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Abstract: Ensuring a safe nighttime environmental perception system relies on the early detection of
vulnerable road users with minimal delay and high precision. This paper presents a sensor-fused
nighttime environmental perception system by integrating data from thermal and RGB cameras. A
new alignment algorithm is proposed to fuse the data from the two camera sensors. The proposed
alignment procedure is crucial for effective sensor fusion. To develop a robust Deep Neural Network
(DNN) system, nighttime thermal and RGB images were collected under various scenarios, creating a
labeled dataset of 32,000 image pairs. Three fusion techniques were explored using transfer learning,
alongside two single-sensor models using only RGB or thermal data. Five DNN models were
developed and evaluated, with experimental results showing superior performance of fused models
over non-fusion counterparts. The late-fusion system was selected for its optimal balance of accuracy
and response time. For real-time inferencing, the best model was further optimized, achieving
33 fps on the embedded edge computing device, an 83.33% improvement in inference speed over the
system without optimization. These findings are valuable for advancing Advanced Driver Assistance
Systems (ADASs) and autonomous vehicle technologies, enhancing pedestrian detection during
nighttime to improve road safety and reduce accidents.

Keywords: ADAS; nighttime object detection; sensor-fusion; image alignment; Deep Neural Network;
transfer learning; embedded devices

1. Introduction

Environmental perception plays a crucial role in the development of intelligent auto-
motive systems, such as Advanced Driver Assistance Systems (ADASs) and Autonomous
Driving (AD). This involves the utilization of Artificial Intelligence (AI) technology to
process automotive sensor data, enabling obstacle detection and perception of a vehicle’s
surrounding. Since AlexNet [1] won the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [2] in 2012, various deep Convolutional Neural Network (CNN) algorithms
have emerged, such as VGG16/19 [3], InceptionNet [4], ResNet [5], DarkNet [6], etc., each
making significant contributions to the field. Due to these innovative CNN algorithms, cur-
rent environmental perception systems utilizing visual RGB camera sensors have achieved
state-of-the-art performance.

The incorporation of recent DNN architectures, like the series of YOLO algorithms [7,8],
has enabled these perception systems based on RGB camera sensors to excel in real-time
inferencing during the daytime. This is accomplished by effectively utilizing the visual
spectrum as input data. Nevertheless, the performance of these systems experiences a
significant drop in scenarios with reduced visibility, such as during nighttime or adverse
weather conditions like fog, rain, glare from the sun, and other challenging situations. RGB
cameras are dependent on external light sources, so in low light conditions, they are unable
to take clear pictures of the environment around them. This leads to poor-quality images
being fed to the detection algorithm, which in turn leads to improper or missed detections
of objects [9].
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Infrared (IR) thermal imaging serves as an alternative solution to address nighttime
perception challenges in AD and ADASs. By detecting heat radiation from objects and
capturing variations in heat distributions among different object types, a thermal infrared
camera effectively portrays objects with higher heat radiations in a brighter manner. No-
tably, the IR thermal sensor operates without visible lights. This makes it a reliable choice
for nighttime and adverse weather conditions such as fog, rain, overcast, dust storms, and
more [9]. Figure 1 displays images captured by both standard RGB and IR cameras under
the low light condition at the same time. The initial image in Figure 1a represents an RGB
image with a resolution of 960 by 540. Due to the low illumination conditions, the person
at the back is not captured in the RGB camera image. On the other hand, the IR thermal
image with a resolution of 640 by 512 in Figure 1b shows the person at the back clearly. This
example shows thermal imaging remains unaffected by lighting conditions and provides
consistent image output regardless of light availability.
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Figure 1. (a) A 960 by 540 RGB image in which the third person in the back is not captured by the
RGB camera due to low lighting conditions; (b) a 640 by 512 IR thermal image of the same scene.

An IR camera offers the advantage of identifying objects even in complete darkness,
highlighting the potential for developing a detection system primarily based on IR technol-
ogy. However, IR thermal cameras also have limitations. They rely on detecting infrared
radiation emitted by objects, primarily driven by temperature differences. Consequently,
when target objects have temperatures similar to their surroundings, IR cameras may pro-
duce unclear depictions of their shapes, leading to false positives or misclassifications in an
IR camera-only system [10]. Therefore, it is crucial to research integrating information from
both IR and RGB cameras to explore the fusion effect of combining RGB and IR thermal
imaging. This integration aims to enhance the object detection system for AD and ADASs
in low-light conditions, potentially improving accuracy and reliability.

This paper explores a sensor-fused nighttime environmental perception system by
integrating data from IR thermal and RGB cameras with a proposed innovative alignment
algorithm and advanced Deep Neural Network (DNN) technologies. The overall system
architecture is presented in Figure 2. Initially, the test vehicle is equipped with RGB and
IR thermal cameras, and an edge computing device (the NVIDIA Jetson Orin (Nvidia,
Santa Clara, CA, USA) [11] is integrated as an embedded computing component. The
aligned images from both sensors are then input into the trained sensor-fused DNN system
for pedestrian detection during nighttime. After the optimization process, the proposed
system, deployed on the in-vehicle computing system, is able to run at 33 frames per second
(fps) for real-time inferencing. The major contributions of this paper are as follows: (1) A
novel image alignment algorithm is proposed. Given the distinct fields of view (FOVs) and
spatial resolutions of the two sensors, a new innovative alignment algorithm is introduced
to automatically align the images from both sensors without manually measuring their
displacement in the x, y, and z directions, which is prone to errors and cumbersome. (2) To
develop a robust nighttime pedestrian detection system, a total of 32,000 new nighttime data
samples were collected and labeled. Five DNN models were developed, including three
fusion methods and two single-modal systems, using 110,000 data samples and transfer
learning. (3) The best-performing DNN model for the nighttime pedestrian detection
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system was optimized for enhanced performance. Initially, due to the limited computing
power of the in-vehicle system, the running time for the best DNN model dropped from
55.65 fps on a Dell laptop (Dell, Round Rock, TX, USA) to 18 fps on the in-vehicle computing
unit. However, through optimization, the fused DNN model’s running time improved from
18 fps to 33 fps. This optimization enabled the system to perform real-time inferencing.
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mounted on the vehicle indicated by the red circle, with detection results presented using red
bounding boxes.

This paper is organized as follows. In Section 2, an extensive literature review is
conducted on sensor-fused object detection applicable to both daytime and nighttime
scenarios. Section 3 outlines the comprehensive methodology for developing a sensor-fused
nighttime pedestrian detection system, integrating thermal and RGB cameras. Moving
forward, Section 4 delves into a discussion of the experimental results with different sensor
fusion methods. The paper concludes with Section 5, summarizing the findings and insights
obtained from the study.

2. Related Work

Ensuring safe nighttime AD and ADASs relies on the early detection of vulnerable road
users and animals like deer, with minimal delay and high precision. Several researchers
have delved into various techniques for extracting data from both RGB and thermal
cameras. The authors in [12,13] proposed the thermal camera only method. In [12], the
authors explored object detection using solely thermal images. They employed a DNN
trained on RGB images for object detection in the thermal domain. Their framework utilized
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a Single Shot Detection (SSD) architecture with MobileNet as its backbone. Although they
reported decent detection results, the system’s performance was compromised because
it was initially trained on RGB datasets, lacking proper tuning for thermal images. The
authors in [13] also proposed a thermal-only object detection system. They conducted
experiments by adjusting image quality parameters and observed that the system’s accuracy
was contingent upon the quality of the IR thermal images. Additionally, they integrated
a low-pass filter to effectively diminish the brightness of high-temperature objects while
enhancing their contours. This dual effect significantly reduced noise, resulting in more
precise object detection outcomes.

In early fusion, RGB and IR thermal images are spatially aligned and merged at the
pixel level to form a single image [10,14–16]. Early fusion methods involve combining
pixel-level information from images captured by an IR thermal camera and an RGB camera,
resulting in a single image that is then processed by an object detector. Zhou et al. [10]
proposed a Resnet-based method for feature extraction from thermal images, incorporat-
ing a channel attention mechanism to enhance region of interest (ROI), albeit with slow
computation. In [14], the focus is on early fusion with the YOLO-RGB-T model, modifying
YOLOv4’s input layer to accommodate both RGB and thermal images. This model achieved
mAPs of 64.8% in daytime and 60.9% at nighttime, surpassing single-sensor systems. The
authors in [15] introduced an early fusion model for pedestrian detection, combining fea-
ture maps from color and thermal branches, followed by Network-in-Network (NIN) to
reduce dimensionality. Trained on the KAIST multispectral pedestrian dataset, this model
exhibited reduced miss rates compared to single-modality models. The authors in [16]
evaluated fused RGB–Long Wave IR (LWIR) object detection for air-based platforms, achiev-
ing an mAP@50 of 75%, outperforming RGB-only (25%) and LWIR-only (70%) models,
particularly in challenging conditions.

The mid-fusion strategy improves the object identification algorithm by extracting
and fusing the information from each sensor before feeding the feature data to the detector
head. Several studies explore mid-fusion strategies for RGB and thermal data in object
detection [17–22]. In [20], the authors introduced object detection based on mid fusion
using two sensor combinations: (1) a radar with an RGB camera, and (2) an IR thermal
camera with an RGB camera. Their study concluded that leveraging complementary
sensors enhanced the object detection model’s precision by three times when compared to
the no-fusion model. Similarly, ref. [21] proposed a mid-fusion approach with a redesigned
version of YOLOv5, featuring a two-stream backbone for low-light object detection. These
backbones extracted features from RGB and thermal images, which were fused in a Cross-
modality Fusion Transformer (CFT) module to generate enriched features. They reported
that their model with the CFT module demonstrated superior performance compared to
other experiments conducted. The CFT-based models reported an increase of 6% in mAP
over the no-fusion models.

Lastly, the late-fusion method involves making decisions after independent detections
on RGB and thermal images. A final detection is determined by combining the confidence
scores of the individual detections [23–26]. In [23], the authors implemented the Retina Net
algorithm independently on the RGB and IR images. Then, they applied non-maximum
suppression to combine the individual sensor outputs. Sousa et al. [24] used YOLOv5 for
object detection, where objects in RGB and thermal images are detected separately. Then,
they employed a fully connected multi-layer neural network to combine the outputs from
each sensor. In [25], the authors used YOLOv3-tiny for object detection on individual
sensors. In addition, they also used connected components in thermal images to leverage
detection accuracy. Late fusion was implemented into a single confidence map. Yang et al.
in [26] used YOLOv4 for individual sensor object detection. They proposed an Illumination-
Aware Network (IAN) to decide which model to trust based on paired RGB/IR images,
generating object detection results and confidence weights.

In [27], the authors proposed a method to improve human detection in AD systems
by integrating selective thermal imaging data with RGB images. Their approach utilizes
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the RGB camera for initial object recognition and obstacle detection, with thermal cameras
activated selectively to detect pedestrians under conditions such as obscured views or low
light. This targeted use of thermal imaging significantly enhances pedestrian recognition
accuracy. YOLOv5 was employed to train on a customized dataset of 2156 images for object
and lane recognition models, supplemented by the FLIR dataset for pedestrian recognition
using thermal cameras. They reported an increase in object recognition accuracy from
40.43% with RGB images alone to 83.91% when incorporating thermal image data. The
system was implemented on Nvidia Jetson Nano, achieving a processing speed of 0.75 fps.
However, this processing speed of 0.75 fps poses a bottleneck, rendering it unsuitable for
real-time inferencing.

Image alignment is a critical procedure for fusing information from different camera
sensors. In [28], the authors discussed the calibration and image registration of RGB-D
and thermal cameras, including UV cameras. They emphasized a two-point approach to
equalize epipolar geometries and employed registration techniques to align the images.
This method relies on detecting and matching features between images using common fea-
ture descriptors like SIFT, SURF, and BRISK. However, these methods are computationally
demanding, making them less suitable for real-time processing applications due to their
high computational cost.

Image alignment in the KAIST dataset [29] involves a specialized hardware setup
comprising a color camera, a thermal camera, a beam splitter, and a three-axis camera jig.
The beam splitter aligns the optical centers of both cameras by transmitting the thermal
band and reflecting the visible band. Calibration is performed using stereo camera calibra-
tion techniques to eliminate translation between the optical axes of the cameras. A special
heated calibration board with holes is used for fine-tuning the alignment. Post-processing
corrects color distortions caused by the beam splitter using a reference image of a white
plane. In the LLVIP dataset [30], the image alignment process is described through image
registration. This method includes manually identifying several corresponding points
between the two images, calculating a projection transformation to adjust the infrared
image, and then cropping the images to produce accurately aligned pairs.

The KAIST dataset [29] employs a specialized hardware setup with a beam splitter
and a special heated calibration board for image alignment, while the LLVIP dataset [30]
uses manual identification of common points for image registration. To simplify the
image alignment process and avoid additional hardware costs and manual identification of
common points, we developed a novel approach using Deep Neural Networks (DNNs).
This approach automatically identifies and uses common points generated by bounding
boxes of the same objects, without manual measurement and additional hardware, to
correct misalignment issues.

3. Development of a Sensor-Fused Nighttime Obstacle Detection System

As illustrated in Figure 2, the development of the nighttime object detection system
encompasses several steps. These include hardware setup and sensor selection, data
collection, image alignment across different sensors, information fusion, training the object
detection models, evaluating the developed models, and deploying the system for real-
time inference. In this paper, the authors propose a novel method for image alignment
from two different sensors, collect and label 32,000 paired data samples from the IR and
RGB cameras, and implement three different sensor-fusion methods. The best-performing
sensor-fused DNN model was optimized for deployment on the in-vehicle computing unit.

3.1. Hardware Setup for a Sensor-Fused Nighttime Obstacle Detection System

As presented in Figure 3a, this research utilizes a multi-sensor configuration integrated
into a Chevrolet Bolt platform. The FLIR ADK IR thermal camera [31] serves as a pivotal
component, offering high-resolution thermal imaging capabilities at a 640 × 512 resolution
with a 50◦ field of view (FOV) and a rapid capture rate of 60 fps. Complementing this,
the Logitech (Logitech, San Jose, CA) Stream Cam [32] is employed to record RGB video
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at a resolution of 960 × 540 with a 78◦ FOV, also at 60 fps. The IR thermal camera is
mounted on the roof of the car and the RGB camera is located on the windshield of the car
near to rear-view mirror. Figure 3b presents the captured images with different FOVs and
resolutions. To enable real-time inferencing for object detection under low illumination
conditions, the NVIDIA Jetson Orin [11] computing device is utilized as an in-vehicle
computing unit, leveraging its robust computational capabilities and 32 GB RAM. Table 1
summarizes the specifications of the in-vehicle computing unit, the NVIDIA Jetson Orin.
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Table 1. NVIDIA Jetson Orin specification.

Parameter Specification

RAM 32 GB
GPU/CPU 56 Tensor Cores

GPU max frequency 930 MHz
CPU max frequency 2.2 GHz

3.2. Alignment of Two Different Sensor Images

For a sensor-fusion system incorporating RGB and IR thermal cameras, image align-
ment is essential to integrate data from two different sensors. The necessity for image
alignment emerges from inherent disparities in sensor placements, orientations, and per-
spectives, potentially leading to misalignments in captured images. As presented in
Figure 3b, images are captured from two sensors with different resolutions and FOVs. The
Logitech RGB camera image has a 960 × 540 resolution with a 78◦ FOV, and the FLIR ADK
thermal camera (Teledyne FLIR, Wilsonville, OR, USA) has a 640 × 512 resolution with
a 50◦ FOV. Because the two cameras also have different fields of view (FOVs), a parallax
effect is observed between images of the same scene captured by the two cameras. The
change in the FOV causes a parallax phenomenon, which displaces an object differently
due to the varying FOV. If images from two different sensors are not aligned properly, they
can result in the erroneous fusion of features, complicating the fusion algorithm’s ability to
accurately combine information from various sources.

To resolve the parallax issue, the authors proposed a new image alignment algorithm
that determines the necessary parameters to align images from different camera sensors.
The proposed alignment algorithm generates resizing and translating parameters for align-
ment by comparing the location information of the same object on the images from two
different cameras. Since RGB and IR thermal images capture the same two-dimensional
scene, the factors contributing to misalignment are positional and size differences. Given
that the IR image has a lower FOV (a 50◦ FOV) compared to the RGB image’s FOV (a 78◦

FOV), the RGB image will be aligned with respect to the IR image. The procedures for the
proposed alignment algorithm are described in the following steps:
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Step (1) Capture paired images containing a single object (e.g., a pedestrian) using two
cameras mounted on the test vehicle, as illustrated in Figure 3a. The authors
utilized 20 paired images.

Step (2) For each pair of RGB and IR images:

(i) Detect the object using the existing DNN model [33]: The DNN-based object
detection algorithm is separately applied to both RGB and IR images, resulting
in bounding box coordinates (depicted in Figures 4a and 4b, respectively).
In Figure 4a, the RGB image detection is represented by coordinates (X1RGB,
Y1RGB) for the top-left and (X2RGB, Y2RGB) for the bottom-right. Similarly, the
IR image detection in Figure 4b uses coordinates (X1IR, Y1IR) and (X2IR, Y2IR).

(ii) Calculate the resizing factor: To quantify size differences between images
from different sensors, resizing factors in the x and y directions are computed
using Equations (1) and (2):

RFactor_X = (X2IR − X1IR)/(X2RGB − X1RGB). (1)

RFactor_Y = (Y2IR − Y1IR)/(Y2RGB − Y1RGB). (2)

Here, RFactor_X represents the ratio of the IR image bounding box width to
the RGB image bounding box width, and RFactor_Y calculates the ratio of the
IR image bounding box height to the RGB image bounding box height.

(iii) Calculate the translation factor: Positional differences between RGB and
IR images arise from field of view (FOV) variations. Translation adjusts
the RGB image coordinate system to align with the IR image coordinate
system. Translation parameters in the x and y directions are determined using
Equations (3) and (4):

TranFactor_X = (X1IR − X1RGB) × RFactor_X. (3)

TranFactor_Y = (Y1IR − Y1RGB) × RFactor_Y. (4)

(iv) Record these four parameters: resizing factors and translation factors in the x
and y directions.

Step (3) For each parameter, calculate the average value using the data generated in Step 2.
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sions of 960 × 540 pixels and a field of view (FOV) of 78°; (b) an original IR image sized at 640 × 512 
Figure 4. The proposed image alignment method involves: (a) an original RGB image with di-
mensions of 960 × 540 pixels and a field of view (FOV) of 78◦; (b) an original IR image sized at
640 × 512 pixels with a FOV of 50◦; (c) a resized and translated RGB image; and (d) the aligned RGB
image corresponding to the IR image.

Table 2 presents the parameters derived from 20 pairs of images using the proposed
alignment algorithm. Using these calculated resizing and translation parameters, the RGB
image is resized and translated accordingly. Figure 4c displays the output post-translation
operation. Following translation, the RGB image is cropped to 640 by 512 pixels, starting
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from the top-left coordinate (1, 1) to (640, 512), matching the size of the IR image as
shown in Figure 4d. The proposed alignment algorithm requires a single run during
camera calibration. Once alignment parameters, resizing factors, and translation factors are
computed using this method, they enable real-time alignment of RGB and IR images in
subsequent operations. The algorithm is efficient and robust, facilitating the development
of sensor-fusion algorithms across different camera sensors.

Table 2. Parameters for the proposed alignment algorithm.

Parameter Specification

Resizing factor in the x direction 1.04
Resizing factor in the y direction 1.08

Translation factor in the x direction 16.50
Translation factor in the y direction 12.95

Figure 5 displays the image alignment results produced by both the existing registra-
tion method and the proposed image alignment method. Figure 5a,b depict the original
RGB camera image and its corresponding IR thermal image, respectively. In Figure 5c, the
output from the current registration method is shown. A comparison with the correspond-
ing IR thermal image reveals noticeable misalignment, particularly in areas such as trees,
cars, and pedestrian locations. In contrast, Figure 5d presents the output from the proposed
method, demonstrating accurate alignment with the corresponding IR thermal image.
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Figure 5. The image alignment results comparison: (a) an original RGB image with dimensions of
960 × 540 pixels and a field of view (FOV) of 78◦; (b) an original IR image sized at 640 × 512 pixels
with a FOV of 50◦; (c) the aligned RGB image using the registration method; and (d) the aligned RGB
image using the proposed method.

3.3. Publicly Available Dataset and New Data Collection

To develop the nighttime pedestrian detection system, two publicly available datasets
were used: the KAIST dataset [29] and the LLVIP (Low Light Vision Pedestrian) dataset [30].
The KAIST dataset [29], published in 2015, initiated low-light object detection research.
This dataset consists of pairs of aligned RGB and thermal images, all with a resolution of
640 × 512 for pedestrian detection. The second dataset is the LLVIP (Low Light Vision
Pedestrian) dataset [30], which comprises pairs of RGB and thermal images taken in low-
visibility scenes, with all images in the dataset spatially aligned. Example images from these
datasets are shown in Figure 6a,b for the KAIST dataset and the LLVIP dataset, respectively.
However, these two datasets have several drawbacks. The KAIST dataset suffers from
extremely poor IR image quality, as shown in Figure 6a, while the LLVIP dataset consists of
images captured by surveillance cameras, which do not align with the viewpoint of the
cameras mounted on vehicles.
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Figure 6. Public datasets for nighttime pedestrian detection: (a) an example from the KAIST dataset
with poor IR image quality; (b) an example from the LLVIP dataset.

Therefore, the authors decided to collect data that better suited the requirements
for the night model development. The authors gathered data across various scenarios,
including residential and urban driving, pedestrian crossings, shopping malls, and parking
lots, during nighttime and low-light conditions. In total, 55,000 frames of nighttime data
were collected, with 32,000 frames containing pedestrians. Sample images collected by the
authors are presented in Figure 7.
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Figure 7. The Kettering dataset collected by the authors: (a) Pedestrian crossing; (b) Urban driving
scenario.

All collected images were aligned using the proposed alignment algorithm explained
in Section 3.2, then labeled using the MATLAB Image Labeler app [34]. Three different
datasets, the KAIST, the LLVIP, and the Kettering datasets, were utilized to develop the
nighttime pedestrian detection system. The data samples are categorized into three groups
for training, validation, and testing of the DNN models. A summary of the entire dataset
utilized is provided in Table 3.

Table 3. Datasets used to develop the nighttime pedestrian detection system.

KAIST LLVIP Kettering Total

Training 80,000 10,000 20,000 110,000
Validation 5000 2200 6000 13,200

Testing 5000 2200 6000 13,200

3.4. Development of the Sensor-Fusion DNN Models

Using a single sensor for object detection can lead to vulnerabilities, as it may fail
to provide adequate information in certain scenarios (e.g., obscured vision due to low
lighting conditions or fog). Sensor fusion mitigates these risks by providing redundant or
complementary data from multiple sensors, making the system more robust and reliable
in various environmental conditions. For sensor-fusion systems, how data are integrated
from different sensors is critical to the overall system performance. Figure 8 shows three
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different fusion methods that combine the data differently: early fusion, mid fusion, and
late fusion [19].
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Early Fusion: As depicted in Figure 8a, the early-fusion method integrates input
images from multiple sensors at the beginning of a data processing pipeline, before the
DNN model. The objective is to create a unified and comprehensive representation of
the scene by leveraging the complementary nature of RGB and thermal information. The
IR and RGB images are fused using the weighted sum method [35], which employs a
mathematical approach to combine multiple values. Each value is multiplied by a specific
weight, reflecting its significance in the overall decision-making process. The following
procedures are applied to fuse the images from two sensors:

(i) Each RGB image is aligned using the proposed image alignment algorithm in
Section 3.2. The aligned RGB has the same image width, imgW, and image height,
imgH, as the corresponding IR thermal image.

(ii) To generate the fused representation of the scene captured by two different sensors,
the proposed weighted sum approach involves adding two weighted pixel values at
each location (x, y) for each color channel.

For every channel c, where c = 1:3 in an RGB image:
For every pixel location (x, y):

Fused_img(x, y, c) = (IRimg(x, y) × WIR) + (RGBimg(x, y, c) × WRGB) (5)

where IRimg is an IR image and RGBimg is an RGB image. The ranges of x and y are defined
as x = [1: imgH], y = [1: imgW]. The weights, WIR and WRGB, are associated with the IR
image and the RGB image, respectively, where WIR + WRGB = 1. The fused image data,
Fused_img, will be used to develop the DNN models. In this research, a 60/40 ratio of IR to
RGB images is utilized based on experimental findings, where 60% of the total weight is
attributed to IR images and 40% to RGB images.

Figure 9 shows an example of information fusion using the weighted sum method
with the weights WIR = 0.6 and WRGB = 0.4. Figure 9a,b are taken from the IR camera
and the RGB camera, respectively. As shown in Figure 9b, the RGB camera image did
not capture the details of the person (marked with a green dotted rectangle) under low-
light conditions. On the other hand, the IR image in Figure 9a shows the details of the
person in the same scene. The fused image using the weighted sum method displays the
person in the same scene as presented in Figure 9c. The early-fusion model is trained
with 110,000 training samples in Table 3. Rather than training from scratch, the model
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is developed using the transfer learning method [36] with the pre-trained YOLO v5 [33]
model, as shown in Figure 10.
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Figure 9. The weighted sum method for early fusion: (a) the person in the green box is captured in
the IR image even in low lighting conditions; (b) the person in the green box is not captured in the
RGB image due to low lighting conditions; (c) the person in the green box is captured in the weighted
sum image by fusing the IR and RGB images.
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Figure 10. The training of the early-fusion model using transfer learning.

Late Fusion: Late fusion is a technique that involves merging detection results after
independent detections on RGB and IR thermal images. This approach allows for the utiliza-
tion of diverse types of data or DNN models, potentially leading to improved performance
or robustness compared to using any single modality or model in isolation. Late fusion
contrasts with early fusion, where data from different sources are combined before being
fed into DNN models. In Figure 11, an overview of the late-fusion method is presented,
illustrating how RGB and IR images are separately input into the object detection DNN
models. Each detection includes details such as bounding box information and confidence
scores for each detected object. The outcomes from each sensor are compared and merged,
as shown in Figure 11, using the Non-Maximum Suppression (NMS) algorithm [37].
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The NMS algorithm [37] is a post-processing technique designed to remove redundant
detections of the same object within a single DNN model’s output. When an image is input
into an object detection model, it identifies objects based on features such as hands, legs,
and other body parts. Consequently, the model’s output may include duplicate detections
for a single object, as shown in the dotted bounding boxes in Figures 11 and 12. Moreover,
the application of NMS can be extended to merge detection results from different DNN
models originating from various sources (such as RGB and IR), ensuring that each object
is associated with the most accurate bounding box. This process enhances the accuracy
and reliability of object detection, as illustrated in Figure 12. The NMS process for the
late-fusion system involves the following steps:

Step 1 Merge detection results in the form of a set of bounding boxes along with their
associated confidence scores from two different object detection DNN models.

Step 2 Sort the bounding boxes based on their confidence scores in descending order.
This ensures that the box with the highest confidence score is considered first.

Step 3 Start with the bounding box that has the highest confidence score, high_bb, in
the sorted list. This box is considered a potential detection.

Step 4 Iterate over remaining boxes in the sorted list.
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For each box, bb_i, in the sorted list:

i. Calculate the intersection over union (IoU) with the current bounding box, bb_i, and
the highest confidence score bounding box, high_bb.

IoU = | high_bb ∩ bb_i |/| high_bb ∪ bb_i | (6)

ii. If the IoU is above a certain threshold (0.5 is used), discard the bounding box, bb_i,
as it significantly overlaps with the currently selected box, high_bb, and is likely to
represent the same object; otherwise, keep the bounding box.

Steps 3 and 4 are iteratively applied to the next highest confidence score bounding
box until no additional bounding boxes remain. Applying NMS eliminates redundant
detections, resulting in a cleaner and more accurate set of bounding boxes for object
detection tasks in late fusion.

Mid Fusion: To implement the mid-fusion method using RGB and IR images, the
original YOLO v5 algorithm was redesigned with dual-stream backbones, as described
in [21] and illustrated in Figure 13. This approach processes RGB and IR thermal images
separately: the first stream backbone extracts features from RGB images, while the second
backbone extracts features from thermal images. The key component of this architecture is
the CFT modules [21], where features from RGB and IR thermal images are integrated. The
proposed mid-fusion model is trained using transfer learning with 110,000 data samples,
as shown in Table 3. Integrating RGB image features with thermal image features enhances
feature richness. These enriched features are then reprocessed through the RGB backbone
and, similarly, thermal images are enhanced with RGB features and reprocessed through
the thermal backbone. This fusion of features improves detection across multiple scales.
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Training for five DNN models, including three fusion models and two single-mode
models, was conducted on a Dell Alienware Aurora R8 desktop computer with a 9th
Gen Intel Core i7-9700 processor and an NVIDIA GeForce RTX 2080 Ti GPU. Each model
was trained with 110,000 paired data samples as detailed in Table 3. For all Deep Neural
Network (DNN) models, the authors used a learning rate of 0.001 and the Stochastic
Gradient Descent (SGD) optimizer, with a batch size set to 12.
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4. Experimental Results and Deployment for Real-Time Inferencing
4.1. Experimental Results of the Pedestrian Detection System under Low Lighting Conditions

The performance of different DNN models was evaluated using testing samples from
three datasets (KAIST, LLVIP, and Kettering), described in Table 3. The performance metrics
used in the evaluation include precision, recall, mAP50, F1-Score, and fps (frames per sec-
ond). Precision measures the proportion of correct positive predictions among all positive
predictions, while recall calculates the percentage of correct positive predictions among all
positive cases in the data [38]. mAP50 captures the tradeoff between precision and recall at
an IoU threshold of 50%. The F1 score, which considers the harmonic mean of precision
and recall, offers a comprehensive measure of the balance between the two metrics. The
computational time of each model, measured in fps, was obtained using a Dell Alienware
m15 R7 laptop computer equipped with an Intel Core i7-12700H and an NVIDIA GeForce
RTX 3070 Ti.

The developed DNN models were evaluated using testing datasets from three different
databases. The testing data samples from the KAIST dataset have poor-quality IR thermal
images because they were generated in 2015. A total of 5000 samples from the KAIST
dataset were used to evaluate five different models. Table 4 summarizes the detection
results of these 5000 KAIST testing data samples. The experimental results of the KAIST
dataset confirm the trend of superior performance among fused models compared to non-
fusion counterparts, with mAP50 values of 54.3% for the camera-only model, 62.3% for the
thermal-only model, 64.1% for the early-fusion model, 69.4% for the mid-fusion model, and
65.9% for the late-fusion model. The low performance of the DNN models on the KAIST
dataset is attributed to the poor quality of IR images, as presented in Figure 6a.

Table 4. Evaluation of the DNN models on the KAIST dataset.

DNN Models Precision/Recall F1-Score mAP50 fps

RGB only 55.8/52.8 54.26 54.3 66.67
Thermal only 65.7/57.6 61.4 62.3 67.11
Early Fusion 70.3/63.0 66.5 64.1 60.25
Mid Fusion 75.1/68.3 71.5 69.4 45.25
Late Fusion 75.5/63.6 69.0 65.9 55.65

Model in [21] 66.5/58.7 62.4 63.5 42.12

Table 5 summarizes the results of the 2200 LLVIP testing data samples (referenced in
Table 3), confirming the trend of superior performance among fused models compared to
non-fusion counterparts, with mAP50 values of 75.4% for the camera-only model, 96.1%
for the thermal-only model, 96.9% for the early-fusion model, 97.5% for the mid-fusion
model, and 97.3% for the late-fusion model. Similarly, Table 6 presents the performance
of the five DNN models on 6000 testing samples from the Kettering dataset, with mAP50
values of 72.8% for the camera-only model, 91.2% for the thermal-only model, 92.6% for the
early-fusion model, 95.6% for the mid-fusion model, and 95.5% for the late-fusion model.
All experimental results underscore the consistent advantage of fused DNN models in
achieving a higher mAP50 across test samples in the three different datasets.

Table 5. Evaluation of the DNN models on the LLVIP dataset.

DNN Models Precision/Recall F1-Score mAP50 fps

RGB only 88.5/70.2 78.3 75.4 66.67
Thermal only 97.0/89.3 93.0 96.1 67.11
Early Fusion 97.3/90.8 93.9 96.9 60.25
Mid Fusion 97.7/91.8 94.7 97.5 45.25
Late Fusion 97.5/91.3 94.3 97.3 55.65

Model in [21] 97.3/91.2 94.2 97.2 42.12
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Table 6. Evaluation of the DNN models on the Kettering dataset.

DNN Models Precision/Recall F1-Score mAP50 fps

RGB only 87.3/63.4 73.45 72.8 66.67
Thermal only 93.2/88.7 90.9 91.2 67.11
Early Fusion 94.7/90.4 92.5 92.6 60.25
Mid Fusion 96.8/91.6 94.1 95.6 45.25
Late Fusion 97.1/90.8 93.8 95.5 55.65

Model in [21] 96.6/80.2 94.1 87.6 42.12

To benchmark our test results, we compared them with state-of-the-art algorithms.
Specifically, we utilized two DNN models for nighttime pedestrian detection from previous
works cited in [21] and [30]. The DNN model in [30] employed a thermal-only strategy
and reported a 94.6% mAP50 on the LLVIP dataset. In contrast, our thermal-only model,
trained on three different datasets as shown in Table 3, achieved a 96.1% mAP50 on the
LLVIP dataset, demonstrating an approximate 1.59% improvement over the DNN model
in [30]. Additionally, we compared the DNN model in [21] to our mid-fusion model, which
was trained on the three datasets using transfer learning, as shown in Table 3. The mAP50
scores of the DNN model in [21] were 63.5%, 97.2%, and 87.6% on the KAIST, LLVIP, and
Kettering testing samples, respectively. On the other hand, our mid-fusion model achieved
mAP50 scores of 69.4%, 97.5%, and 95.6% on the KAIST, LLVIP, and Kettering testing
samples, respectively. These results indicate improvements of 9.29%, 0.31%, and 9.13% on
the KAIST, LLVIP, and Kettering testing samples, respectively.

For processing time, the camera-only model and the thermal-only model achieve fast
processing times of 66.67 fps and 67.11 fps, respectively. The early-fusion model operates
at 60.25 fps because it fuses data from two different sensors before passing it to the DNN
model. In contrast, the mid-fusion and late-fusion models have slower processing times of
45.25 fps and 55.65 fps, respectively. The mid-fusion model exhibits the slowest processing
time due to the data processing steps in the backbone, as illustrated in Figure 13.

4.2. Deployment of the DNN Model for Real-Time Inferencing

To deploy a sensor-fused pedestrian detection system under low lighting conditions,
achieving low response time and high accuracy is critical for automotive applications.
Considering these requirements, a late-fusion system is selected for its balance of accuracy
and response time. The late-fusion DNN model for the pedestrian detection system under
low lighting conditions can run at 18 fps on the NVIDIA Jetson Orin, whose specifications
are presented in Table 1. To further improve inference time using the TensorRT engine [39],
the DNN model can be optimized through several techniques: (1) Vertical fusion of kernels
to perform sequential operations together. (2) Horizontal fusion of layers into a single layer
if they share the same input and filter size but have different weights. (3) Elimination of
unnecessary layers through model analysis. The steps for optimizing the DNN model are
as follows:

1. Convert the trained DNN model into the ONNX format [40].
2. Convert the ONNX model into the TensorRT engine [39]. During this conversion, the

network graph is restructured to enhance operational efficiency.

Detailed optimization procedures can be found in [41].

Once the DNN model in PyTorch is converted into the TensorRT engine, it is deployed
onto the embedded computing device, NVIDIA Jetson Orin. The optimized DNN model
runs at 33 fps, improving the processing time by approximately 83.33% from the 18 fps
of the PyTorch version. Figures 14 and 15 present examples of the detection results from
the optimized DNN model during nighttime. In Figures 14a and 15a, pedestrians are
crossing at the intersection area. Due to the low lighting conditions, the pedestrians are
not clearly visible, as indicated by the white arrows in Figures 14a and 15a. The optimized
sensor-fusion system correctly detects the pedestrians, as shown in Figures 14b and 15b.



Sensors 2024, 24, 4755 16 of 19

Additionally, the proposed system is also applicable during the daytime, as presented in
Figure 16.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 19 
 

 

sensor-fusion system correctly detects the pedestrians, as shown in Figures 14b and 15b. 
Additionally, the proposed system is also applicable during the daytime, as presented in 
Figure 16. 

  
(a) (b) 

Figure 14. Nighttime testing example 1: (a) Due to the low lighting conditions, two pedestrians on 
the left side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by the 
sensor-fused system and marked with red bounding boxes on the screen. 

  
(a) (b) 

Figure 15. Nighttime testing example 2: (a) Due to the low lighting conditions, two pedestrians on 
the right side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by 
the sensor-fused system and marked with red bounding boxes on the screen. 

 
Figure 16. Real-time inference results during the daytime. The proposed system can be run during 
the daytime and correctly detects pedestrians. 

5. Conclusions 
This paper explores a sensor-fused nighttime environmental perception system by 

integrating data from IR thermal and RGB cameras. To fuse the data from these two dif-
ferent sensors, the authors propose a new alignment algorithm. The proposed alignment 
algorithm resizes and translates RGB camera images to match the width and height of IR 
thermal images. Given that the images from these two sensors have distinct FOVs and 

Figure 14. Nighttime testing example 1: (a) Due to the low lighting conditions, two pedestrians on
the left side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by the
sensor-fused system and marked with red bounding boxes on the screen.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 19 
 

 

sensor-fusion system correctly detects the pedestrians, as shown in Figures 14b and 15b. 
Additionally, the proposed system is also applicable during the daytime, as presented in 
Figure 16. 

  
(a) (b) 

Figure 14. Nighttime testing example 1: (a) Due to the low lighting conditions, two pedestrians on 
the left side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by the 
sensor-fused system and marked with red bounding boxes on the screen. 

  
(a) (b) 

Figure 15. Nighttime testing example 2: (a) Due to the low lighting conditions, two pedestrians on 
the right side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by 
the sensor-fused system and marked with red bounding boxes on the screen. 

 
Figure 16. Real-time inference results during the daytime. The proposed system can be run during 
the daytime and correctly detects pedestrians. 

5. Conclusions 
This paper explores a sensor-fused nighttime environmental perception system by 

integrating data from IR thermal and RGB cameras. To fuse the data from these two dif-
ferent sensors, the authors propose a new alignment algorithm. The proposed alignment 
algorithm resizes and translates RGB camera images to match the width and height of IR 
thermal images. Given that the images from these two sensors have distinct FOVs and 

Figure 15. Nighttime testing example 2: (a) Due to the low lighting conditions, two pedestrians on
the right side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by the
sensor-fused system and marked with red bounding boxes on the screen.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 19 
 

 

sensor-fusion system correctly detects the pedestrians, as shown in Figures 14b and 15b. 
Additionally, the proposed system is also applicable during the daytime, as presented in 
Figure 16. 

  
(a) (b) 

Figure 14. Nighttime testing example 1: (a) Due to the low lighting conditions, two pedestrians on 
the left side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by the 
sensor-fused system and marked with red bounding boxes on the screen. 

  
(a) (b) 

Figure 15. Nighttime testing example 2: (a) Due to the low lighting conditions, two pedestrians on 
the right side (indicated by white arrows) are not visible. (b) Pedestrians are correctly detected by 
the sensor-fused system and marked with red bounding boxes on the screen. 

 
Figure 16. Real-time inference results during the daytime. The proposed system can be run during 
the daytime and correctly detects pedestrians. 

5. Conclusions 
This paper explores a sensor-fused nighttime environmental perception system by 

integrating data from IR thermal and RGB cameras. To fuse the data from these two dif-
ferent sensors, the authors propose a new alignment algorithm. The proposed alignment 
algorithm resizes and translates RGB camera images to match the width and height of IR 
thermal images. Given that the images from these two sensors have distinct FOVs and 

Figure 16. Real-time inference results during the daytime. The proposed system can be run during
the daytime and correctly detects pedestrians.

5. Conclusions

This paper explores a sensor-fused nighttime environmental perception system by
integrating data from IR thermal and RGB cameras. To fuse the data from these two
different sensors, the authors propose a new alignment algorithm. The proposed alignment
algorithm resizes and translates RGB camera images to match the width and height of
IR thermal images. Given that the images from these two sensors have distinct FOVs
and spatial resolutions, the new alignment algorithm aligns the images for subsequent
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sensor-fusion processing. This alignment process is crucial as it constitutes a pivotal step in
fusing information from different sensors. The aligned images from both sensors are then
input into the trained sensor-fused DNN system for pedestrian detection.

To develop a DNN-based pedestrian detection system for low lighting conditions,
the authors collected nighttime images in various scenarios and labeled a set of 32,000 IR
and RGB image pairs. To explore different fusion methods, three fusion techniques (early,
mid, and late) were developed using transfer learning technology. Additionally, two single-
sensor models were developed using either RGB camera data only or IR thermal camera
data only. In total, five different DNN models were developed and evaluated on the testing
data samples from three different datasets.

The experimental results confirmed the trend of superior performance among fused
models compared to their non-fusion counterparts. For example, the five DNN models
achieved mAP50 values of 72.8% for the RGB camera-only model, 91.2% for the IR thermal-
only model, 92.6% for early fusion, 95.6% for mid fusion, and 95.5% for late fusion on
the Kettering testing data samples. For processing time, the camera-only model and the
thermal-only model achieved fast processing times of 66.67 fps and 67.11 fps, respectively.
The early-fusion, mid-fusion, and late-fusion models operated at 60.25 fps, 45.25 fps, and
55.65 fps, respectively. Considering the low response time and high accuracy requirements,
a late-fusion system was selected for its balance of accuracy and response time.

When the late-fusion model was deployed on the in-vehicle computing unit, NVIDIA
Jetson Orin, the processing time dropped from 55.65 fps to 18 fps. For real-time inferencing,
the selected model was further optimized, achieving 33 fps on the embedded edge com-
puting device, representing an 83.33% improvement in inference speed over the system
without optimization. The findings in this paper are valuable for advancing ADAS and
AD technologies in low lighting conditions, enhancing pedestrian detection at nighttime to
improve road safety and reduce accidents.
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