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Abstract: Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by
introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly
used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to
exchange messages in a stop-and-wait way, where the tradeoff between energy and efficiency is a
hard problem. Related works have reduced the energy consumption of LPNs mainly in the direction
of changing the bearer layer, improving time synchronization and broadcast channel utilization.
These algorithms improve communication efficiency; however, they cause energy loss, especially for
the LPNs. In this paper, we propose a constrained flooding algorithm based on time series prediction
and lightweight GBN (Go-Back-N). On the one hand, the wake-up cycle of the LPNs is determined by
the time series prediction of the surrounding load. On the other, LPNs exchange messages through
lightweight GBN, which improves the window and ACK mechanisms. Simulation results validate
the effectiveness of the Time series Prediction and LlightWeight GBN (TP-LW) algorithm in energy
consumption and throughput. Compared with the original algorithm of BLE Mesh, when fewer
packets are transmitted, the throughput is increased by 214.71%, and the energy consumption is
reduced by 65.14%.

Keywords: BLE mesh; low-power; friendship; time series prediction; lightweight GBN

1. Introduction
1.1. Motivation

In the Internet of Things (IoT), Low-Power Nodes (LPNs) are ideal for building
networks for smart homes, smart lighting, building automation, and industrial IoT [1–4]
due to their flexibility. LPNs can be easily deployed anywhere in the network without
a fixed power supply [5]. This improves the applicability of the network. Therefore,
they are also an excellent choice for sensor networks. As a routing algorithm for BLE
Mesh networks, the Constrained Flooding algorithm is used in standard protocols. The
constrained flooding algorithm [6,7] introduces Heartbeat messages and Time To Live
(TTL) into flooding messages. Heartbeat messages indicate the active state of the node
and TTL controls the relay distance of the message. The scope of flooding is restricted by
these two messages. However, devices in a BLE Mesh network need to constantly scan
the broadcast channel to ensure that they do not miss the packages sent by the flood [8].
This operation significantly reduces the lifetime of the devices [9–11]. However, heartbeat
messages and TTL have only a limited effect on the size of the flood [2]. Therefore, BLE
Mesh limits it further by a friendship mechanism. The LPNs keep themselves asleep most
of the time by establishing a friendship relationship with friend nodes. This reduces the
energy consumption of the LPN and extends its lifetime.

Although in the BLE Mesh standard protocol the friendship mechanism reduces the
energy consumption of LPNs to some extent, there are still some problems. On one hand, it
may lead to LPNs establishing a friendship with a friend node of higher load. This will
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result in LPNs needing to request more frequently or scan for a longer time to complete the
data transfer. On the other hand, LPNs use a stop-and-wait protocol for communication
in standard protocols. The node sends a packet, waits for an acknowledgment, and then
sends the next packet after receiving the acknowledgment. It is a relatively inefficient
communication method [12], which is unfavorable for the LPNs to quickly complete the
data transfer and enter the sleep state.

1.2. Related Work

One way to address the energy consumption of LPNs is to change the bearer layer. A
proprietary solution is proposed in the literature [13]. Data transmission using extended
broadcasts updated with BLE version 5.0 to improve bandwidth. Although this method
can reduce the energy consumption of LPNs, there is a mandatory requirement for the BLE
version of the devices in the network.

Another way to reduce the energy consumption of LPNs is to improve time synchro-
nization. The main energy consumption of LPNs comes from the sending and receiving
data packets. By improving the time synchronization between the LPN and the friend node,
LPNs reduce the number of requests and scanning time. This optimization is implemented
in two main ways: one is to use a high precision time synchronization algorithm [14],
and the other is to use a high-frequency source to improve the clock accuracy [15]. The
asynchronous dynamic scanning algorithm [16] defines a new control command to adjust
the scanning parameters of LPNs. When the network needs to transmit data, the scanning
window is set to the scanning interval for waiting for data. When the data transmission
is completed, the LPNs in the network return to a low-duty cycle scanning state. The
BTLBT (Burst Transmissions and Listen Before Transmit) algorithm [12] scans the channel
before sending a request during the wake-up cycle of an LPN. If the friend node is sending
data to other nodes at this time, it enters a short sleep state while waiting for the friend
node to complete the current broadcast event. These two algorithms can improve the
transmission efficiency of the friendship mechanism during data transmission, but the
time synchronization algorithms and high-frequency sources running in LPNs increase
energy consumption.

Other studies have proposed that LPNs send packets only on a single channel. This
is because packets in the BLE Mesh network require sending on three broadcast channels
sequentially. Sending on a single channel reduces the energy consumption incurred for
sending packets [17]. However, the friend node still polls and scans on all three channels,
increasing the likelihood of losing friend poll messages. This wastes the scanning window
and leads to increased energy consumption in LPNs.

There is also a line of research looking at reducing the overall energy consumption
of the network. Novel NonUniform Power Formation Algorithm (NUPFA) [18] builds
networks in a distributed manner, utilizing nonuniform power allocation. The overall
power consumption is reduced by decreasing the packet transmission power of each small
network. The Geographic information and packet delivery probability-based Candidate
Set Selection Algorithm (GPCSSA) and Markov Chain-based Prioritization Algorithm
(MCPA) [19] reduce the overall energy consumption of the network by selecting the node
with the minimum forwarding power per hop in routing. The above two algorithms extend
the overall network lifetime but are not optimal solutions for the energy consumption
of LPNs.

In summary, current research has been carried out to reduce the energy consumption
of BLE networks by changing the bearer layer, improving the clock synchronization, and
increasing the broadcast channel utilization. However, we can further optimize the energy
consumption of the LPNs. We found that there is a state change in whether LPNs establish
friendship relationships or not, which has a certain periodic pattern. Therefore, we consider
introducing a time series prediction model to predict the load of nodes. This can improve
the transmission efficiency of LPNs while further reducing the energy consumption of LPNs.
This paper proposes a constrained flooding algorithm based on time series prediction and
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the lightweight GBN protocol (TP-LW). The TP-LW algorithm combines load prediction
with a lightweight GBN protocol. It reduces the energy consumption of LPNs and im-
proves the transmission efficiency of the friendship mechanism. Its main contributions are
as follows:

• Load prediction of friend nodes: To address the energy consumption of LPNs, the
network load of friend nodes is predicted using the Seasonal Autoregressive In-
tegrated Moving Average (SARIMA) model. According to the prediction results,
the Receive Window (RW) is adjusted to react to the real-time load of the node in
network operation;

• Lightweight GBN protocol: To further reduce the energy consumption of LPNs, a
lightweight GBN protocol is designed to simplify the ACK mechanism and windowing
mechanism of the GBN protocol.

The rest of this paper is organized as follows: Section 2 focuses on the simulation
model of the BLE Mesh network, Section 3 describes the detailed design of the TP-LW
algorithm, Section 4 explains the simulation experimental configurations and their results,
and finally, in Section 5, conclusions are given.

2. System Model

This section focuses on the system model of the BLE Mesh. The BLE Mesh standards
are taken from the Bluetooth website (www.bluetooth.com, accessed on 9 July 2024). As
shown in Figure 1, there are different types of nodes present in a BLE Mesh network.
They have special functions in the network [4]. The four most important features are the
Relay feature, the Friend feature, the low-power feature, and the Proxy feature. Nodes
can have one or more features, but low-power features cannot coexist with other features.
This is because nodes with low-power features need to be dormant for a long time and
cannot fulfill other functions. When a node has both relay and friend characteristics, it can
forward packets in the network. It can also establish a friend relationship with LPNs and
send packages to LPNs in the network. In the BLE Mesh network, relay nodes will use
a constrained flooding technique to broadcast information. The process of establishing a
friendship relationship is also shown in Figure 1. The friend node will cache the received
packets for the LPN that has established a friendship relationship. When the LPN is in a
wake-up state, it will request the cached packets from the friend node. During this period,
the LPN communicates with the friend node using the stop-and-wait protocol.

Figure 1. Bluetooth mesh node types.

2.1. Network Load Modeling

In the BLE Mesh system model, the first step is to model the network load of the friend
node. We calculate the network load of a node per unit time by the length l of the send

www.bluetooth.com
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queue. The packets cached in the send queue are divided into two parts. One part comes
from the packets to be forwarded in the network lr. The other part comes from the packets
llpn requested by the LPN after it wakes up. Thus, the number of packets lt queued per
unit of time can be expressed as

lt = lr + llpn (1)

A friend node can establish friendship relationships with multiple LPNs. These LPNs
wake up periodically. When an LPN wakes up, it requests the packets cached for it during
hibernation from the friend node that established the friendship relationship. During the
wake-up cycles of the LPNs, the length of the sending queue of the friend nodes will
increase significantly. Thus, the network load on friend nodes is significantly temporal
and seasonal. Friend nodes, as IoT devices, have limited computing power, and it is
challenging to execute complex time series prediction algorithms with them. We consider
the characteristics of the network load of friend nodes, the computing power of devices, and
the advantages and disadvantages of different time series prediction algorithms. Therefore,
we adopt the SARIMA model [20] of classical time series prediction algorithms to predict
the network load of friend nodes.

The SARIMA model evolved from the ARIMA (Autoregressive Integrated Moving
Average Model) model, which consists of the Autoregressive Model (AR), Single-Integer
Order i, and Moving Average Model (MA). The ARIMA (p, d, q) model is expressed as

yt = α +
p

∑
i=1

γiϵi−1 + ϵt +
q

∑
i=1

θiϵt−i (2)

where yt is the current term, α is the constant term, p is the autoregressive term, γi is the
autocorrelation coefficient, ϵ is the residual series, q is the moving average term, θi is the
coefficient of the moving average term, and d is the number of differencing performed
when the time series are smoothed.

The ARIMA model only considers autocorrelation and trends in the time series and
cannot capture the effect of seasonality such as LPN wake-up cycles. Therefore, a seasonal
ARIMA model is required. The SARIMA model adds three hyperparameters, P, D, and
Q, to the ARIMA model, as well as an additional seasonal cycle parameter S [21]. It is
able to use pattern recognition, estimation, and forecasting procedures of the Box–Jenkins
method. Facilitating real-time model adjustments as more historical data become available,
the general expression for SARIMA (p, d, q)(P, D, Q) S is

Φp(L)Φp(LS)∆d∆D
S yt = Θq(L)ΘQ(LS)ϵt (3)

where L is the lag operator, P is the maximum lag order of the seasonal autoregression, Q
is the maximum lag order of the periodic moving average operator, and D is the number of
seasonal differences.

2.2. Friend Node Selection

In the process of friend node selection, each candidate friend node will calculate its
own Local Delay based on the parameters and RSSI (Received Signal Strength Indication)
in the friend request message. This allows LPNs to distinguish between friend nodes of
different performance when selecting a friend. It also avoids broadcast conflicts when
multiple friend nodes reply to friend request messages at the same time. After the delay
has elapsed, it will respond to the friend request message to the LPN. The formula for the
calculation of the Local Delay is as follows:

LocalDelay = ReceiveWindow × ReceiveWindowFactor − RSSI × RSSIFactor (4)

According to the BLE Mesh standard protocol, the ReceiveWindow parameter ranges
from 1 to 255 ms, reflecting the network load of the friend node. RSSI is measured by the
friend node, reflecting the communication status between the friend node and the LPN.
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The ReceiveWindow Factor and RSSI Factor are set by the LPN informing the friend node
through the friend request message. The standard protocol specifies that these values can
be 1, 1.5, 2, and 2.5. By the different settings of the two factors, the friend node that better
meets the needs of the LPN can be prioritized and filtered out.

When a friend node receives a request to establish a friendship relationship, it will
calculate the length of its sending queue according to the result of the network load
predicted by the SARIMA model and adjust the Receive Window of the friend node
according to Equation (5):

ReceiveWindow = Td ×
1
n
×

n

∑
i=1

lt+i (5)

where Td is the time for a friend node to complete the transmission of a packet on three
broadcast channels during a normal operating state. The friend node obtains the length of
its send queue when n low-power nodes request it by SARIMA model prediction, calculates
the average value, and multiplies it with the time Td to obtain the ReceiveWindow value.
The computed Receive Window reflects the network load of the friend node when the LPN
wakes up.

2.3. Friendship Mechanism Communication Model

The BLE Mesh standard protocol uses a stop-and-wait protocol for data transmission
between LPNs and friend nodes, and the process is shown in Figure 2.

After the relationship is established between the LPN and the friend node, the LPN
goes to sleep. Then, it wakes up periodically and sends a friend polling message to the
friend node to request the packets cached during the sleep period to be sent to itself. In
Figure 2, the friend node caches two packets for the LPN at this time and sends the first
packet to the LPN after receiving the friend polling message. After receiving the response
from the friend node, the LPN can briefly enter the sleep state and wait until the Receive
Window expires to send the request again to reduce the scanning time. However, when
the friend node cannot correctly receive the request packet, or the LPN cannot correctly
receive the message replied to by the friend node, the LPN will scan the Receive Window
time. When the MD field in the packet is 0, it means that there is no more packet cached
for the LPN at the friend node. The LPN can enter the sleep state and wait for the next
wake-up cycle.

Figure 2. BLE Mesh network friendship mechanism communication example.

There are three states of LPNs in this process, sleep, sending packets, and scanning.
In [22], the energy consumption in three states of LPNs in the BLE Mesh network has been
tested and calculated to obtain the energy consumption in each state, as shown in Table 1.
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Table 1. Energy consumption table for each state of the LPN.

State Symbolic Energy Consumption (mAh)

Sleep Status Isleep 0.015
Sending Packets Status Isend 20.896

Scanning Status Ireceive 16.057

From Table 1, it can be concluded that the energy consumption of an LPN is mainly
composed of three parts. The first part is to keep working even while the node is dormant,
such as the timer responsible for periodically waking up the LPN and the peripheral
devices responsible for monitoring or collecting information. The second part is the energy
consumed by polling the friend node to request packet delivery during wake-up. The third
part is the energy consumed by the channel scanning of the LPN during the wake-up cycle.
Thus, the energy consumption of the LPN can be expressed as

E = Tsleep × Isleep + Req × Isend + Treceive × Ireceive (6)

where E denotes the total energy consumption of the LPN. Tsleep denotes the time when
the LPN is in the sleep state. Isleep denotes the energy consumed per millisecond when the
LPN is in the sleep state. Req denotes the number of polling packets sent by the LPN to the
friend node. Isend denotes the energy consumed by the LPN to send a polling packet. Treceive
denotes the time when the LPN is scanning, and Ireceive denotes the energy consumed per
millisecond when the LPN is scanning.

3. Algorithm Design

This section describes the details of the TP-LW algorithm. The TP-LW algorithm first
predicts the load of friend nodes by the SARIMA model. Then, based on the prediction
result, it optimizes the selection of friend nodes so that the LPN establishes a friendship
relationship with the optimized friend node. Finally, the nodes communicate with each
other based on the lightweight GBN protocol.

3.1. Load Prediction for Friend Nodes

The TP-LW algorithm firstly predicts the network load of friend nodes based on the
SARIMA (p, d, q) (P, D, Q) S model, which mainly includes four steps: time series smoothing
processing of network load of friend nodes, model parameter identification, model checking,
and model prediction, and the specific framework is shown in Figure 3. The ACF (Auto-
correlation Function) is used to determine the degree of autocorrelation of the time series.
The PACF (Partial Autocorrelation Function) is used to determine the degree of direct
correlation between the two time series after eliminating the influence of other lag terms.
The AIC (Akaike Information Criterion) is used to assess the degree of fit and generalization
of the SARIMA model. For the time series xt with lag order k of the series xk−t, the ACF
and PACF are calculated as follows:

ck =
1
n

n−k

∑
t=1

(xt − x̄)(xt+k − x̄) (7)

ACFk =
ck
c0

= Cor(xt, xt+k) (8)

PACFk =

{
Cor(x1, x0) = r1 i f k = 1;
Cor(xk − xk−1

k , x0 − xk−1
0 ) i f k ≥ 2;

(9)
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Figure 3. Flowchart of SARIMA time series forecasting model.

Friend nodes are first divided into training and test sets by the historical series of
network loads for prediction using the SARIMA model. The Augmented Dickey–Fuller
(ADF) test is used to determine whether the initial time series is smooth. If it fails the ADF
test, the series is not smooth enough. This requires the conversion of the nonstationary time
series into a stationary time series by a difference operation. Then, the parameter set for
predicting the load sequence of the friend node network is determined by combining the
ACF and PACF methods. The optimal parameters of the model are determined by the AIC
criterion method. Before using the model to make predictions, the validity of the model
needs to be tested. This is achieved by looking at the residuals of the SARIMA model and
observing the correlation of the residuals. If the residuals are close to normal distribution
and not correlated, the model is valid. Finally, the network load sequence is predicted by
the obtained model.

We use two metrics to measure the forecasting performance of the SARIMA model,
which are Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). RMSE is
sensitive to very large or very small errors in the prediction results and can reflect the
accuracy of the prediction very well. MAE can better reflect the actual situation of the
prediction error because the error is taken as an absolute value, and there is no positive or
negative offset. The calculation formulas are shown below:

RMSE(y, ŷ) =

√
1
|N| ∑

i∈N
(yi − ŷi)2 (10)

MAE(y, ŷ) =
1
|N| ∑

i∈N
|yi − ŷi| (11)

where yi represents the actual network load, ŷi represents the predicted value, and N
represents the number of predicted values. For RMSE and MAE, the lower the value of the
evaluation metric, the more accurate the prediction.
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3.2. Lightweight GBN Protocol

The second key point of the TP-LW algorithm is the lightweight GBN protocol. In our
designed lightweight GBN protocol, the LPN only needs to send a friend polling message
once at the initial startup of each wake-up cycle, and it informs the friend node about the
sequence number of the latest packet it received in case of packet loss. After receiving the
friend polling message, the friend node will send the packets to the LPN in an orderly
manner according to a certain broadcast interval. When the LPN successfully receives
the packets sent by the friend node, it will immediately reset its Receive Window and
continue to receive the packets until it receives all the packets cached by the friend node.
These designs can reduce the number of packets sent by LPNs, shorten the scanning time,
and reduce the energy consumption caused when switching states. Figure 4 shows the
transmission mechanism of the lightweight GBN protocol.

Figure 4. Lightweight GBN protocol communication schematic.

The friend node sends the packet by a sequence number (Seq). When packet loss
occurs, the Seq received by the LPN will no longer be in order. At this point, the LPN sends
a friend polling message again to inform the latest packet the friend node received correctly.
After receiving the friend polling message, the friend node will resend the packet that
the LPN has forfeited. Selective Retransmission (SR) protocols can also be used for such
communication, but the receiver of the SR needs to cache all received packets and process
the Seq of the packets. This is not conducive to reducing the energy consumption of LPNs.
In contrast, LPNs, as receivers in the GBN protocol, only need to maintain Seq information.

3.3. Overall Flow Chart of TP-LW Algorithm

The flow of the TP-LW algorithm is shown in Figure 5. The LPN in sleep state sends
a friend request message to the nodes in range. The node that receives the friend request
will use the time series prediction model to predict its load condition and update the Local
Delay. After selecting the friend node, a response message is sent to the LPN. Then, after
receiving the response message the LPN enters the wake-up state and communicates with
the friend node using the lightweight GBN protocol.

Figure 6 shows the flowchart about load prediction and friend node selection. First,
the LPN sends a FriendRequest to the nodes in the range. Then, the nodes receive the
request, predict their load situation, and update ReceiveWindow and Local Delay. The
better the load condition, the lower the Local Delay of the node, and the earlier it will reply
to the LPN with the FriendOffer of the friendship relationship establishment. If the LPN
receives the FriendOffer, it establishes a friendship relationship with the friend node and
communicates with the friend node in the wake-up state. If the LPN does not receive the
FriendOffer, it waits for ReceiveDelay and then sends the FriendRequest message again.
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Figure 5. Constrained flooding algorithm based on time series prediction and lightweight GBN flow chart.

Figure 7 shows the flowchart of lightweight GBN communication. When the LPN is
in the wake-up state, it sends a polling message to the friend node to request the packets
cached during the sleep state. After receiving the polling message, the friend node sends
packets to the LPN in order. If the LPN receives the packet within the ReceiveWindow, it
looks at the MD field, and MD = 0 means that this is the last packet that the friend node
cached for the LPN. If MD is not 0, the LPN refreshes the ReceiveWindow and waits for
the packet to be transmitted. If MD = 0, the LPN will end this round of communication
and enter the sleep state. In addition, if the LPN does not receive the packet within the
ReceiveWindow, it will send the latest Seq to the friend node for the friend node to resend it.
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Figure 6. Load prediction and friend node selection.
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Figure 7. Lightweight GBN communications.

4. Simulation Results
4.1. Simulation Experimental Design

This section describes the set-up of the simulation experiment scenario and the setting
of network parameters. Due to the complexity of developing a real testbed, the simulation
results are the main benchmark for wireless networks [23]. In this paper, network simulation
is also used to evaluate the effectiveness of the algorithmic scheme. The simulation is carried
out through dedicated software developed in Python [24]. The simulator implements the
basic functions of different layers in the BLE Mesh network. The scene consists of an LPN
that has just joined the BLE Mesh network and several nodes that are already in the network.
The number of friend nodes that have established friendship relationships is randomly
and uniformly generated in the interval [0,4], aiming to simulate the random distribution
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of friend nodes in the real scenario. Meanwhile, this paper sets the number of packets
forwarded by friend nodes in the network according to the Poisson distribution model. As
for the LPNs that have established friendship relationships, the number of packets cached
for them by the friend nodes in each wake-up cycle is also determined based on the Poisson
distribution. The model can accurately reflect the random transmission of packets in a real
network environment.

The detailed parameter configuration of the experiment is shown and explained in
detail in Table 2.

Table 2. Parameters of the friendship mechanism simulation experiment.

Parameter Value

Number of nodes n ∈ [100, 300], n ∈ Z+

Number of friend nodes near LPNs Randomly selected from the range of 1 to 10
Number of friendship relationships per

friend node Randomly selected from the range of 0 to 4

Physical layer rate 1 Mbps
Node RF range [25] 15 m

Wake-up time 1000 ms
Reception delay 10 ms

Packet length 47 Byte

In the dataset collection session, the friend node records the number of packets in the
send queue every 100 ms, and the data recording continues for 10 s. The collected data
are divided into the ratios of 80% and 20%, where 80% of the data are used as a training
set, and the remaining 20% of the data are used as a test set to verify the accuracy of the
model predictions.

4.2. Simulation Analysis

For the evaluation of the time-series prediction models, we compared the ARIMA,
Holt–Winters [26], and Long Short-Term Memory (LSTM) models [27]. Holt–Winters
and LSTM are both classical time series prediction models that are used as comparison
algorithms to show the prediction effect of SARIMA. The training dataset for Holt–Winters
and LSTM is the same as that for SARIMA in that 80% of the historical data are used
as the training set and 20% as the test set. Below are four randomly generated friend
nodes that have established friendship relationships with different numbers of LPNs. The
results of time series forecasting can be better demonstrated. Friend nodes #1, #2, #6,
and #7 have established friendship relationships with 3, 1, 4, and 2 LPNs, respectively.
The four models were trained on the first 8 s of data, predicted the trend of the last 2 s,
and compared with the actual values. Figures 8–11 show the predicted graphs of sending
queues for friend nodes with different numbers of friendship relationships. We can draw the
following conclusions:

• Significant advantages are demonstrated by the SARIMA model in predicting the
network load of friend nodes.

When an LPN that has established a friendship relationship with a friend node wakes
up, the network load of the friend node increases significantly. The SARIMA model can
predict the period when the network load of the friend node increases more accurately. This
provides the newly joined LPNs with accurate information when selecting a friend node.
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Figure 8. Friend node #1.

Figure 9. Friend node #2.

Figure 10. Friend node #6.

Figure 11. Friend node #7.

To evaluate the general applicability, as well as the accuracy, of the SARIMA model in
predicting the network load of friend nodes, we simulated the model 1000 times for friend
nodes with different numbers of friendship relationships. A comparative validation was
carried out using two evaluation criteria, RMSE and MAE. From Figures 12 and 13 we can
understand the following:

• The prediction results of the SARIMA model are significantly better than those of
the ARIMA model, the Holt–Winters model, and the LSTM algorithm, with higher
accuracy.
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When the friend node has not yet established any friendship relationship, there is no
significant increase in the period in the time series graph of its sending queue. And there is
no seasonality in the time series. So, the RMSE and MAE values of the SARIMA model,
ARIMA model, and the Holt–Winters model are similar. As the number of friendships
increases, the seasonality in the time series of the sending queue becomes apparent, and
the SARIMA model’s predictions become more accurate. The LSTM algorithm has a high
degree of learning freedom, but it requires a certain amount of computational power and
data volume from the device. Thus, it affects the accuracy of network load prediction on
IoT devices with limited computational power and storage resources.

Figure 12. RMSE.

Figure 13. MAE.

For the evaluation of the energy consumption of LPNs, we conducted 1000 experiments
for networks with different numbers of nodes. The experiments counted the scanning
duration of LPNs when obtaining different numbers of packets sent in each wake-up cycle.
As can be seen in Figure 14:

• As the number of packets increases, the overall scanning time shows an increasing trend;
• Compared with the standard protocol, both SARIMA and LSTM predictions result

in a small reduction in scan time. The LSTM+LGBN and TP-LW algorithms perform
better, but the TP-LW algorithm is more effective.

The lightweight GBN protocol only needs to send a request at the beginning of a wake
up and when a packet loss occurs. In contrast, the standard protocol requires a request
to be sent once for each packet and again when a packet loss occurs. Also, the number
of requests that need to be sent using the lightweight GBN protocol increases less when
the network environment worsens. This further demonstrates its effectiveness in reducing
energy consumption in various network conditions.
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Figure 14. Scanning time.

We calculated the energy consumed by a LPN to receive a specific number of packets
in a wake-up cycle. The following conclusions can be drawn from Figure 15:

• The energy consumption of LPN is gradually increasing as the number of packets
increases. The prediction with LSTM is better than the standard protocol, while the
prediction with SARIMA is even better than LSTM;

• The TP-LW and LSTM+LGBN algorithms produced the best results that were optimal
in terms of energy consumption, with the TP-LW algorithm being slightly more
effective than LSTM+LGBN.

The network environment deteriorates and the energy consumption of LPNs using
standard protocols can increase rapidly. However, the LPNs using the lightweight GBN pro-
tocol can maintain a relatively stable energy consumption. The applicability and superiority
of the lightweight GBN protocol in different network environments are further verified.

Figure 15. LPN energy consumption.
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For the evaluation of LPN throughput, we conducted one thousand experiments for dif-
ferent numbers of nodes. The standard protocol, the LSTM+stop-and-wait, SARIMA+stop-
and-wait, LSTM+LGBN, and TP-LW algorithms are compared. The results can be seen in
Figure 16:

• The throughput using the stop-and-wait protocol remains essentially unchanged. The
use of the prediction algorithm outperforms the standard protocol;

• As the amount of data increases, the processing speed of the LPN with the lightweight
GBN protocol gradually rises and finally tends to stabilize. The performance using
SARIMA is better than LSTM.

In the case of using the lightweight GBN protocol, the friend node sends packets
consecutively, shortening the entire transmission process. Therefore the number of new
packets entering the queue during this period is relatively less. This means that the LPN
has to wait less time for the friend node to process other packets while receiving a packet,
which in turn improves the packet processing speed. On the contrary, in the standard
protocol, even after receiving a packet, the LPN must wait for the Receive Window to end.
The whole transmission process takes a long time. The number of newly added packets in
the send queue of the friend node will be greater. So, the LPN sometimes needs to wait a
long time to receive new packets, which affects throughput.

Figure 16. LPNs throughput.

To assess the stability of the friendship relationship, we compared communication
using TP-LW with standard protocols. Since the stability of the friendship relationship
comes from the communication process between the LPN and the friend node, the ablation
experiments using the same communication protocol have similar results. Only repre-
sentative TP-LW and standard protocols are shown here. Statistics on the probability of
friendship relationship disconnection were performed. The following conclusions can be
drawn from Figure 17:

• The use of the lightweight GBN protocol is effective in improving the stability of
friendship relationships in networks with varying numbers of nodes.

The lightweight GBN protocol requires only one request to be sent on wake up,
whereas the standard protocol uses the stop-and-wait communication method. The LPN
needs to request every packet cached during hibernation. Successive loss of requests or
loss of replies will lead the LPN to think that the friend node has exited the network and
actively end the friendship relationship. Therefore, the stability of friendship relationships
is relatively low in the standard protocol.
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Figure 17. Probability of friendship break.

5. Conclusions

In this paper, we propose a constrained flooding algorithm based on time series
prediction and lightweight GBN protocol. This algorithm enables energy-limited LPNs to
work in a stable state in the network for a long period. On the one hand, the algorithm
predicts the network load of friend nodes through the SARIMA model, which provides
a reliable basis for LPNs to select a better friend node. On the other hand, the algorithm
designs a lightweight GBN protocol to reduce the scanning time of the LPN wake-up state.
The energy consumption of LPNs is effectively reduced. Simulation results show that the
TP-LW algorithm significantly reduces the energy consumption of the LPNs and improves
the throughput of the BLE Mesh network. The TP-LW algorithm enables different types of
battery-powered nodes to be integrated into the BLE Mesh network in IoT scenarios. And
it also improves the flexibility and diversity of the deployment of the BLE Mesh network.

In our view, the energy consumption of LPNs can be further reduced. In future work,
we can optimize the prediction algorithm to extend its use. Prediction can be used not
only during the establishment of a friendship relationship but also during each wake-up
cycle of LPNs. In addition, packets can be categorized according to the type of service.
The prediction results are simultaneously communicated to the LPN using an additional
interaction mechanism so that the LPN adjusts the urgency of the wake-up cycles according
to the prediction results. This improves the applicability of LPNs to different tasks and
enables further reduction in LPN energy consumption.
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