternative approach to predicting unobserved state variables from observed vari-
ables is to frame this as a missing data variational autoencoder (VAE) problem. This
involves stochastic state completion, where the goal is to model the conditional proba-
bility distribution p(xu|xo). In low-dimensional settings, HI-VAE [63] derives a missing
data evidence lower bound (ELBO) by removing contributions from unobserved data and
replacing missing input data with zeros. EDDI [64] presents a partial VAE model that
processes only observable elements by encoding them with positional encoding and using
permutation-invariant operations similar to PointNet [65]. VAEM [66] is a two-layered hier-
archical VAE (HVAE) for heterogeneous data which first transforms all input variables into
a common latent space using type-specific encoders. HH-VAEM [67] demonstrates effective
HVAE sampling using the Hamiltonian Monte Carlo algorithm. For high-dimensional data,
Collier et al. [68] demonstrate the VAE effects of missing data on images. Our work extends
prior missing-data VAE approaches by learning to model p(xu|xo) for high-dimensional
representations without requiring fully observed ground truth samples for training. We
leverage the capacity of HVAEs to learn high-fidelity generative models of not images but
high-dimensional open-vocabulary embedding maps.



Sensors 2024, 24, 4735 5 of 30

2.2. Bird’s-Eye View Generation

In mobile robotics, one approach to representing the environment is by generating top-
down bird’s-eye view (BEV) maps from perception sensors, which serve as an alternative
or complementary representation to human-annotated maps [31,69].

Camera-based methods have garnered significant attention due to the low cost of these
sensors and their connection to biological vision systems. However, lifting 2D image obser-
vations to 3D representations is fundamentally an ill-posed problem. Inverse perspective
mapping (IPM) [70–72] tackles this issue by assuming a flat ground plane, but this assump-
tion often does not hold in real-world environments, leading to substantial projection errors.
Approaches utilizing stereo cameras aim to address the lifting problem by inferring depth
maps based on physical modeling principles. Nonetheless, the resulting depth maps tend
to be noisy when mapping distant objects, object boundaries, and objects with indistinct
textures. To overcome the limitations of stereo-based depth estimation, learning-based
methods have been proposed. Cam2BEV [73] projects semantic features using IPM and
refines the projection using a spatial transformer module trained on synthetic ground
truth BEV data. Other approaches utilize learned monocular depth estimation [74–79]
to lift 2D images to 3D point clouds, which are subsequently projected onto a top-down
2D grid to obtain bird’s-eye view (BEV) representations. Schulter et al. [80] introduce an
adversarial objective that leverages ground truth maps to refine the predicted BEV repre-
sentation. MonoLayout [81] learns its view transformation from self-supervised targets
by integrating projected observations and using ground truth maps for BEV refinement.
Later works propose probabilistic depth projection [82], categorical depth distribution
networks [83], and multi-task learning [84] for BEV generation. VED [85] is a variational
encoder trained on stereo vision data to predict low-resolution (64 × 64 px) semantic BEV
representations from front-facing monocular images. Other methods employ multilayer
perceptrons (MLPs) trained on ground truth maps [86–88] to lift images and generate BEV
representations. SMERF [89] integrates coarse standard definition (SD) lane maps prior to
using a transformer-based encoder to predict BEV lane maps from images.

Cross-attention-based transformer modules [90,91] and transformer architectures [92]
have been employed to perform view transformations, lifting image features to bird’s-eye
view (BEV) representations. Attention-based models tend to perform well at this task
due to their global attention mechanism, which is not limited to processing neighboring
pixel information like in convolutional neural networks (CNNs). However, attention-based
models often require more data, effort, and computational resources for training and in-
ference compared to CNNs, as they lack inductive biases. Our work differs from these
view-transformation models in several ways. First, we leverage LiDAR data to achieve
substantial improvements in projection and observation integration accuracy compared
to image-only depth estimation methods. Second, our generative model can predict di-
verse plausible environment structures for unobserved regions, unlike view-transformation
models, which typically are deterministic one-to-one functions. The ability to sample
diverse predictions is crucial, as unobserved regions generally cannot be known determin-
istically [31].

While LiDAR-based bird’s-eye view (BEV) generation methods benefit from leveraging
explicitly measured accurate distances for environment representation, some consider them
prohibitively expensive for widespread deployment in mobile robots. Notable LiDAR-
driven approaches include Fishing Net [88], which incorporates LiDAR information to
enhance the spatial accuracy of BEVs generated through sensor fusion. MP3 [93] employs
a learned module to generate map elements from LiDAR observations and ground truth
map supervision, while HDMapNet [94] additionally incorporates image data. In contrast
to these methods, our predictive world model framework does not rely on pre-existing
ground truth maps for supervised training and can be trained solely on observational
experience. Moreover, our method is generative and can provide diverse predictions,
which is fundamentally necessary, as the correct prediction of occluded regions is generally
indeterminable and there may be multiple plausible solutions.
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2.3. World Models

The idea of using machine learning to learn predictive models of the world was
proposed by Schmidhuber [3–5]. One prevalent approach leverages VAEs to extract la-
tent state representations from perspective images [95,96]. These latent codes then serve
as compressed world-state representations for planning actions. Recent advancements
have incorporated adversarial learning to refine these latent codes [97,98] or employed
contrastive learning with latent variables to model probabilistic transition dynamics [42].

An alternative research direction centers on inferring discrete object encodings from
images. This approach draws inspiration from the concept of compositionality in human
cognition [1]. Watters et al. [99] exemplify this strategy, employing a variational encoder to
infer a set of latent object encoding vectors from a sequence of images, essentially utilizing
a CNN-based module for this purpose. Building on the foundation of VAEs, subsequent
research has focused on extracting more semantically rich object embeddings by leveraging the
inherent neighborhood similarity arising from sampling stochasticity [100,101]. A noteworthy
example is MONet [102], which utilizes a recurrent attention module to learn a variable
number of semantic object encodings from its input. Recent extensions of MONet have
highlighted the advantages of explicitly discovering objects for tasks involving future state
prediction through compositional reasoning [103]. This approach extracts object encodings
and learns relationships between them, facilitating predictions of future states using a GNN
optimized with a contrastive loss function. Similarly, leveraging MONet as a foundation,
works like COBRA [104] and DreamerV2 [105] have demonstrated their superior performance
in reinforcement learning settings compared to state-of-the-art model-free methods [106,107].

Our work presents a distinct perspective on world modeling. We propose a method
that learns an explicit, ego-agnostic 2D spatio-semantic representation of the environment’s
state based solely on partial, agent-centric observations. This approach prioritizes inter-
pretability and focuses on learning a world model from partial observations only. We
believe that this method bridges the gap between leading world modeling approaches for
game environments and real-world mobile robotics applications, where robots operate
under conditions of partial observability.

2.4. Spatial AI

The conventional approach to building 3D environment representations in mobile
robotics is simultaneous localization and mapping (SLAM) [108–110]. The core operation
of SLAM involves calculating the optimal translation and rotation transformations to align
successive point clouds. This allows for the creation of a unified map by accumulating
aligned point clouds within a common reference frame. Loop closure optimization, which
identifies and reconnects previously visited locations, is another crucial component of
SLAM. Beyond geometric information, Semantic SLAM extends this framework to incorpo-
rate a semantic understanding of the environment or objects [111]. It can include estimates
of object categories or segmentation information [112]. Our proposed framework leverages
a similar principle of sensor observation integration, with the key addition of a predictive
component that builds upon the strengths of established SLAM approaches.

Recent advancements in semantic mapping have moved beyond pre-defined semantic
classes for specific tasks, venturing into the field of open-set semantics for general-purpose
robotics applications. This shift utilizes open-vocabulary spatial representations that
encode spatio-semantic maps using vision and language (VL) embeddings. These VL
embeddings are typically generated by pre-trained models such as global VLMs [36], open-
vocabulary object detectors [113], or dense VLMs [34,35,37]. Notably, the open-vocabulary
approach allows for the querying of any semantic concept embedded within VL represen-
tations by leveraging cosine similarity with a query text embedding. As an alternative
approach, neural radiance fields (NeRFs) [114] have emerged as a method for representing
3D objects [115,116] and environments [117,118] using neural networks. Recent work has
extended NeRFs to capture open-vocabulary semantics [119]. The integration of large lan-
guage models (LLMs) presents promising possibilities for spatio-semantic reasoning. This
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integration mimics the human vision-for-perception system through a top-down perceptual
feedback loop [113,120], drawing inspiration from established models of human visual
perception [121–123]. Our work contributes by demonstrating the capability of generative
predictive world models to learn and predict high-dimensional, open-vocabulary semantic
embeddings with high accuracy and diversity.

2.5. Open-Vocabulary Semantic Segmentation

Open-vocabulary semantic segmentation is a computer vision task that leverages the
power of VLMs [19]. VLMs operate within a unified embedding space, enabling them
to bridge the gap between visual and textual information. The core functionality of a
global-description VLM involves training a visual encoder EncV() and a language encoder
EncL() in tandem. These encoders operate on a paired image x and text description t to
generate semantically aligned visual embeddings zv and textual embeddings zt within
a shared embedding space Z . This alignment allows VLMs to act as an interface for
querying visual data using natural language. Cosine similarity is typically used to measure
the semantic similarity between zv and zt. The training of these models often utilizes
large-scale image-captioning datasets and contrastive learning techniques. While global
description models hold promise for various applications, including image–text matching,
multimodal searches, and visual question answering (VQA) [124,125], their outputs lack
spatial grounding within the input image. This limitation hinders their effectiveness in tasks
that require precise spatial reasoning, such as navigation, manipulation, and environment
mapping [7,8,37].

In contrast, dense vision–language models [21–29,41] produce aligned embedding
maps. These embedding maps represent semantic information at the pixel level, allowing
for a more precise fit to object boundaries within the image. One approach to achieving
densification involves modifying pre-existing global description models. Techniques like
removing the final global pooling layer, as employed in MaskCLIP [25], leverage the
strong generalization capabilities of these models. While this approach offers the benefit
of utilizing pre-trained global description models, the resulting outputs often exhibit
significant noise levels. This noise can significantly hinder the practical application of such
models in real-world robotics tasks requiring accurate segmentation information.

An alternative approach to achieving dense descriptions leverages pre-trained region
proposal (RP) models [126]. These models predict a set of object-masked bounding boxes. Each
bounding box is then fed into a pre-trained global VLM [23] to generate a semantic embedding.
This embedding is subsequently projected onto all pixels encompassed by the corresponding
masked region within the original image. While the object-crop approach demonstrates
promising results for the object-centric image inputs typical of small, controlled environments
like kitchens or indoor spaces [29,127], it exhibits limitations in handling large-scale and
complex scenes. Road environments, for instance, require multi-scale object perception, which
this approach struggles to achieve effectively. Furthermore, the computational cost associated
with performing individual inferences for each object can be significant.

In contrast to the previously discussed approaches, another research direction focuses
on training a novel vision model specifically designed for dense feature representation.
This model, denoted as fθ(), leverages an architecture and optimization scheme tailored
to this task. One example of such an approach is LERF [128]. LERF integrates language
embeddings within a NeRF [114], enabling the semantic querying of 3D environment
representations. This approach offers the potential for querying the environment based
on semantic concepts. However, limitations exist. LERF may struggle with extrapolation
tasks and potentially needs to observe the entire environment before functioning effec-
tively. Open-vocabulary object detectors bridge the gap between semantic understanding
and image regions by localizing predicted vision–language model (VLM) embeddings to
bounding boxes [129]. Within the field of open-vocabulary semantic segmentation, two
primary categories of models emerge: conditional and unconditional. Conditional mod-
els [24,28,130,131] facilitate fine-grained semantic segmentation guided by additional text
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or image inputs during the forward pass. However, this approach has limitations in project-
ing general-purpose, open-set semantics into a broader representation that encompasses
both the spatial and semantic information of the environment. In contrast, unconditional
methods [21,22,27,41] focus on predicting general-purpose embedding maps, enabling
open-ended semantic querying after their projection. Notably, unlike global embedding
models [19], unconditional open-vocabulary semantic segmentation models require smaller
datasets with dense annotations for their training. The theory of latent compositional
semantics [41] provides a valuable mathematical framework for understanding the repre-
sentations learned by these unconditional models. This theory sheds light on the properties,
guarantees, and representational capacity of these models. Our open-vocabulary predictive
world model (OV-PWM) framework leverages open-vocabulary semantic segmentation
to achieve accurate semantic projection onto environment states. This projection is facili-
tated by the theory of latent compositional semantics [41]. This theory provides valuable
insights into the mathematical properties and representational capacity of the modeled
semantic embeddings.

3. Open-Vocabulary Partial World States

This section describes how to generate open-vocabulary partial environment states
from multimodal sensor observations. We leverage recent advances in unconditional
open-vocabulary semantic segmentation based on the theory of latent compositional se-
mantics [41] as our semantic representation. These partial world state representations serve
as the input representations for learning the open-vocabulary predictive world models
(OV-PWMs) described in Section 4.

3.1. Sensor Observation Processing

Mobile robot perception systems typically fuse complementary sensor modalities. Pas-
sively sensing RGB cameras provide rich semantic information. Actively sensing LiDARs
or depth sensors provide accurate metric spatial perception. Sensor fusion approaches aim
to leverage the complementary strengths of both vision modalities [88].

Semantic point clouds are the natural unified data structure for representing both
spatial and semantic information. A semantic point cloud is created by grounding semantic
embedding maps extracted from 2D image pixels in spatial coordinates. The grounding is
performed as follows: First, a point cloud is projected onto an image frame by a transfor-
mation specified by camera calibration parameters. Predicted open-vocabulary semantic
embeddings are mapped to all points coinciding with the respective image’s coordinates.
All points outside the image frame are discarded. The remaining set of points thus contain
spatial information in the form of (x, y, z) ∈ R3 coordinates and a semantic embedding
z ∈ RD with dimensionality D, resulting in a semantic point cloud P ∈ RN×3+D, where N is
the number of semantically annotated points. See Figure 2 for visualized high-dimensional
open-vocabulary semantic point clouds projected onto RGB values.
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Figure 2. The process of transforming sensor observations into open-vocabulary partial world states.
A semantic segmentation model interprets images. The inferred semantic embedding map is attached
to a point cloud. Sequential semantic point clouds are accumulated into an ego-centric reference
frame. Top-down projection creates BEV representations. BEVs can be measured for their similarity
and sufficient similarity with a query semantic. High-dimensional semantic embeddings are projected
as RGB color values for visualization.

3.2. Open-Vocabulary Semantics

We propose mapping unconditional open-vocabulary, or latent compositional semantic
embeddings, to point clouds. Here follows a brief explanation starting from conventional
class semantics. A set of K class semantic embeddings are defined by separate basis
vectors ek in an RK dimensional embedding space. Each semantic represented by ek is
orthogonal to every other semantic el ̸=k, meaning that every semantic is equally similar or
dissimilar to every other semantic. Conventional class semantics therefore do not encode
semantic similarity.

Open-vocabulary semantics instead has a fixed embedding space that is spanned by
D orthogonal basis vectors e1 . . . eD representing primitive latent semantics. All vectors ed
define a latent prototypical semantic. All vectors in the embedding space are normalized
and thus lie on the unit hypersphere SD−1. A projection function fθ() maps any visual
or text semantic h onto SD−1. As all h are generally distributed over all basis vectors, the
cosine similarity of two normalized embeddings

sim(h1, h2) =
h1 · h2

||h1||||h2||
= (h1)

Th2 (1)

measures the relative semantic similarity.
Our predictive world modeling approach is based on interpreting RGB images using

an unconditional open-vocabulary semantic segmentation model [132]. The segmentation
model outputs a dense embedding map H = RH×W×D, representing open-vocabulary
semantics with a one-to-one pixel correspondence. A mathematical theory of unconditional
open-vocabulary semantics [41] explains how models learn to output latent compositional
semantics h∗ representing discriminable sets of membership semantics H = {h1, . . . hK}
as a hyperspherical cap SD−1

cap defined by h∗ and a sufficient similarity threshold τ. To
compute if an observation i in a semantic point cloud represents a query semantic (e.g., if a
point is road), the cosine similarity between the latent compositional semantic h∗i mapped
to point i and the embedded query semantic hq must be higher than the sufficient similarity
threshold of the query semantic τq and thus, in SD−1

cap ,

sim(h∗, hq) > τq ⇒ MemberO f (point i, query semantic). (2)

The predicate MemberO f () in (2) denotes that all points i with latent compositional
semantics h∗ are members of the set of all objects possessing the query semantic. In other
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words, point i is the query semantic (e.g., road), possibly in addition to other semantics (e.g.,
road marking and drivable). Set notation naturally allows for expressing that an object has
membership with more than one semantic.

Conventional “most similar” open-vocabulary inference approaches [23] forgo know-
ing a sufficient similarity threshold τ and thus seemingly allow the querying of any
never-encountered semantic. Nevertheless, the “most similar” inference approach has
two fundamental flaws [21,41]: First, every point i can be a member of only one of the
queried semantics. For example, a point on window-on-a-building-facade should be simul-
taneously inferable as both “window” and as part of a “building” at a higher level. Naively
hard coding rules such as stating that “window” is also “building” are not generally true.
Secondly, the set of query semantics is presumed to constitute a complete partitioning of all
points, as even unrelated points will be mapped to one of the query semantics. For example,
a dog queried by “grass” and “toy” is interpreted as “toy”. Naively using abstract word
semantics like “other” as a substitute for unspecified semantics is not a principled solution
as the similarity between the predicted semantic h and the unrelated query semantic hq is
not guaranteed to be lower than the ambiguous meaning of “other”

sim(h, hother)
?
≥ sim(h, hq). (3)

Sufficient similarity inferences are a principled solution to the flaws of “most similiar”
inferences by allowing overlapping semantic inference (e.g., semantic membership with
“window” and “building” can be simultaneously inferred) and inferring only true semantics,
irrespective of the set of query semantics (e.g., dog is neither “grass” nor “toy”). In this
work, we follow the theory of latent compositional semantics’ interpretation of unconditional
semantics [41] and demonstrate the application of the sufficient similarity inference method
for OV-PWMs.

In this work, we investigate whether or not high-dimensional open-vocabulary em-
beddings can be modeled using the predictive world model approach. We therefore do not
consider the perception problem of inferring unconditional open-vocabulary semantics
from images and instead leverage point clouds annotated with CARLA ground truth se-
mantics [43] for experiments. We design a taxonomy in which each ground truth semantic
is provided two additional high-level semantics (ex: a “road” is also a “drivable” and a
“static” object). A single optimal latent compositional semantic embedding h∗ is computed
as the mean centroid of the three associated semantics [41] and appended to each point
to form an open-vocabulary semantic point cloud. We refer to prior work for in-depth
investigations concerning learning and inferring open-vocabulary semantic embeddings
from visual data [21,23,41,132]. The semantic taxonomy based on CARLA semantics is
provided in Appendix A.

3.3. Observation Accumulation

The agent accumulates a sequence of unfiltered semantic point clouds P(1), . . . , P(T)

centered within the agent’s reference frame; over time t = 1 . . . T into a single semantic point
cloud P̄(T). This task is called point cloud registration or a scan matching problem [133].
We use the Iterative Closest Point (ICP) algorithm [134] to estimate the sensor’s motion
and align sequential observations within the same reference frame. ICP takes the previous
and latest point cloud and computes the transformation matrix Tt→t+1 which best aligns
with the previous point cloud P(t) to the latest one P(t+1). The matrix Tt→t+1 corresponds
to the agent’s motion between the two observations, as shown in (4). Multiplying the
accumulated point cloud P̄(t) with Tt→t+1, as in (5), transforms all points into P̃(t+1) in the
reference frame of the newest observations. This step is performed recursively every time
step as new observations are perceived. Finally, we add the new observations P(t+1) to
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the transformed accumulated observations P̃(t+1), resulting in a new set of accumulated
observations P̄(t+1), as in (6)

Tt→t+1 = ICP(P(t), P(t+1)) (4)

P̃(t+1) = Tt→t+1P̄(t) (5)

P̄(t+1) = concatenate(P̃(t+1), P(t+1)). (6)

A visual example of accumulated semantic point clouds is shown in Figure 2.

3.4. Partial World State Representation

The accumulated open-vocabulary semantic point cloud P̄ encodes the agent’s observ-
able environment into a sparse spatio-semantic 3D representation. However, conventional
perception and planning methods benefit from a top-down 2D representation for com-
putational efficiency. 2D discrete grids can be processed by the CNNs [135] and visual
transformers (ViTs) [136] forming the backbone of state-of-the-art (SOTA) latent-variable
generative models for images [53,137–139].

We generate the partial open-vocabulary semantic world state x ∈ RH×W×D by
projecting P̄ onto a 2D top-down bird’s-eye view (BEV) grid map spanning a region of size
(H ×W) around the agent. This projection method naturally handles non-flat surfaces such
as sloping roads, as each 3D point’s (x, y, z) coordinates are projected onto a 2D point (x, y)
with their (z) elevation coordinate subsumed. The subsumption of (z) can be understood
visually by imagining viewing a perfectly flat and sloping straight road from above. From
this perspective, both roads look geometrically equivalent, as would the projected BEV grid
maps. Let (i, j) index a grid cell in x. For each point p ∈ P̄ with coordinates (x, y, z), we
compute the grid cell indices (i, j) and append xi,j with the semantic embedding h of p. The
set of appended semantics H = {h(1), . . . , h(K)} of all points p coinciding with the grid cell
(i, j) are averaged into the centroid h∗ of H. The theory of latent compositional semantics
provides mathematical guarantees of optimally retaining the original semantics of H [41].
A key advantage of open-vocabulary semantic embedding representations is their inherent
discrimination of unobserved or unknown information using the zero vector 0⃗. In contrast,
observed information is represented by unit vectors h that lay on the hypersphere SD−1.
This naturally encodes ignorance into the model and enables it to distinguish unknown
from empty regions during inference.

Leveraging the theory of latent compositional semantics with sufficient similarity
inference [41] allows us to seamlessly represent and infer multiple overlapping semantics
in the same grid cell (i, j). For example, a grid cell corresponding to a road marking may
also possess road and drivable semantics, an inference which is not principally achievable by
conventional “most similar” inferences, as explained in Section 3.2.

The presented open-vocabulary partial environment state x forms the input and
learning signal for the open-vocabulary predictive world model described in the follow-
ing section.

4. Open-Vocabulary Predictive World Model

Predictive world models (PWMs) aim to learn latent representations, capturing the
underlying structure of the environment. PWMs, having learned this structure, are able
to supplement their perception by predicting unobserved regions. Prediction generation
follows the two-staged variational autoencoder (VAE) [58] latent variable approach: First,
an encoder predicts a latent distribution p(z|x) of the objectively real world x∗, partially
observed by sensors as x. Secondly, a particular latent variable z is sampled from p(z|x).
Finally, a decoder maps z onto the most likely world x∗. This process is abstracted as
the arbitrary conditioning latent-variable generative model p(x∗|x). In this paper, we
demonstrate how PWMs can learn p(x∗|x) to sample diverse and plausible complete
worlds x∗ from partially observed worlds x represented by open-vocabulary semantic
embeddings h ∈ RD with dimension D >> 1.
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The primary challenge is to teach a generative model to predict complete worlds by
predictive coding [140,141] from a set of partially observed incomplete worlds which are
used as “ground truth” data only. In general, learning to predict “nothing” or “unknown” is
easier than predicting plausible structures when lacking a complete ground truth learning
signal to enforce commitment to a particular prediction. We employ the novel posterior
matching latent-variable generative model as a solution which was introduced in our
previous work [6]. In this work, we extend this approach to model high-dimensional
open-vocabulary semantic embeddings and, in the process, simplify the previous two-stage
approach into a single-stage end-to-end paradigm.

The open-vocabulary predictive world model (OV-PWM) is implemented by the
SOTA hierarchical VAE (HVAE) model VDVAE [53], with an additional posterior matching
encoder [6,62]. HVAEs [53,142,143] are capable of learning hierarchical latent variable
distributions expressing a high degree of structure at different abstraction levels. HVAEs
generalize autoregressive models [53], can achieve higher likelihoods than SOTA autore-
gressive models like PixelCNN [137] using fewer learned parameters, and generate samples
orders of magnitude more quickly [53].

The following sections present a detailed description of the model and how it is trained
and used for inference.

4.1. Latent Variable Generative Models

The goal of generative modeling is to approximate the distribution of p(x) by a learned
model pθ(x), maximizing the likelihood of the finite empirical dataset D = {x(1), . . . , x(N)}.

A latent-variable generative model p(x, z) approximates the joint distribution of ob-
served variables or data x and compact latent variables or codes z. The problem can be
factorized into a conditional model

p(x, z) = p(x|z)p(z) (7)

representing the process generating observed variables x from z, as well as the distribution
of z. The problem is that learning pθ(x) and pθ(x|z) is computationally intractable for high-
dimensional data when using naive methods due to the unknown interactive structure of x
and z.

A solution is to reformulate the problem of learning pθ(x) using approximate vari-
ational inference. Approximate variational inference proposes simultaneously learning
an amortized inference function qθ(z|x) and approximating the true latent representation
distribution p(z|x) and the generative process pθ(x|z).

The variational inference scheme used to optimize the likelihood of the generative
model p(x) is derived as follows: The generative model p(x) is the marginal distribution
of the joint distribution of the latent-variable generative model:

pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(z|x)pθ(x)dz = Ez∼pθ(z|x)pθ(x). (8)

Taking the logarithm of both sides and leveraging the amortization factorization

pθ(x, z) = pθ(z|x)pθ(x) (9)

pθ(x) =
pθ(x, z)
pθ(z|x)

(10)
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allows for a convenient decomposition

log pθ(x) = Ez∼pθ(z|x) log pθ(x) (11)

= Ez∼pθ(z|x) log
pθ(x, z)
pθ(z|x)

(12)

= Ez∼pθ(z|x) log
pθ(x, z)qϕ(z|x)
pθ(z|x)qϕ(z|x)

(13)

= Ez∼pθ(z|x) log
pθ(x, z)
qϕ(z|x)

+Ez∼pθ(z|x) log
qϕ(z|x)
pθ(z|x)

(14)

=
[
E log pθ(x, z)−E log qϕ(z|x)

]
+ [Eqθ(z|x)−Epθ(z|x)]. (15)

The optimization objective is derived by denoting the first RHS term as Lθ,ϕ(x, z) and
identifying the second RHS term as the KL divergence DKL(qϕ(z|x), pθ(z|x)) and then
rearranging these terms:

log pθ(x) = Lθ,ϕ(x, z) + DKL(qϕ(z|x), pθ(z|x)) (16)

Lθ,ϕ(x, z) = log pθ(x)− DKL(qϕ(z|x), pθ(z|x)). (17)

As DKL(qϕ(z|x), pθ(z|x)) ≥ 0, it follows from (17) that

Lθ,ϕ(x, z) ≤ log pθ(x). (18)

The optimization goal is to maximize pθ(x), that is, the likelihood of data x according to
the model pθ(x). It follows from (17) that maximizing Lθ,ϕ(x, z) must necessarily maximize
pθ(x), as Lθ,ϕ(x, z) is a lower bound of Lθ,ϕ(x, z), making Lθ,ϕ(x, z) variational or the
evidence lower bound (ELBO). The computable optimization objective for maximizing
Lθ,ϕ(x, z) is derived by equivalently minimizing the negation of Lθ,ϕ(x, z):

max
θ,ϕ

Lθ,ϕ(x, z) = min
θ,ϕ

−Lθ,ϕ(x, z) (19)

= min
θ,ϕ

−
[
E log pθ(x, z)−Eqϕ(z|x)

]
(20)

= min
θ,ϕ

−
[
E log pθ(x|z)−E log pθ(z)−Eqϕ(z|x)

]
(21)

= min
θ,ϕ

−E log pθ(x|z) +Eqϕ(z|x)−E log pθ(z) (22)

= min
θ,ϕ

−E log pθ(x|z) + DKL(qϕ(z|x), pθ(z)). (23)

The lower bound Lθ,ϕ(x, z), and, indirectly, the model likelihood pθ(x), is therefore
optimized by increasing pθ(x|z) and decreasing DKL(qϕ(z|x), pθ(z)).

The variational autoencoder (VAE) is a deep generative model that implements approx-
imate variational inference. Both the amortized inference function qϕ(z|x) and generative
model pθ(x|z) are implemented by neural network function approximations. The VAE
simultaneously learns qϕ(z|x) and pθ(x|z) by inferring a distribution of the latent variable
z and subsequently reconstructs the sampled z back into the observable variable x. The
distribution of latent variables pθ(z) is assumed to be a known distribution like the Normal
distribution. The DKL(qϕ(z|x), pθ(z)) term constrains the learned posterior distribution
qϕ(z|x) to match the prior pθ(z) so that new samples can be generated by simply sampling
from the known distribution pθ(z).

Vanilla VAEs suffer from constrained expressiveness due to being limited to a single
set of latent variables z. This limitation is characterized by the generation of low-fidelity
high-dimensional data like blurry high-resolution images.

The hierarchical VAE (HVAE) overcomes this limitation by introducing layers of latent
variables Z = (z(1), . . . , z(K)). Each layer k models the structure of different levels of
abstraction. The hierarchical order of latent variables naturally results in a decoupling
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of overall structure and visual appearance. The HVAE’s prior distribution, posterior
distributions, and generative model can be factorized as

pθ(Z) = pθ(z1|z2) . . . pθ(zK−1|zK)pθ(zK) (24)

qϕ(Z|x) = qϕ(z1|z2, x) . . . qϕ(zK−1|zK, x)qϕ(zK|x) (25)

pθ(x|Z) = pθ(x|z1) . . . pθ(zK−1|zK)pθ(zK) (26)

where all random variables z are modeled by Normal distributions N (z|µ, σ). Deeper
or more abstract codes (i.e., zK) encode the global structure, while shallow codes (i.e., z1)
encode the visual appearance of the elements in x. The deepest latent variable prior pθ(zK)
is a known distribution like the Normal distribution in a VAE. However, subsequent priors
pθ(zK−1) . . . pθ(z1) are learned priors for increased model expressivity.

4.2. Model Implementation and Training

We implement the OV-PWM based on the recent SOTA HVAE architecture called
Very Deep VAE (VDVAE) [53]. This HVAE model has 48 layers of 16 dimensional latent
variables (e.g., K = 48) with incrementally increasing feature map resolution and decreasing
intermediate feature dimensions throughout the layers. See Figure 3 for a visualization of
training methodology explained in this section.

We use two inputs to train the model. The first input is the presently observed world
x ∈ RH×W×D (e.g., past-to-present accumulated observations). The second input is the future
observed world x∗ ∈ RH×W×D (e.g., past-to-future accumulated observations). x and x∗

are high-dimensional grid maps with elements representing normalized open-vocabulary
semantic embeddings h ∈ SD−1 with dimension D. Unobserved elements are represented
by the zero vector 0.

Training Conditional inference

Unconditional generation

Figure 3. Predictive world model. The encoder Encθ() learns the hierarchical latent variables Z
representing the environment x̂∗ conditioned on the past-to-future partially observed state x∗. The
posterior matching encoder Encϕ() learns to predict the same distribution Z from the past-to-present
state x. The decoder Decθ learns to reconstruct diverse and plausible complete states x̂∗ from Z.

The two inputs are processed by two structurally identical but separate encoders. The
future observed world x∗ is processed by the encoder Encθ(x∗), approximating qθ(Z|x∗),
into intermediate feature maps Y∗ = {y∗1 . . . y∗K−1} and the latent feature vector y∗K. The
presently observed world x is processed by the posterior matching encoder Encϕ(x), ap-
proximating qϕ(Z|x) into Y = {y1 . . . yK−1} and the latent feature vector yK.

A single decoder generates a sample x̂∗ by first sampling the latent variable zK from
the distribution conditioned on y∗K. The intermediate reconstruction x̃∗K is computed from
zK and learned bias variables. Subsequent latent variables zk are sampled by the corre-
sponding intermediate feature maps y∗k from the encoder and the previous intermediate
reconstruction x̃∗k−1. Subsequent intermediate reconstructions x̃∗k are computed based on
the sampled zk and x̃∗k−1. The features Y = {y1 . . . yK} outputted by the posterior matching
encoder Encϕ(x∗) are optimized to predict the same latent distribution qθ(zk) as the qθ(zk)
distribution outputted by the future observation encoder Encθ(x∗).
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The final intermediate feature map x̃∗ ∈ RH,W,D′
is mapped onto an open-vocabulary

semantic embedding map x̂∗ ∈ RH,W,D via a linear projection. Forcing the output to lie on
the hypersphere SD−1 and thus represent the latent compositional semantic denoting the
set of the most likely membership semantics

∀xi,j ∈ x ∼ pθ(x|Z) ⇒ xi,j ∈ SD−1, (27)

resolves the problematic tendency of the previous semantic probability approach [6]. The
prior probabilistic closed-set semantics approach represents membership semantics as
the K probability that element (i, j) is a member of the semantic k ∈ K. Forcing the
model to predict a latent compositional semantic embedding h naturally allows for the
inferring of overlapping semantics while overcoming the maximum likelihood shortcut
learning problem of readily predicting “unknown” instead of penalizing committing to a
misprediction. Uncertainty can instead be estimated by stochastic variation from repeatedly
sampling the posterior [144]. Our prior two-stage approach with intermediate pseudo-
ground truth states is not needed for OV-PWMs, thus simplifying the method to a single-
stage end-to-end learning process.

The Encθ() and Decθ() components of the dual encoder HVAE are optimized by
maximizing the hierarchical ELBO

max
θ,ϕ

Lθ,ϕ(x, Z) = min
θ,ϕ

E
[
− log pθ(x|Z) + DKL(qϕ(Z|x)||pθ(Z))

]
(28)

where log pθ(x|Z) is the likelihood of the sample x∗, reconstructed from Z, and a KL diver-
gence term that measures the separation between the learned posterior and prior distributions.

DKL(qθ(Z | x)||pθ(Z)) =
K

∑
k=2

qθ(z≥k | x)[DKL(qθ(zk−1 | zk, x)∥pθ(zk−1 | zk))] + DKL(qθ(zK | x)||pθ(zK)) (29)

We simultaneously train the secondary posterior matching encoder Encϕ() to predict
latent distributions Z for partially observed environments x which are similar to the Z
inferred from the regular encoder Eθ(x∗) using future observed worlds x∗. The second
posterior matching encoder is optimized by minimizing

DKL
(
qϕ(Z | x∗)∥qΨ

(
Z | xpo

))
=

K

∑
k=1

q(z>k | x)
[
DKL

(
qϕ(zk | z>k, x∗)||qψ

(
zk | z>k, xpo

))]
. (30)

Maximizing the likelihood of pθ(x|Z) in (28) is equivalent to minimizing the cosine
distance of normalized OV semantic embeddings modeled by the OV-PWM.

minE− log(p|Z) = minE(1 − sim(x, x̂)) = minE(1 − xT x̂). (31)

The practical formulation of the hierarchical ELBO (28) used for optimizing the OV-
PWM is therefore

max
θ,ϕ

Lθ,ϕ(x, Z) = min
θ,ϕ

E
[
(1 − xT x̂) + DKL(qϕ(Z|x)||pθ(Z))

]
. (32)

See Appendix C for a derivation of (31).

4.3. Model Inference

At the time of inference the model uses the posterior matching encoder Encϕ() to
generate a latent distribution Z that can be decoded by Decθ() into a predicted complete
world state x̂∗. The model can be used for unconditional generation by incrementally
sampling latent variables Z from the learned prior distribution qθ(Z). The regular encoder
Encθ() trained on future observations x∗ is not used during inference. See Figure 3 for a
visualization of the conditional and unconditional inference procedure.
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5. Experiments

In this section, we describe the experiments conducted to measure how well an open-
world predictive world model (OV-PWM) can learn a compact latent representation of
environments represented by high-dimensional open-vocabulary embeddings.

We set up our experiments using the open source autonomous driving simulator
CARLA [43]. This simulator provides a set of realistic 3D environments and a traffic
manager and supports the accurate rendering of synchronized sensor data streams like
RGB images, depth maps, and LiDAR point clouds. We used the latest 0.9.15 release. The
reasons for using CARLA are two-fold: First, CARLA allows us to evaluate the predictive
accuracy of fine semantics by providing ground truths for road markings. Common
real-world datasets like SemanticKITTI [145] and KITTI-360 [146] do not provide road
marking ground truths. Secondly, implementing our experiments in a simulator facilitates
future work involving closed-loop autonomous driving research experiments leveraging
OV-PWMs.

The experimental set up is explained next. We ran the simulator and collected approx-
imately 20 min of observational experience from environments Town05, Town06, Town07,
and Town10 as observational experience, or training data. A separate environment Town04
was used for evaluation. The environments were chosen based on the presence of road
marking semantics. We computed and appended ideal latent compositional semantics
to the point cloud according to a three level taxonomy with overlapping semantics, as
explained in Section 3.2. The semantic taxonomy is provided in Appendix A. The semantics
are encoded as 768-dimensional SBERT embeddings [147]. Next, we processed the sequen-
tial observations into accumulated semantic point clouds, as explained in Section 3.3. All
points 2 m above the ground were filtered. Dynamic objects were filtered by sufficient
similarity inference. From the accumulated point clouds we generatef BEV partial world
representations as explained in Section 3.4. We used the same translation and warping
data augmentation technique as detailed in prior work [6] on model training samples to
improve their generalization. The evaluation samples are not augmented. The resulting
number of training and evaluation samples were 7145 and 178 samples, respectively.

The HVAE model was trained on the generated training samples for 180K iterations for
four days using six A6000 GPUs, as detailed in Section 4.2. See the public code repository for
hyperparameter details. The trained HVAE model was evaluated on a separate evaluation
set of unaugmented samples.

The following two metrics are employed to measure the accuracy of the OV-PWM
model. First, semantic similarity between the predicted embedding maps x̂∗ and future
observed worlds x∗ is measured as the mean cosine distance between the predicted and ob-
served open-vocabulary embeddings x∗i,j ∈ SD−1 and x̂∗i,j ∈ SD−1 covered by the observed
element mask M

sim(x∗, x̂∗) =
1

|M| ∑
(i,j)∈M

sim(x∗i,j, x̂∗i,j) =
1

|M| ∑
(i,j)∈M

(x∗i,j)
T · x̂∗i,j. (33)

Secondly, semantic accuracy is measured by the intersection over union (IoU) of
queried semantics. We compute the IoU based on a sufficient semantics interpretation of
unconditional open-vocabulary semantics according to the theory of latent compositional
semantics [41]. The OV embedding maps x̂∗ and x∗ are first checked element-wise for
their membership within the query semantic by an a priori computed sufficient similarity
threshold value τsem

bi,j =

{
T, if sim(xi,j) > τsem

F, otherwise
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resulting in the boolean maps b and b̂, with elements represented as true T and false F. The
query semantic IoU is computed as

IoU(x∗, x̂∗) =
∑(i,j)∈M bi,j ∩ b̂i,j

∑(i,j)∈M bi,j ∪ b̂i,j
(34)

with the boolean map b̂ obtained from x̂∗ considered as the ground truth target. The mean
IoU (mIoU) is used to quantify the simulator’s performance over a set of query semantics H

mIoU =
1
H ∑

h∈H
IoUh. (35)

We estimated the optimal sufficient similarity threshold values for query semantics τq
using logistic regression models, maximizing likelihood over the trained split observations
and following prior work [41]. The optimal τq is the decision boundary or (sim)(x, xq)
separating true positive and negative points with least error according to the model

τq = max
[
MemberOf(x, q) p(MemberOf(sim(x, xq) ≥ τq, q))

]
. (36)

We provided a set of unconditionally sampled world states x̂∗ to assess the robustness
of the learned open-vocabulary world model. Unconditional generation starts by randomly
sampling the deepest latent variable zK ∈ R16 in (26) and generates x̂∗, without conditioning
on the partially observed world x, as input.

6. Results

In this section, we present the results of the CARLA simulator experiment. The re-
sults show that environments represented by high-dimensional open-vocabulary semantic
embeddings can be accurately modeled using the predictive world modeling approach.
Additionally, we analyze the results from the perspective of potential real-world large-scale
applications.

Table 1 shows the semantic IoU prediction accuracy for an urban environment se-
quence not in the training sample. We applied a “best of N samples” evaluation approach [6]
to demonstrate how the sampling of diverse structures improves the likelihood of predict-
ing the actual world from partial observations. The mean IoU prediction over all elements
(i, j) and semantics is 65.13 with 1 sample and increases to 69.19 with 32 samples. Modeling
and predicting fine spatial patterns like road markings is challenging and reaches only
22.99 IoU over 32 samples. The advantage of generative modeling is most apparent in less
predictable large semantic structures like vegetation and sidewalk, as sampling increases their
accuracy by 9.45 and 9.10 IoU points, respectively. Over all semantics, sampling increases
the mean IoU by 4.06 IoU points.

Table 2 shows the IoU prediction accuracy of a highway sequence not in the training
distribution. The model’s predictive performance in highway environments is generally
higher than urban environments due to their higher determinism. However, road marking’s
predictability is lower due to lacking localized contextual cues such as intersections and
narrow road structures.

Table 3 shows the model’s performance on a random subset of 200 samples from the
training set. The results indicate that model training is not yet saturated on the limited
training dataset, as semantics like road marking, side walk, and vegetation have room to
improve. Comparison with the test set performance given in Table 1 shows comparable
performance is achieved with the training set, meaning generalization is achieved. As
the training performance continues to improve log linearly, as shown in Figure 4, it is
reasonable to conclude that its generalization performance will continue to improve with
additional training.
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Table 1. World model prediction accuracy when using “best of N samples” on the urban test sequence.

IoU
#Samples 1 2 4 8 16 32

road
All 92.75 93.36 93.61 93.89 94.20 94.33

Unobs. 84.07 85.70 86.10 86.69 87.54 87.74

road marking
All 21.02 21.21 21.95 22.31 22.91 22.99

Unobs. 12.85 13.77 14.24 14.84 15.47 16.00

side walk
All 51.39 53.45 56.49 57.38 59.57 60.49

Unobs. 41.50 45.51 48.72 50.33 52.07 52.53

vegetation
All 34.91 37.25 40.54 41.67 43.42 44.36

Unobs. 28.11 31.97 35.08 36.27 37.96 40.02

static
All 97.61 97.61 97.85 98.08 98.12 98.23

Unobs. 97.73 97.88 98.15 98.22 98.35 98.40

drivable
All 93.10 93.69 93.94 94.25 94.63 94.71

Unobs. 84.89 86.60 87.00 87.55 88.52 88.72

mIoU
All 65.13 66.10 67.40 67.93 68.81 69.19

Unobs. 58.19 60.24 61.55 62.32 63.32 63.90

Table 2. World model prediction accuracy when using “best of N samples” on the highway test
sequence.

IoU
#Samples 1 2 4 8 16 32

road
All 98.01 98.15 98.20 98.29 98.31 98.34

Unobs. 95.93 96.68 96.96 97.14 97.28 97.44

road marking
All 9.90 11.15 11.19 12.02 12.19 13.20

Unobs. 9.51 10.61 10.67 11.53 12.09 12.49

vegetation
All 38.29 38.64 39.22 40.01 40.23 40.45

Unobs. 43.11 43.68 44.27 44.83 45.37 45.33

static
All 98.54 98.73 98.79 98.83 98.88 98.90

Unobs. 95.10 96.40 96.64 97.10 97.36 97.49

drivable
All 98.02 98.15 98.21 98.29 98.31 98.34

Unobs. 95.91 96.62 96.92 97.07 97.23 97.41

mIoU
All 68.55 68.96 69.12 69.49 69.58 69.85

Unobs. 67.91 68.80 69.09 69.53 69.87 70.03

Our proposed OV-PWM framework lacks direct comparative baselines. To the best
of our knowledge, only our prior work leverages LiDAR point clouds with generative
modeling to predict spatial environments without requiring ground truth map data [6]. The
prior closed-set predictive world model trained on KITTI-360 data [146] was quantitatively
evaluated only for road semantics and achieved 98.73 IoU. We consider our open-vocabulary
urban environment result of 94.33 to be of comparable quality and thus conclude that
learning open-vocabulary world models perform equivalently to closed-set world models
while greatly simplifying their learning method to a one-stage end-to-end paradigm, as
explained in Section 3.4.



Sensors 2024, 24, 4735 19 of 30

0 50 100 150
Step [103]

10 2

10 1

100
Mean ELBO

0 50 100 150
Step [103]

10 2

10 1

100
Mean sim(x * , x * )

0 50 100 150
Step [103]

10 4

10 3

10 2 DKL(q (Z|x * )||p (Z))

0 50 100 150
Step [103]

10 4

10 3

10 2 DKL(q (Z|x * )||q (Z|x))

Figure 4. Training plots. The mean ELBO (28), cosine distance (31), posterior (29), and posterior
matching (30) distribution separation metrics continue to decrease with additional computation. See
Section 4.2 for an explanation of the partially observed states x, x∗, and predicted complete states x̂∗.

Table 3. World model prediction accuracy when using “best of N samples” on the training set.

IoU
#Samples 1 2 4 8 16 32

road
All 97.16 97.20 97.30 97.35 97.38 97.42

Unobs. 95.00 95.27 95.45 95.63 95.79 95.89

road marking
Obs. 34.14 34.33 34.62 34.83 35.04 35.24

Unobs. 26.79 27.06 27.57 28.13 28.37 28.53

side walk
All 58.23 58.36 58.56 58.93 59.10 59.11

Unobs. 55.03 56.17 56.20 57.12 57.54 57.69

vegetation
All 75.44 76.06 76.71 76.98 77.21 77.57

Unobs. 66.33 68.01 68.67 70.03 71.29 71.89

static
All 98.79 98.81 98.81 98.82 98.83 98.84

Unobs. 98.47 98.56 98.56 98.59 98.61 98.62

drivable
All 97.27 97.32 97.41 97.47 97.51 97.55

Unobs. 95.47 95.83 96.09 96.25 96.27 96.39

mIoU
All 76.84 77.01 77.24 77.40 77.51 77.62

Unobs. 72.85 73.48 73.76 74.29 74.65 74.84

Other comparative baselines include image-based methods which generally are not
used for generative models trained and evaluated on the same ground truth data domain
(e.g., within the same city). One such baseline is a recent SOTA image-based monocular
model [90] which achieved 68.34 road IoU on the KITTI Raw dataset [148]. Their per-
formance differences exemplify the advantage of leveraging LiDAR point clouds, as our
method does.

Figure 5 provides visual examples of plausible world samples x̂∗ generated from
partial observations x. Examples of semantic inference by sufficient similarity are shown.
The actual world perceived in future observations is included for comparison. The examples
illustrate how large structures like road are accurately learned. Finer semantic details
like road markings are comparatively challenging to represent and predict. However,
the training samples display an improved granularity of their fine semantics, indicating
that further training on a larger training set covering additional patterns may enhance
their performance.
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Figure 6 displays a set of randomly sampled environments from the learned prior
distribution pθ(Z). The sampled environments showcase intricate details like road mark-
ings and semantically plausible configurations. Some generated samples are partially
degenerate. Additional optimization of the learned prior pθ(Z) and generative model
pθ(x|Z) is expected to reduce the likelihood of degenerate samples. Figure 4 shows that
both pθ(Z) and pθ(x|Z) are likely to improve with additional training.

The predictive world model’s mean inference time is 0.175 s or 5.71 Hz on an RTX
4090 GPU. Our method is thus applicable for real-time applications, given a modern SLAM
implementation [111,149,150] is capable of operating faster than sensor frame rates.

Suff. sim. Target

road

road
marking

Figure 5. Conditional sampling visualizations. The high-dimensional open-vocabulary partial
observation input x and sampled predictive world model output x̂∗ are projected onto RGB images
by PCA projection. Semantic inferences by sufficient similarity are shown in the third column. The
actual worlds perceived in future observations are shown in the forth column. The first three rows
show evaluation samples. The remaining two rows show samples from the training distribution.
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Figure 6. Unconditional sampling visualizations. High-dimensional open-vocabulary embedding
maps are generated by the predictive world model pθ(x|Z) through sampling from the learned prior
distribution pθ(Z). The embedding maps are visualized as RGB images by PCA projection.

7. Discussion

A limitation of our current approach is its top-down 2D grid representation. Two-
dimensional embedding maps do not represent vertical information or multi-layered
environments, which are required for general 3D representations. Extending the OV-PWM
approach to 3D representations using voxel grids or neural radiance fields is a promising
direction for future work and will enable spatial reasoning in fully general complex 3D
structures. While the model already demonstrates a promising generalization capability in
new environments, the modeling of finely detailed semantics like road markings displays
room for improvement. Given that the original VDVAE model was trained on 32 V100 GPUs
for 2.5 weeks (we: 6 A6000 GPUs for 4 days) on a large dataset of 70,000 samples [53] (we:
7000 samples), and the OV-PWM’s training performance trend indicates room for further
improvement, it is reasonable to expect additional training time and diverse observational
experiences to further boost performance. Reducing degenerate samples resulting from
inaccurate and erroneous ICP scan matching steps by implementing a robust SLAM-based
observation accumulation framework may further improve training efficiency. Despite
limited computational resources, the training set’s size, and degenerate samples, our
method learns to generate outputs with intricate details emerging even from unconditional
sampling based on prior distributions. Other directions include incorporating agents and
temporal dynamics into predictive world models, as well as demonstrating the advantages
of learned simulators in practical embodied task planning and decision making problems,
using large-scale real-world data.

8. Conclusions

The experimental results validate our research hypothesis, suggesting that the open-
vocabulary predictive world model (OV-PWM) can learn to predict accurate and diverse
fully observed environment representations encoded by high-dimensional latent composi-
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tional semantic embeddings [41] from partial egocentric observations only. By capturing
this structure in a compact latent code in an easily sampled learned prior distribution,
the OV-PWM model can “imagine” and predict the unobserved regions of an environ-
ment given a partial view of it. The OV-PWM model achieves predictive accuracy and
diversity comparable to our previous probabilistic closed-set predictive world model [6]
with the advantage of supporting open vocabulary and overlapping semantic inferences,
as required for future general-purpose mobile robots. Our framework also simplifies its
learning method to a single-stage end-to-end paradigm, whereas the previous approached
required a two-stage optimization scheme.

Overall, we propose OV-PWMs as a promising direction for endowing general-
purpose mobile robotic agents with spatio-semantic environment representations and
an internal simulator. The OV-PWM allows an agent to imagine the possible configurations
of unmapped regions by learning an explicit generative model of environments represented
by open-vocabulary semantics, potentially facilitating safer planning, continual mapping,
and spatio-semantic reasoning. The ability to distill vast observational experience into a set
of compact latent representations brings us closer to replicating the key cognitive abilities
of biological intelligence.

Author Contributions: Conceptualization, R.K.; methodology, R.K.; software, R.K.; validation, R.K.;
formal analysis, R.K.; investigation, R.K.; data curation, R.K.; writing—original draft preparation,
R.K.; writing—review and editing, R.K., R.A., A.C., K.F., K.O. and K.T.; visualization, R.K.; funding
acquisition, K.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP23H03282.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used for experimental evaluations were generated by the
CARLA simulator 0.9.15 release. The data, model, and code used for these evaluations will be
uploaded to a public repository for reproducibility upon their acceptance.

Acknowledgments: The authors would like to take this opportunity to thank the “Interdisciplinary
Frontier Next-Generation Researcher Program of the Tokai Higher Education and Research System”.

Conflicts of Interest: Author Kazuya Takeda is employed by the company Tier IV Inc. The remaining
authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as potential conflicts of interest.

Appendix A. Semantic Taxonomy

Table A1. Semantic taxonomy used for the CARLA simulator experiments.

Level 1 (CARLA) Level 2 Level 3

unlabeled unlabeled unlabeled

road drivable static

side walk ground static

building construction static

wall construction static

fence structural static

pole structural static

traffic light traffic information static

traffic sign traffic information static

vegetation plant static

terrain ground static
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Table A1. Cont.

Level 1 (CARLA) Level 2 Level 3

sky sky sky

pedestrian person dynamic

rider person dynamic

car vehicle dynamic

truck vehicle dynamic

bus vehicle dynamic

train vehicle dynamic

motorcycle vehicle dynamic

bicycle vehicle dynamic

static static static

dynamic dynamic dynamic

other other other

water fluid dynamic

road marking road drivable

ground static static

bridge construction static

rail track metal static

guard rail structural static

Appendix B. Sufficient Similarity Threshold Values

Table A2. Sufficient similarity threshold values used for filtering and semantic inferences.

Semantic Suff. Sim. τ

road 0.5934

road marking 0.3944

side walk 0.481

vegetation 0.4872

static 0.456

drivable 0.5429

dynamic 0.6300

Appendix C. Deriving Cosine Distance from Negative Log Likelihood Minimization

Here we show that minimizing the negative log likelihood p(x|Z) in (28) is equivalent
to minimizing the cosine distance of normalized OV semantic embeddings modeled by
the OV-PWM. By proposing that the output variable distribution is a Normal distribution
and presuming the stochastic process variance σ2 is constant and thus does not affect the
minimization objective,
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min− log(p(x|Z) = min− logN (x|µ(Z), 2σ2I) (A1)

= min− log
[

1√
2πσ2

exp
(
−1

2
(x − µ(Z))2

σ2

)]
(A2)

= min−
[

log(2πσ2)−
1
2 − 1

2
(x − µ(Z))2

σ2

]
(A3)

= min
1
2

[
log(2πσ2) +

(x − µ(Z))2

σ2

]
(A4)

∝ min
1
2
(x − µ(Z))2 (A5)

= min
1
2
(x − µ(Z))T(x − µ(Z)) (A6)

= min
1
2

(
xTx − 2xTµ(Z) + µ(Z)Tµ(Z)

)
(A7)

= min
1
2

(
1 − 2xTµ(Z) + 1

)
(A8)

= min
1
2
(2 − 2xTµ(Z)) (A9)

= min(1 − xTµ(Z)). (A10)

Noting that the predicted OV semantic embeddings x̂∗ correspond to µ(Z) shows that
(A10) is is the cosine distance (31) and thus completes the derivation.
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