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Abstract: Human immunodeficiency virus (HIV) and malaria, caused by infection with Plasmod-
ium spp., are endemic in similar geographical locations. As a result, there is high potential for
HIV/Plasmodium co-infection, which increases the pathology of both diseases. However, the im-
munological mechanisms underlying the exacerbated disease pathology observed in co-infected
individuals are poorly understood. Moreover, there is limited data available on the impact of Plas-
modium co-infection on antiretroviral (ART)-treated HIV infection. Here, we used the rhesus macaque
(RM) model to conduct a pilot study to establish a model of Plasmodium fragile co-infection during
ART-treated simian immunodeficiency virus (SIV) infection, and to begin to characterize the im-
munopathogenic effect of co-infection in the context of ART. We observed that P. fragile co-infection
resulted in parasitemia and anemia, as well as persistently detectable viral loads (VLs) and decreased
absolute CD4+ T-cell counts despite daily ART treatment. Notably, P. fragile co-infection was associ-
ated with increased levels of inflammatory cytokines, including monocyte chemoattractant protein
1 (MCP-1). P. fragile co-infection was also associated with increased levels of neutrophil elastase, a
plasma marker of neutrophil extracellular trap (NET) formation, but significant decreases in markers
of neutrophil degranulation, potentially indicating a shift in the neutrophil functionality during
co-infection. Finally, we characterized the levels of plasma markers of gastrointestinal (GI) barrier
permeability and microbial translocation and observed significant correlations between indicators of
GI dysfunction, clinical markers of SIV and Plasmodium infection, and neutrophil frequency and func-
tion. Taken together, these pilot data verify the utility of using the RM model to examine ART-treated
SIV/P. fragile co-infection, and indicate that neutrophil-driven inflammation and GI dysfunction may
underlie heightened SIV/P. fragile co-infection pathogenesis.

Keywords: nonhuman primate; malaria; Plasmodium fragile; simian immunodeficiency virus;
neutrophils; co-infection; immunology
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1. Introduction

Human immunodeficiency virus (HIV) and malaria, caused by Plasmodium parasites,
are two of the world’s most devastating infections. In 2022, over 39 million people were
living with HIV (PWH) [1], and there were over 247 million cases of malaria [2]. Despite ef-
fective tools and treatments, challenges in the prevention and eradication of both infections
remain. Indeed, consistent use of antiretrovirals (ART) allows for sustained viral suppres-
sion, improving the health and quality of life of PWH [3]. However, ART does not eliminate
the viral reservoir, and plasma viremia rapidly rebounds post-treatment-interruption [4,5].
Similarly, antimalarial drugs can prevent and cure Plasmodium infection, but the emergence
of drug resistance undermines control efforts and contributes to increased morbidity and
mortality [6,7]. For both, the complexities of the infectious agents, combined with an in-
complete knowledge of the immunological mechanisms underlying pathogenesis, hampers
the identification of immune correlates of protection and development of fully efficacious
prophylactic vaccines.

HIV and malaria endemicity are geographically overlapped, creating high potential for
co-infection. A meta-analysis of studies conducted between 1991 and 2018 found that the
co-incidence of HIV and severe malaria, defined as the presence of peripheral parasitemia in
combination with manifestations such as severe anemia or multi-organ failure, was 43% [8].
Prior work has demonstrated reciprocal antagonistic effects that result in the increased
transmission of both HIV and malaria. For example, Plasmodium increases HIV viral loads
(VLs) both in vitro and in ART-naïve PWH [9–11]. High VLs correlate with increased HIV
transmission, suggesting that malaria co-infection in PWH could enhance HIV transmission
risk [12–14]. Similarly, clinical malaria prevalence, malaria infection severity, and malaria-
associated mortality rates are increased in ART-naïve PWH [15–18]. Additionally, previous
in vitro and ex vivo studies have indicated that co-infection with both HIV and Plasmodium
exacerbates disease pathogenesis. For example, in vitro infection of monocyte-derived
macrophages with a laboratory strain of HIV-1 resulted in the inhibition of phagocytic
capability and cytokine production in response to stimulation with opsonized trophozoites
from a laboratory-adapted strain of P. falciparum [19]. Moreover, HIV-infected children in
Malawi with cerebral malaria infection had higher rates of and more rapid progression
to mortality, greater parasite loads in the brain and spleen, and a greater accumulation of
monocytes and platelets in the brain, as compared to children without HIV [20,21]. Notably,
uncontrolled inflammation underlies disease pathogenesis in separate HIV and malaria
infection [22,23]. In PWH, increased inflammation is associated with viral persistence,
disruptions in intestinal homeostasis, and an increased risk of co-infection with other
pathogens [24]. Likewise, a pro-inflammatory environment is associated with severe
malaria and increased malaria-associated mortality [23,25]. Importantly, the impact of
Plasmodium co-infection on ART efficacy in PWH, and the link between inflammatory
responses and disease pathology during co-infection, have not yet been fully defined [26].

Neutrophils are granulocytes that constitute up to 70% of all circulating leukocytes [27]
and aid in host defense through (1) exocytosis of anti-microbial molecule-containing gran-
ules; (2) phagocytosis and destruction of microbes in phagosomes; and (3) the formation
of neutrophil extracellular traps (NETs), DNA decorated with granule contents that aid
pathogen clearance [28–31]. Conversely, dysregulated neutrophil activation causes uncon-
trolled inflammation and collateral host tissue damage [32]. For example, although NET
formation is associated with protection against HIV infection and impaired replication
in vitro [33], increased neutrophil activation has been linked with adverse clinical outcomes
in PWH [34–36], and ART-treated PWH exhibited impaired neutrophil phagocytosis and
increased neutrophil apoptosis, as compared to uninfected controls [37,38]. Additionally,
increased neutrophil infiltration into the gastrointestinal (GI) mucosa in ART-treated PWH
and macaques with chronic simian immunodeficiency virus (SIV) is associated with the
loss of GI epithelial barrier integrity and elevated microbial translocation [39–41], both of
which are associated with chronic inflammation, morbidity, and mortality in PWH [42–44].
Likewise, neutrophil phagocytosis aids in Plasmodium clearance [45–47] and NET forma-
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tion in children and is associated with parasite killing [48]. However, NET formation is
also associated with increased inflammation and severe malaria [49–51], and excessive
neutrophil degranulation contributed to risk for severe malaria [48,52,53]. Importantly, the
role of neutrophils in disease pathogenesis during HIV/Plasmodium co-infection has not
been established.

SIV infection induces pathologies similar to progressive HIV, including high peak
and chronic plasma VLs and CD4+ T-cell depletion [54]. Additionally, like P. falciparum,
which causes most human malaria cases worldwide [2], P. fragile is capable of endothelial
adherence, tissue sequestration, and antigenic variation in rhesus macaques (RMs) [55].
SIV/P. fragile co-infection in RMs mimics HIV/P. falciparum co-infection in humans, in-
cluding increased SIV VLs and innate immune dysfunction in ART-naïve SIV/P. fragile-co-
infected versus singly infected RMs [56,57]. However, SIV/P. fragile co-infection has not
been characterized in the context of ART. In this pilot study, we sought to verify the utility
of using the RM model to examine ART-treated SIV/P. fragile co-infection, and to begin
defining the immunopathogenic effect of SIV/P. fragile co-infection in the context of ART.
We hypothesized that P. fragile co-infection would result in exacerbated SIV pathology that
associated with neutrophil dysfunction despite ART. To test this hypothesis, we infected
four adult RMs with SIVmac239, followed by ART initiation and P. fragile co-infection, and
we longitudinally monitored clinical and immune markers.

2. Methods and Materials
2.1. Study Animals and Approval

Four adult (aged 6–12 years), male, Indian-origin RMs were housed and cared for at
the Tulane National Primate Research Center (TNPRC) under an Institutional Animal Care
and Use Committee (IACUC; Office of Laboratory Animal Welfare Assurance Number
A4499-01)-approved protocol (P0477-3564). Animal housing, care, and procedures were
performed at Association for Assessment and Accreditation of Laboratory Animal Care-
accredited facilities (AAALAC Number 000594), compliant with United States Department
of Agriculture regulations, including the Animal Welfare Act (9 CFR) and the Animal
Care Policy Manual, with guidelines established by the National Research Council in the
Guide for the Care and Use of Laboratory Animals and the Weatherall Report. All animals
were naïve for both SIV and Plasmodium prior to study assignment. In addition, animals
were negative for MHC class I alleles associated with SIV control, including Mamu-A*01,
Mamu-B*08, and Mamu-B*17 [58–60]. Animals were singly housed indoors under climate-
controlled conditions and a 12 h light/12 h dark cycle, and were monitored daily to ensure
welfare. Abnormalities were recorded and reported to a veterinarian. Water was available
ad libitum and animals were fed commercial monkey chow (Purina LabDiet; PMI Nutrition
International, Richmond, IN), supplemented with fruits, vegetables, and foraging treats
as a part of the TNPRC environmental enrichment program. At week 2 post-SIV-infection
(p.i.), one animal (LN07) received a topical antibiotic for a surface wound. At weeks 10 and
13 p.i., all RMs received Kefzol (6.25 mg/kg) during surgical procedures. At week 14 p.i.
one animal (LE96) received a blood transfusion. At weeks 14 (LC40) and 16 (LC40, LE96)
p.i., two animals received a dose of the antibiotic Excede (200 mg/mL). Procedures were
performed under the direction of TNPRC veterinarians. Anesthesia was used in accordance
with the TNPRC policy and Weatherall Report. Euthanasia at the study endpoint was
performed using methods consistent with the recommendations of the American Veterinary
Medical Association and per the recommendations of the IACUC.

2.2. SIV Inoculation, Monitoring, and ART Treatment

RMs were intravenously inoculated with 50 TCID50 SIVmac239 [61]. Plasma VLs
were monitored via RT-qPCR (lower limit of detection = 83 copies/mL) [62]. Starting at
week 8 p.i. and continuing until endpoint, RMs received daily ART, administered subcuta-
neously, consisting of tenofovir disoproxil fumarate (TDF) (5.1 mg/kg), emtricitabine (FTC)
(30 mg/kg; both from Gilead, Foster City, CA, USA), and dolutegravir (DTG) (2.5 mg/kg;
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ViiV Healthcare, London, England, UK), formulated in Kleptose (15% in 0.1 N NaOH,
Roquette, Lestrem, France), a formulation selected for its effectiveness in suppressing SIV
replication in RMs [63]. ART was started at week 8 p.i. in order to allow time for RMs to
reach viral setpoint and establish late acute/early chronic SIVmac239 infection, as well as
to model time to ART initiation in HIV/malaria co-endemic areas [64–68].

2.3. P. fragile Inoculation, Monitoring, and Antimalarial Treatment

RMs were intravenously inoculated with 20 × 106 P. fragile-infected erythrocytes (Sri
Lanka strain) [69–71]. Briefly, cryopreserved erythrocytes were thawed and resuspended in
12% NaCl (Thermo Fisher Scientific, Waltham, MA, USA) for 5 min at room temperature
(RT). Next, 1.6% NaCl was added dropwise, followed by centrifugation for 10 min at RT
and 1400 revolutions per minute (RPMs). The pellet was resuspended in 0.9% NaCl and
2% dextrose (Thermo Fisher Scientific), centrifuged for 10 min at RT and 1400 RPM, and
resuspended in 0.9% of NaCl for inoculation. Anemia was monitored via hematocrit (HCT),
calculated as the ratio of erythrocytes to the total blood volume. Parasitemia was monitored
via Giemsa staining of thin blood smears collected from sedated animals via venipuncture
or tail sticks from non-sedated animals using positive reinforcement, three days a week
starting in week 12, delineated as week A, B, or C. Smears were fixed in methanol for
5 min, followed by staining in 5% Giemsa solution (pH = 7.2) for 45–60 min and then
washed in distilled water. Parasitemia was calculated as the average number of parasitized
erythrocytes among all erythrocytes in 10 randomized fields of view. Post-week 14A p.i.,
RMs received antimalarial drugs via oral gavage consisting of one administration of quinine
sulfate (150 mg; Archway Apothecary, Covington, LA, USA; NDC: 51927-1588-00), followed
by four daily administrations of chloroquine (20 mg/kg; Health Warehouse, Florence, KY,
USA; NDC: 64980-0177-50).

2.4. Sample Collection and Processing

EDTA and serum gel vacutainer tubes (Starstedt, Newton, NC, USA) were used to
collect peripheral blood. Complete blood counts (CBCs) were performed using EDTA blood
on a Sysmex XN-1000v (Sysmex, Kobe, Hyogo, Japan). Blood chemistry was performed
using fresh serum, and C-reactive protein (CRP) levels were quantified using frozen serum
on a Beckman AU480 (Beckman, Brea, CA, USA). For experimental procedures, EDTA
blood was centrifuged for 10 min at 2000 RPM and RT to isolate plasma, which was stored
at −80 ◦C. After plasma removal, whole blood was reconstituted with PBS. Aliquots of
250 µL of blood–PBS were set aside for flow cytometric staining. Peripheral blood mononu-
clear cells (PBMCs) were isolated from the remaining blood via density-gradient centrifu-
gation using Ficoll-Paque Plus (Sigma-Aldrich, St. Louis, MO, USA) and Accuspin tubes
(Sigma-Aldrich). PBMCs were cryopreserved in freezing media (5 mls dimethyl sulfoxide
(DMSO) [Sigma-Aldrich] + 45 mls heat-inactivated fetal bovine serum [Thermo Fisher
Scientific]) and stored in liquid nitrogen.

2.5. Flow Cytometry

Multicolor flow cytometry was performed on whole blood using RM cross-reactive
monoclonal antibodies. Samples were first stained with a Live/Dead Fixable Aqua
dead-cell stain (Thermo Fisher Scientific) and were then treated with Fc block (BD Bio-
sciences, Franklin Lakes, NJ, USA). Extracellular staining was performed using prede-
termined fluorochrome-conjugated antibody concentrations (Supplemental Table S1), fol-
lowed by red blood cell lysis using a 1x FACS lysing solution (BD Biosciences). Cells were
fixed, permeabilized (CytoFix/Perm Kit, BD Biosciences), and then intracellularly stained
(Supplemental Table S1 and Supplemental Figure S1).

Phagocytosis was evaluated using E. coli bioparticles conjugated to a dye that fluo-
resces in acidic environments (pHrodo Red E. coli Bioparticles Phagocytosis Kit for Flow
Cytometry; Thermo Fisher Scientific). Briefly, pHrodo bioparticles were incubated with
plasma from healthy RMs (1:3 plasma:pHrodo ratio) for 30 min to allow for bioparticle
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opsonization. Opsonized pHrodo bioparticles were added to 250 µL blood-PBS aliquots for
2 h at 37 ◦C, followed by surface staining (Supplemental Figure S2).

All samples were fixed with 1% paraformaldehyde and held at 4 ◦C until acquisition
on a BD LSRFortessa using FACSDiva software (v9.0). Single-color controls were acquired
in every experiment as compensation. Analysis was performed using FlowJo (v10). In all
analyses, individual cell subsets with less than 100 parental gate events were not included
in the downstream analysis due to the inability to ensure adequate fluorescence separation.

CD4+ T lymphocyte kinetics were monitored by flow cytometric evaluation of absolute
counts. Briefly, 50 µL of whole blood was surface-stained (Supplemental Table S2) and
incubated for 20 min at RT in the dark. Red blood cells were lysed with a 1× BD FACS
Lysing Solution for 30–45 min. The sample was mixed and volumetrically analyzed on a
Miltenyi MACSQuant 16 (Miltenyi, Bergisch Gladbach, Germany).

2.6. Detection of Plasma Markers of Neutrophil Function, GI Mucosal Barrier Integrity, and
Microbial Translocation

Commercially available enzyme-linked immunosorbent assay (ELISA) kits were used
to quantify the plasma levels of neutrophil granule components, including myeloperoxi-
dase (MPO) (Abcam, Cambridge, UK); cathepsin G (MyBiosource, San Diego, CA, USA);
proteinase 3 (PR3) (MyBiosource); biomarkers of NET formation, including citrullinated
histone 3 (CitH3) (Cayman Chemicals, Ann Arbor, MI, USA) and neutrophil elastase (NE)
(LSBio, Lynwood, WA, USA); markers of GI barrier permeability, including Zonulin-1 (My-
Biosource) and intestinal fatty acid-binding protein (IFAB-P) (Novus Biologicals, Centennial,
CO, USA); and surrogate markers of microbial translocation, including lipopolysaccha-
ride (LPS)-binding protein (LBP) (Novus Biologicals) and soluble CD14 (sCD14) ELISA
(ThermoFisher), as per the manufacturers’ recommended protocols.

2.7. Detection of Plasma Markers of Systemic Inflammation

A BioLegend (San Diego, CA, USA) LEGENDplex™ NHP Inflammation Panel
(13-plex) with a V-bottom plate was used to quantify plasma levels of IL-6, IL-10, CXCL10
(IP-10), IL-1β, IL-12p40, IL-17A, IFN-β, IL-23, TNF-α, IFN-γ, GM-CSF, CXCL8 (IL-8), and
CCL2 (MCP-1). Plasma samples were run in duplicate at a 1:4 dilution, as per the manu-
facturer’s recommendations. Samples were acquired on a Miltenyi MACSQuant 16 in a
96-well-plate format. Data were analyzed with BioLegend LEGENDplex™ online analy-
sis software (https://www.biolegend.com/de-de/immunoassays/legendplex) against a
standard curve.

2.8. Data and Statistical Analysis

The absolute number of neutrophils/microliter of blood was used to calculate the num-
ber of neutrophils positive for pHrodo bioparticles to characterize phagocytosis (phagocytic
score, or the number of neutrophils capable of phagocytosis) [72]. The phagocytic index,
representing phagocytic proficiency, was calculated by multiplying the phagocytic score by
the Mean Fluorescence Intensity of pHrodo-positive neutrophils [73].

Statistical significance was first calculated by using a mixed-effects analysis with the
Geisser–Greenhouse correction. Individual comparisons were made between all measured
timepoints with corrections for multiple comparisons performed using Tukey’s multiple
comparison tests, with individual variances computed for each comparison. In all figures,
multiplicity-adjusted significant p values are shown above horizontal black bars. To further
calculate statistical significance, we next used a mixed-effects analysis with the Geisser–
Greenhouse correction to compare all post-SIV and post-co-infection timepoints to baseline.
These individual post-infection comparisons to baseline were conducted with corrections
for multiple comparisons performed using a Dunnett’s multiple-comparison test, with
individual variances computed for each comparison. Data on post-infection timepoints
compared to the baseline are depicted in Supplemental Tables S3–S10.

https://www.biolegend.com/de-de/immunoassays/legendplex
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Multivariate analysis of variance (MANOVA) approaches were applied to identify
potential relationships between various neutrophil measures, clinical signs of both SIV
and P. fragile infection, peripheral markers of inflammation, and peripheral markers of GI
dysfunction. The MANOVA approach allowed us to account for temporal dependence,
as previously described [74]. MANOVA was used to model 14 parameters (VL; anemia;
absolute CD4+ count; peripheral neutrophils; plasma zonulin; sCD14; I-FABP; LBP; NE;
cathepsin G; CitH3; IP-10; MCP-1; and CRP) against animal number. Partial correlation
coefficients were generated based on the MANOVA error terms adjusted for animal effects.
Statistical analyses were performed using GraphPad Prism (Version 10; GraphPad Software,
San Diego, CA, USA) and the Statistical Analysis System (SAS) (Version 9.4; Cary, NC,
USA). All reported p values were multiplicity-adjusted, and values of <0.05 were considered
significant. The JoinPoint Regression Program (NIH, V5.0.2, Bethesda, MD, USA) was
utilized to assess longitudinal trends in VLs.

3. Results
3.1. Experimental Design

Following baseline (BL) sampling, RMs (n = 4) were intravenously inoculated with
SIVmac239 (Figure 1). At week 8 post-SIV infection (p.i.), RMs initiated ART, which
continued until euthanasia at week 20 p.i. For simplicity, all timepoints in our analyses are
reported as post-SIV infection. At week 12 p.i., RMs were intravenously inoculated with
P. fragile. At week 14 p.i., RMs surpassed our treatment threshold of 0.5% parasitemia and
received antimalarial drugs via oral gavage. Physical exams, peripheral-blood collections,
CBCs, and serum chemistries were conducted throughout the study.
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Figure 1. Experimental timeline depicting sample collection from adult, male rhesus macaques (RMs)
(n = 4). RMs were inoculated with SIVmac239, TCID50 = 50, intravenously (i.v.) at week 0. Daily
antiretroviral treatment (ART) was given subcutaneously, beginning at week 8, and continued until
the end of the study (TDF/FTC/DTG; 5.1/30/2.5 mg/kg). RMs were inoculated with Plasmodium
fragile, 20 × 106-infected erythrocytes, via i.v. Antimalaria treatment occurred over one week, at week
14, and consisted of one oral gavage of quinine sulfate (150 mg) followed by four daily oral gavages
of chloroquine (20 mg/kg).

3.2. P. fragile Co-Infection of ART-Treated SIV+ RMs Results in Clinical Signs of Malaria

Parasitemia and anemia are clinical hallmarks of malaria [75,76]. Following P. fragile
co-infection, parasitemia was assessed tri-weekly (A, B, C). RMs reached peak parasitemia
by week 14A p.i. and had undetectable parasitemia following antimalarial treatment. When
comparing all timepoints to each other, we observed that parasitemia was significantly
elevated at week 14A p.i. as compared to all other timepoints (p = 0.0429; Figure 2A).
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Similarly, in a follow-up analysis that compared all timepoints to BL only, week 14A p.i.
was significantly elevated as compared to BL (p = 0.0246; Supplemental Table S3). All RMs
experienced mild to severe anemia between weeks 14 and 15 p.i., coinciding with peak
parasitemia (Figure 2B). When comparing all timepoints to each other, we observed that
percent hematocrit (%HCT) was significantly lower at week 14 p.i. compared to weeks
10, 12, and 13 p.i. (p = 0.0367, 0.0391, and 0.049, respectively; Figure 2B). Additionally,
%HCT was significantly lower at week 15 p.i. compared to BL and weeks 2, 6, 19, and
20 p.i. (p = 0.0122, 0.0155, 0.0448, 0.0286, and 0.0366, respectively; Figure 2B). RMs re-
mained mildly anemic at week 17 p.i., demonstrated by significantly lower %HCTs com-
pared to those at week 8 p.i. (p = 0.0493; Figure 2B). By week 18 p.i., all RMs were non-
anemic and had significantly greater %HCTs at week 19 p.i. as compared to week 17 p.i.
(p = 0.0485; Figure 2B). In follow-up analyses, the %HCTs at weeks 4, 14, 15, 16, and 17 p.i.
were significant elevated as compared to BL (p = 0.0383, 0.0298, 0.0055, 0.027, and 0.037,
respectively; Supplemental Table S4). Taken together, P. fragile co-infection of ART-treated
SIV+ RMs resulted in parasitemia and anemia, which are hallmarks of clinical malaria, indi-
cating that there was no cross-resistance between the two infections, allowing for successful
modeling of co-infection in the context of ART.

3.3. Clinical Signs of SIV Infection Observed Following P. fragile Co-Infection despite Daily ART

Uncontrolled VLs and decreased CD4+ T-cell counts within a few weeks following
infection are hallmarks of pathogenic HIV/SIV [77–80]. Treatment with ART has been
shown to suppress viral replication and restore CD4+ T-cell counts in SIV+ RMs, even at
end stage of disease [63,81]. Here, we observed that peak viremia in RMs inoculated with
SIVmac239 occurred by week 3 p.i. (median = 1.160 × 107 copies/milliliter; Figure 2C).
Lower VLs were observed following ART, with two out of four RMs (LC40 and LE96)
exhibiting undetectable VLs by week 12 p.i. (Figure 2C). Following P. fragile inoculation,
all RMs exhibited VLs above the limit of detection from weeks 13 to 17 p.i. (Figure 2C).
A longitudinal assessment by JoinPoint regression demonstrated that following P. fragile
co-infection, the VLs of all four RMs remained unchanged, indicating viral persistence
(Supplemental Figure S3). Between weeks 18 and 20 p.i., one RM (LE96) had transiently
detectable VLs, two RMs had undetectable VLs by weeks 19 (LN07) and 20 (LC40) p.i., with
the final RM (JF97) remaining incompletely suppressed. When comparing all timepoints to
each other, we observed that absolute CD4+ T-cell counts were significantly lower at week
3 p.i. compared to BL (p = 0.0414; Figure 2D). CD4+ T-cell counts remained low until ART
initiation at week 8 p.i. (Figure 2D). Following P. fragile inoculation, CD4+ T-cell counts
were significantly increased at week 13 p.i. compared to week 3 p.i. (p = 0.0397; Figure 2D).
By week 17 p.i. following antimalarial treatment, CD4+ T-cell counts returned to pre-ART
levels (Figure 2D). In follow-up analyses comparing all timepoints to BL only, weeks 3 and
8 p.i., timepoints that are representative of early acute and late acute/early chronic SIV
infection, were significantly elevated as compared to BL (p = 0.019 and 0.0362, respectively;
Supplemental Table S4). These data indicate that clinical signs of SIV infection, including
VLs above the limit of detection and fluctuations in CD4+ T cell counts, were apparent
following P. fragile co-infection of ART-treated SIV+ RMs.
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was defined as the percentage of erythrocytes infected by a parasite among all erythrocytes. (B) 
Anemia was assessed by characterizing % hematocrit, defined as the ratio of red blood cells to total 
blood. (C) Plasma VLs (RNA copies/milliliter plasma) were assessed by qPCR. (D) Absolute number 
of CD4+ T cells per microliter of blood was assessed via flow cytometry. In all panels, each RM is 
represented by a different symbol and color. Baseline (BL) is the average of data collected at weeks 
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timepoints was calculated using a mixed-effects analysis with the Geisser–Greenhouse correction 
and a Tukey’s multiple-comparison test, with individual variances computed for each comparison. 
Significant multiplicity-adjusted p values are shown above horizontal black bars. 

  

Figure 2. P. fragile co-infection results in clinical signs of SIV infection despite persistent, daily ART.
Peripheral P. fragile parasitemia, anemia, SIVmac239 peripheral-blood viral loads (VLs), and blood
CD4+ T-cell counts were assessed in adult, male rhesus macaques (RMs) (n = 4). (A) Following
P. fragile inoculation at week 12 post-SIV infection (p.i.), parasitemia was assessed tri-weekly, indicated
as weeks A, B, and C p.i. % Parasitemia was assessed via Giemsa staining of thin blood smears
and was defined as the percentage of erythrocytes infected by a parasite among all erythrocytes.
(B) Anemia was assessed by characterizing % hematocrit, defined as the ratio of red blood cells to
total blood. (C) Plasma VLs (RNA copies/milliliter plasma) were assessed by qPCR. (D) Absolute
number of CD4+ T cells per microliter of blood was assessed via flow cytometry. In all panels, each
RM is represented by a different symbol and color. Baseline (BL) is the average of data collected at
weeks 6, 4, 2, and 0 p.i.. Inoculation with SIVmac239 at week 0 p.i. is indicated by a purple dashed
arrow. Inoculation with P. fragile at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral
therapy (ART) was initiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment
occurred throughout week 14 p.i., indicated by the light-grey bar. Statistical significance between all
timepoints was calculated using a mixed-effects analysis with the Geisser–Greenhouse correction
and a Tukey’s multiple-comparison test, with individual variances computed for each comparison.
Significant multiplicity-adjusted p values are shown above horizontal black bars.
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3.4. Increased Levels of Inflammatory Markers but Unchanged Neutrophil Frequency and
Apoptosis Were Observed during ART-Treated SIV/P. fragile Co-Infection

CRP is an acute-phase plasma marker of inflammation that has been shown to be
elevated in ART-naïve PWH and that is associated with HIV disease progression, even
despite ART [82–85]. Additionally, elevated CRP has been observed in individuals with
both complicated and uncomplicated malaria and can be used as a biomarker for monitor-
ing of the malaria severity [86,87]. Here, we observed that serum CRP was significantly
increased at week 14 p.i. as compared to BL and weeks 2, 6, 8, and 10 p.i. (p = 0.0455 for all),
as well as compared to weeks 12, 15, and 20 p.i. (p = 0.0435, 0.0424, and 0.0428, respectively;
Figure 3A). Similarly, when all timepoints were compared to BL only, CRP was significantly
increased at week 14 p.i. as compared to BL (p = 0.023; Supplemental Table S5). These data
suggest that P. fragile infection is linked with elevated CRP expression that coincides with
peak parasitemia.

Both HIV and Plasmodium infection result in elevated levels of pro-inflammatory
cytokines and chemokines [23,88]. Here, we observed some longitudinal and inter-animal
variation in plasma levels of interleukin (IL)-8 and interferon gamma-induced protein 10
(IP-10), but no statistically significant changes were observed in these analytes throughout
P. fragile co-infection of ART-treated SIV+ RMs when all timepoints were compared to
each other and when compared to BL only (Figure 3B,C; Supplemental Table S5). Plasma
monocyte chemoattractant protein-1 (MCP-1) was significantly increased at week 14 p.i.
compared to BL and weeks 16 and 20 p.i. (p = 0.0223, 0.0406, and 0.0412, respectively;
Figure 3D). When all timepoints were compared to BL only, MCP-1 was significantly
increased at week 14 p.i. as compared to BL (p = 0.0111; Supplemental Table S5). All other
inflammatory analytes remained unchanged over time (Supplementary Figure S4). Given
that IP-10 and MCP-1 were higher at peak viremia, followed by a reduction during ART
and an increase during P. fragile co-infection that coincided with peak parasitemia, these
data indicate that elevations in inflammatory cytokines and chemokines may be influenced
by SIV infection alone as well as by P. fragile co-infection of ART-treated SIV+ RMs.

Neutrophil-associated inflammation has been shown to contribute to increased patho-
genesis in separate HIV and Plasmodium infection [50,89–92]. Therefore, we next character-
ized peripheral neutrophil dynamics and apoptosis via flow cytometry. Neutrophils were
identified as viable, CD45+ HLA-DR- CD11b+ CD66abce+ CD14+ CD49d- cells, as previ-
ously described (Supplemental Figure S1) [92–97]. As previously demonstrated [98], total
peripheral neutrophil frequencies were consistent throughout acute SIV infection and ART
treatment (Figure 4A). Neutrophil frequencies were significantly decreased following anti-
malarial treatment as compared to the start of antimalarial treatment
(week 17 vs. 14 p.i., p = 0.0136), followed by stable neutrophil frequencies until study
endpoint in week 20 p.i. (Figure 4A). When all timepoints were compared to BL only, there
was a significant difference in the neutrophil frequencies at week 17 p.i. as compared to BL
(p = 0.0295; Supplemental Table S6). The percentages of apoptotic peripheral neutrophils
(caspase3+) fluctuated across all the timepoints (Figure 4B). These data indicate that neu-
trophil frequencies decrease following clearance of P. fragile in ART-treated SIV+ RMs,
while neutrophil apoptosis was unchanged throughout ART-treated SIV only infection and
P. fragile co-infection.
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ogenesis in separate HIV and Plasmodium infection [50,89–92]. Therefore, we next char-
acterized peripheral neutrophil dynamics and apoptosis via flow cytometry. Neutrophils 
were identified as viable, CD45+ HLA-DR- CD11b+ CD66abce+ CD14+ CD49d- cells, as 
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Figure 3. Variable levels of inflammatory markers throughout P. fragile co-infection of ART-
treated SIVmac239-infected rhesus macaques. CRP, cytokine, and chemokine levels were measured
throughout P. fragile co-infection of ART-treated SIVmac239-infected rhesus macaques (RMs) (n = 4).
(A) CRP levels were measured in serum by a Beckman au480. (B–D) IL-8 (B), IP-10 (C), and MCP-1
(D) levels were measured in plasma by LegendPlex. In all panels, each RM is represented by a
different symbol and color. Baseline (BL) is the average of data collected at weeks 6, 2, and 0 post-SIV
infection (p.i.). Inoculation with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow.
Inoculation with P. fragile at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy
(ART) was initiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred
throughout week 14 p.i., indicated by the light-grey bar. Statistical significance between all timepoints
was calculated using a mixed-effects analysis with the Geisser–Greenhouse correction and a Tukey’s
multiple-comparison test, with individual variances computed for each comparison. Significant
multiplicity-adjusted p values are shown above horizontal black bars.
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Co-Infection 

Impaired phagocytosis has been observed in separate HIV and Plasmodium infection 
[37,38,45–47]. Here, we calculated peripheral blood neutrophil phagocytic score (capabil-
ity) and index (proficiency) throughout ART-treated SIV/P. fragile co-infection. Although 
inter-animal variations in neutrophil phagocytic score (Figure 5A) and index (Figure 5B) 
were observed, no statistically significant changes in either phagocytosis parameter were 
detected over time when comparing all timepoints to each other and when comparing all 
post-infection timepoints to BL only (Supplemental Table S7). 

Figure 4. Minimal disruption of peripheral neutrophil frequencies and percentages of neutrophils un-
dergoing apoptosis during P. fragile co-infection of ART-treated SIVmac239-infected rhesus macaques.
Total neutrophil frequencies and frequencies of neutrophils undergoing apoptosis were assessed
in whole blood before and after P. fragile co-infection of ART-treated SIVmac239-infected rhesus
macaques (RMs) (n = 4) by flow cytometry. (A) Neutrophil (HLA-DR-CD11b+CD66abce+CD14+)
frequency of live CD45+ cells was assessed throughout co-infection. (B) The frequency of neutrophils
undergoing apoptosis (caspase3+) was assessed throughout co-infection. In both panels, each RM is
represented by a different symbol and color. Baseline (BL) is the average of data collected at weeks
6, 4, 2, and 0 post-SIV infection (p.i.). Inoculation with SIVmac239 at week 0 p.i. is indicated by a
purple dashed arrow. Inoculation with P. fragile at week 12 p.i. is indicated by a blue dashed arrow.
Antiretroviral therapy (ART) was initiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial
treatment occurred throughout week 14 p.i., indicated by the light-grey bar. Statistical significance
between all timepoints was calculated using a mixed-effects analysis with the Geisser–Greenhouse
correction and a Tukey’s multiple-comparison test, with individual variances computed for each
comparison. Significant multiplicity-adjusted p values are shown above horizontal black bars.

3.5. Minimal Disruption in Neutrophil Phagocytosis during ART-Treated SIV/P. fragile Co-Infection

Impaired phagocytosis has been observed in separate HIV and Plasmodium infec-
tion [37,38,45–47]. Here, we calculated peripheral blood neutrophil phagocytic score (capa-
bility) and index (proficiency) throughout ART-treated SIV/P. fragile co-infection. Although
inter-animal variations in neutrophil phagocytic score (Figure 5A) and index (Figure 5B)
were observed, no statistically significant changes in either phagocytosis parameter were
detected over time when comparing all timepoints to each other and when comparing all
post-infection timepoints to BL only (Supplemental Table S7).
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score was calculated by multiplying the absolute number of neutrophils/microliter of whole blood 
by the percentage of neutrophils positive for the uptake of pHrodo bioparticles. (B) Phagocytic in-
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and color. Baseline (BL) is the average of data collected at weeks 6, 4, 2, and 0 post-SIV infection 
(p.i.). Inoculation with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation 
with P. fragile at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was 
initiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout 
week 14 p.i., indicated by the light-grey bar. Statistical significance between all timepoints was cal-
culated using a mixed-effects analysis with the Geisser–Greenhouse correction and a Tukey’s mul-
tiple-comparison test, with individual variances computed for each comparison. 

3.6. Decreased Plasma Levels of Neutrophil Granule Components during ART-Treated  
SIV/P. fragile Co-Infection 

Plasma levels of MPO, PR3, and CATG, three extracellular neutrophil degranulation 
secreted components [99,100], were quantified throughout ART-treated SIV/P. fragile co-
infection. Consistent with prior work [101], plasma MPO levels were elevated in all four 
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SIV infection, ART treatment, or P. fragile co-infection (Figure 6A). Likewise, plasma levels 
of PR3 were stable throughout acute SIV infection, ART treatment, and P. fragile co-infec-
tion (Figure 6B). Finally, a statistically significant decrease in CATG was observed at week 
14 p.i., compared to BL and weeks 6 and 10 p.i. (p = 0.032, 0.0038, and 0.0331, respectively), 
followed by a return to BL levels following antimalarial treatment (Figure 6C). When all 
timepoints were compared to BL alone, plasma levels of CATG were significantly de-
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indicate that P. fragile co-infection of ART-treated SIV+ RMs resulted in lowered plasma 
levels of CATG. 

Figure 5. Nominal alterations in neutrophil phagocytosis during P. fragile co-infection of ART-treated
SIVmac239-infected rhesus macaques. The frequency of phagocytic neutrophils and neutrophil
phagocytic capacity were assessed in whole blood throughout P. fragile co-infection of ART-treated
SIVmac239-infected rhesus macaques (RMs) (n = 4) by flow cytometry. Phagocytosis was determined
by assessing the uptake of pHrodo Red E. coli bioparticles. (A) Neutrophil phagocytic score was
calculated by multiplying the absolute number of neutrophils/microliter of whole blood by the
percentage of neutrophils positive for the uptake of pHrodo bioparticles. (B) Phagocytic index was
calculated by multiplying the phagocytic score in (A) by the Mean Fluorescence Intensity (MFI) of
pHrodo-positive neutrophils. In both panels, each RM is represented by a different symbol and
color. Baseline (BL) is the average of data collected at weeks 6, 4, 2, and 0 post-SIV infection (p.i.).
Inoculation with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation with
P. fragile at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was
initiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout
week 14 p.i., indicated by the light-grey bar. Statistical significance between all timepoints was
calculated using a mixed-effects analysis with the Geisser–Greenhouse correction and a Tukey’s
multiple-comparison test, with individual variances computed for each comparison.

3.6. Decreased Plasma Levels of Neutrophil Granule Components during ART-Treated
SIV/P. fragile Co-Infection

Plasma levels of MPO, PR3, and CATG, three extracellular neutrophil degranula-
tion secreted components [99,100], were quantified throughout ART-treated SIV/P. fragile
co-infection. Consistent with prior work [101], plasma MPO levels were elevated in all
four RMs at week 2 p.i., but no statistically significant differences were observed through-
out SIV infection, ART treatment, or P. fragile co-infection (Figure 6A). Likewise, plasma
levels of PR3 were stable throughout acute SIV infection, ART treatment, and P. fragile
co-infection (Figure 6B). Finally, a statistically significant decrease in CATG was observed at
week 14 p.i., compared to BL and weeks 6 and 10 p.i. (p = 0.032, 0.0038, and 0.0331, re-
spectively), followed by a return to BL levels following antimalarial treatment (Figure 6C).
When all timepoints were compared to BL alone, plasma levels of CATG were significantly
decreased at week 14 p.i. as compared to BL (p = 0.0161, Supplemental Table S8). These data
indicate that P. fragile co-infection of ART-treated SIV+ RMs resulted in lowered plasma
levels of CATG.
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Baseline (BL) is the average of data collected at weeks 6, 2, and 0 post-SIV infection (p.i.). Inoculation 
with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation with P. fragile at 
week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was initiated at week 
8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout week 14 p.i., in-
dicated by the light-grey bar. Statistical significance between all timepoints was calculated using a 
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test, with individual variances computed for each comparison. Significant multiplicity-adjusted p 
values are shown above horizontal black bars. 
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NE were significantly increased at week 14 p.i. compared to BL and weeks 2, 10, 12, and 
13 p.i. (p = 0.0354, 0.0237, 0.0450, 0.0406, and 0.0066, respectively; Figure 7A) but were 
significantly reduced at weeks 16 and 20 p.i. as compared to week 14 p.i. (p = 0.0137 and 
0.0096, respectively) and week 15 p.i. (p = 0.0359 and 0.0216, respectively; Figure 7A). 
Plasma NE was significantly lower at week 20 p.i. compared to week 16 p.i. (p = 0.0341; 
Figure 7A). In follow-up analyses comparing all timepoints to BL only, plasma NE levels 
were significantly elevated at week 14 p.i. as compared to BL (p = 0.0179; Supplemental 
Table S9), highlighting the association between co-infection and elevated NE expression. 
Plasma levels of CitH3 were elevated in all four RMs at week 14 p.i., but no statistically 
significant differences were observed throughout SIV infection, ART treatment, or P. frag-
ile infection (Figure 7B). In sum, these findings suggest that P. fragile infection is specifi-
cally linked with increased levels of NE, a marker of NET formation. 

Figure 6. Decreased plasma levels of neutrophil degranulation markers during P. fragile co-infection
of ART-treated SIVmac239-infected rhesus macaques. Products of neutrophil degranulation were
measured throughout P. fragile co-infection of ART-treated SIVmac239-infected rhesus macaques
(RMs) (n = 4) via ELISA. Myeloperoxidase (A), Proteinase 3 (B), and Cathepsin G (C) levels were
measured in plasma by ELISA. In all panels, each RM is represented by a different symbol and color.
Baseline (BL) is the average of data collected at weeks 6, 2, and 0 post-SIV infection (p.i.). Inoculation
with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation with P. fragile
at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was initiated at
week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout week 14 p.i.,
indicated by the light-grey bar. Statistical significance between all timepoints was calculated using a
mixed-effects analysis with the Geisser–Greenhouse correction and a Tukey’s multiple-comparison
test, with individual variances computed for each comparison. Significant multiplicity-adjusted
p values are shown above horizontal black bars.

3.7. Increased Plasma Biomarkers of NET Formation during ART-Treated SIV/P. fragile
Co-Infection

Excessive NET formation contributes to inflammation in separate HIV and Plasmodium
infection [33,48,52,53]. We assessed plasma levels of NE and CitH3, biomarkers of NET
formation [102], throughout ART-treated SIV/P. fragile co-infection. Plasma levels of NE
were significantly increased at week 14 p.i. compared to BL and weeks 2, 10, 12, and
13 p.i. (p = 0.0354, 0.0237, 0.0450, 0.0406, and 0.0066, respectively; Figure 7A) but were
significantly reduced at weeks 16 and 20 p.i. as compared to week 14 p.i. (p = 0.0137 and
0.0096, respectively) and week 15 p.i. (p = 0.0359 and 0.0216, respectively; Figure 7A).
Plasma NE was significantly lower at week 20 p.i. compared to week 16 p.i. (p = 0.0341;
Figure 7A). In follow-up analyses comparing all timepoints to BL only, plasma NE levels
were significantly elevated at week 14 p.i. as compared to BL (p = 0.0179; Supplemental
Table S9), highlighting the association between co-infection and elevated NE expression.
Plasma levels of CitH3 were elevated in all four RMs at week 14 p.i., but no statistically
significant differences were observed throughout SIV infection, ART treatment, or P. fragile
infection (Figure 7B). In sum, these findings suggest that P. fragile infection is specifically
linked with increased levels of NE, a marker of NET formation.
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were measured in plasma by ELISA. In both panels, each RM is represented by a different symbol 
and color. Baseline (BL) is the average of data collected at weeks 6, 2, and 0 post-SIV infection (p.i.). 
Inoculation with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation with 
P. fragile at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was ini-
tiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout 
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3.8. Increased Plasma Markers of Gut Permeability and Microbial Translocation during  
ART-Treated SIV/P. fragile Co-Infection 

The loss of the GI epithelial barrier integrity leads to microbial translocation in both 
HIV and Plasmodium infection [39,43,44,103]. Here, we examined plasma levels of zonulin, 
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of ART-treated SIVmac239-infected rhesus macaques. Markers of neutrophil extracellular trap
formation were measured throughout P. fragile co-infection of ART-treated SIVmac239-infected rhesus
macaques (RMs) (n = 4) via ELISA. (A) Neutrophil elastase and (B) Citrullinated histone 3 levels were
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Baseline (BL) is the average of data collected at weeks 6, 2, and 0 post-SIV infection (p.i.). Inoculation
with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation with P. fragile
at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was initiated at
week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout week 14 p.i.,
indicated by the light-grey bar. Statistical significance between all timepoints was calculated using a
mixed-effects analysis with the Geisser–Greenhouse correction and a Tukey’s multiple-comparison
test, with individual variances computed for each comparison. Significant multiplicity-adjusted
p values are shown above horizontal black bars.

3.8. Increased Plasma Markers of Gut Permeability and Microbial Translocation during
ART-Treated SIV/P. fragile Co-Infection

The loss of the GI epithelial barrier integrity leads to microbial translocation in both
HIV and Plasmodium infection [39,43,44,103]. Here, we examined plasma levels of zonulin,
a protein that modulates tight junctions [104]; I-FABP, a circulating biomarker of intesti-
nal injury [105,106]; sCD14, which is released from monocytes upon lipopolysaccharide
(LPS) stimulation; and LBP, which assists in LPS recognition by interacting with LPS recep-
tors [107]. Inter-animal variation in plasma zonulin levels was observed throughout the
study (Figure 8A). Plasma I-FABP was significantly increased at week 14 p.i. compared to
week 2 p.i. (p = 0.0436; Figure 8B), sCD14 was significantly greater at week 16 p.i. compared
to week 6 p.i. (p = 0.0377; Figure 8C), and LBP was significantly increased at week 14 p.i.
compared to weeks 2, 15 and 20 p.i. (p = 0.0441, 0.0305, and 0.0027, respectively; Figure 8D).
In follow-up analyses comparing all timepoints to BL only, plasma LBP at week 14 p.i. was
significantly increased as compared to BL (p = 0.0367; Supplemental Table S10). These
findings indicate that P. fragile co-infection may exacerbate GI epithelial barrier disruption,
resulting in microbial translocation, in ART-treated SIV+ RMs.
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To identify links between markers of SIV and P. fragile infection, neutrophil fre-
quency and function, inflammation, GI barrier permeability, and microbial translocation, 
we conducted a MANOVA, controlling for time (Figure 9). SIV VLs were positively asso-
ciated with plasma zonulin, a marker of gut dysfunction ([ρ = 0.620, p < 0.0001]; Figure 9). 
Absolute CD4+ T-cell counts were positively associated with markers of NET formation 

Figure 8. Increased levels of microbial translocation and gastrointestinal (GI) barrier permeability
markers during P. fragile co-infection of ART-treated SIVmac239-infected rhesus macaques. Markers of
microbial translocation and GI barrier permeability were measured throughout P. fragile co-infection
of ART-treated SIVmac239-infected rhesus macaques (RMs) (n = 4) via ELISA. Zonulin (A), intestinal
fatty acid-binding protein (I-FABP; B), Soluble CD14 (sCD14; C), and LPS-binding protein (LBP;
D) levels were measured in plasma by ELISA. In all panels, each RM is represented by a different
symbol and color. Baseline (BL) is the average of data collected at weeks 6, 2, and 0 post-SIV infection
(p.i.). Inoculation with SIVmac239 at week 0 p.i. is indicated by a purple dashed arrow. Inoculation
with P. fragile at week 12 p.i. is indicated by a blue dashed arrow. Antiretroviral therapy (ART) was
initiated at week 8 p.i., indicated by the dark-grey bar. Antimalarial treatment occurred throughout
week 14 p.i., indicated by the light-grey bar. Statistical significance between all timepoints was
calculated using a mixed-effects analysis with the Geisser–Greenhouse correction and a Tukey’s
multiple-comparison test, with individual variances computed for each comparison. Significant
multiplicity-adjusted p values are shown above horizontal black bars.

3.9. Markers of SIV and P. fragile Infection, Neutrophil Frequency and Function, Inflammation, GI
Permeability, and Microbial Translocation Are Correlated in P. fragile Co-Infected ART-Treated
SIV+ RMs

To identify links between markers of SIV and P. fragile infection, neutrophil fre-
quency and function, inflammation, GI barrier permeability, and microbial transloca-
tion, we conducted a MANOVA, controlling for time (Figure 9). SIV VLs were positively
associated with plasma zonulin, a marker of gut dysfunction ([ρ = 0.620, p < 0.0001];
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Figure 9). Absolute CD4+ T-cell counts were positively associated with markers of NET
formation (NE and CitH3, both ρ = 0.389, p = 0.006), gut dysfunction (I-FABP [ρ = 0.342,
p = 0.017]), and systemic inflammation (CRP [ρ = 0.369, p = 0.001]) but were negatively
associated with degranulation (CATG [ρ = −0.434, p = 0.002]; Figure 9). % HCT was
positively associated with markers of degranulation (CATG [ρ = −0.576, p < 0.0001]) but
was negatively associated with markers of NET formation (NE [ρ = −0.785, p < 0.0001] and
CitH3 [ρ = −0.549, p < 0.0001]), chemokine production (MCP-1 [ρ = −0.349, p = 0.015]), GI
dysfunction (sCD14 [ρ = −0.694, p < 0.0001], I-FABP [ρ = −0.464, p = 0.001],
LBP [ρ = −0.424, p = 0.003]), and systemic inflammation (CRP [ρ = −0.681, p < 0.0001]). Neu-
trophil frequency was positively associated with chemokine production (MCP-1, [ρ = 0.313,
p = 0.030]) and systemic inflammation (CRP [ρ = 0.342, p = 0.017]) but was negatively
associated with markers of degranulation (CATG [ρ = −0.514, p < 0.0002]). Chemokine pro-
duction (MCP-1) was positively associated with markers of NET formation
(NE [ρ = 0.357, p = 0.013], CITH3 [ρ = 0.403, p = 0.005]), and other markers of inflam-
mation (IP-10 [ρ = 0.845, p < 0.0001] and CRP [ρ = 0.353, p = 0.014]; Figure 9). Markers
of GI dysfunction (sCD14 and IFABP) were positively correlated with markers of NET
formation (NE [ρ = 0.648, p < 0.0001] and ρ = 0.537, p < 0.0001]), respectively, and CITH3
([p = 0.553, p < 0.0001] and [ρ = −0.277, p = 0.057], respectively) but were negatively cor-
related with markers of degranulation (CATG [ρ = −0.404, p = 0.004] and [ρ = −0.460,
p = 0.001], respectively; Figure 9). Markers of GI dysfunction (sCD14, IFABP, and LBP)
were also positively associated with a marker of systemic inflammation (CRP [ρ = 0.598,
p < 0.0001], [ρ = 0.504, p = 0.0002], and [ρ = 0.487, p = 0.0004], respectively; Figure 9). Finally,
a marker of systemic inflammation (CRP) was positively associated with markers of NET
formation (NE [ρ = 0.797, p < 0.0001] and CitH3 [ρ = 0.783, p < 0.0001], respectively) but
was negatively correlated with markers of degranulation (CATG [ρ = −0.561, p < 0.0001];
Figure 9). These data indicate that P. fragile co-infection of ART-treated SIV+ RMs was
associated with markers of NET formation, CD4+ T-cell proliferation, inflammation, and
chemokine production, which may have allowed for viral persistence and exacerbation of
GI barrier disruption and microbial translocation.
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Figure 9. Multivariate ANOVA (MANOVA) reveals significant correlations between clinical markers
of SIV and malaria infection, as well as neutrophil frequency and function and peripheral markers
of GI dysfunction. Pearson’s partial correlation coefficients were generated using a MANOVA for
14 different parameters (VL; anemia; absolute CD4+ count; peripheral neutrophils; plasma zonulin;
sCD4; I-FABP; LBP; NE; cathepsin G; CitH3; IP-10; MCP-1; and CRP). The correlation coefficients
were adjusted against animal number. Boxes highlighted in light green represent positive correlations
trending towards significance (0.05 < p < 0.07), and boxes highlighted in dark green or red represent
statistically significant positive and negative correlations, respectively (p < 0.05).

4. Discussion

In this pilot study, we characterized the impact of P. fragile co-infection on ART-
treated, SIV+ RMs. Pathogenic SIV infection in RMs has been well-characterized, with RMs
exhibiting uncontrolled VLs and decreased CD4+ T-cell counts within two weeks following
SIV infection, similar to pathogenic HIV infection in humans [78–80]. Additionally, previous
work has shown that ART initiation during SIV infection results in decreased VLs within
two weeks of starting treatment [63,108], and that ART treatment rapidly restores CD4+
T-cells and T-cell functionality, even at end stage disease [81]. Consistent with these prior
findings, all four RMs in our study exhibited elevated VLs and depleted CD4+ T-cell counts
during acute SIV infection, followed by decreased VLs and elevated CD4+ T-cell counts
post-ART initiation, indicating that all RMs followed the expected progression of acute SIV
infection and response to suppressive therapy.



Viruses 2024, 16, 1036 18 of 28

Co-infection of SIV+ RMs with P. fragile has been conducted previously [56,57]. How-
ever, our pilot study represents the first assessment of P. fragile co-infection in the context
of ART-treated SIV infection. Here, we observed that ART-treated SIV+ RMs exhibited
peripheral parasitemia within two weeks of P. fragile co-infection, which coincided with
mild–severe anemia. These findings are in line with previous work that demonstrated
that RMs inoculated with P. fragile via a similar route, but with differences in the dose
and treatment regimen used, also exhibited peripheral parasitemia and anemia within
two weeks of inoculation [56]. Notably, ART-treated SIV/P. fragile-co-infected RMs in
our pilot study experienced parasitemia and anemia greater than that observed during
P. fragile infection only RMs in the previously published study [56], possibly suggesting
that P. fragile infection in ART-treated SIV+ RMs results in the exacerbation of clinical
hallmarks of malaria infection, as compared to P. fragile infected only RMs. However, given
the differences in the inoculation doses and treatment regimens used in our pilot study and
in this previously published work, we are unable to definitively make this conclusion with
our current data.

Following P. fragile co-infection, SIV+ RMs maintained detectable VLs and decreased
CD4+ T-cell counts for several weeks. This observation is in agreement with prior reports
noting detectable VLs during co-infection of ART-naïve RMs [56]. Additionally, Plasmod-
ium co-infection resulted in increased HIV replication sans ART in vitro and in vivo in
humans [9–11,109–111]. Of note, in this pilot study, one RM (JF97) had persistently high
VLs despite ART, as well as higher levels of inflammatory cytokines and chemokines.
Previous work has shown associations between host genetics, including the expressions of
particular MHC alleles, and high VLs and rapid disease progression in both humans [112]
and macaques [113,114]. Recent work suggests an association between Mamu-B*012 and
high VLs in RMs, but only with specific KIR alleles [113]. Here, one animal (LE96) did
express Mamu-B*012, but KIR genotyping was not performed, and this animal did not
exhibit exceptionally high VLs. In addition, there were no marked differences in the clinical
history, such as in values reported in the weekly CBCs, blood chemistries, or physical
exams between JF97 and the other three RMs assessed here. Additional work is needed to
understand JF97′s inability to virally control despite ART. Importantly, there is no expected
interaction between the ART regimen (TDF/FTC/DTG) and antimalarial drugs (chloro-
quine and quinine sulfate) used, indicating that drug–drug interactions are unlikely to be
the cause of persistent SIV VLs despite ART treatment [115].

Systemic inflammation is a hallmark of HIV infection, even with consistent ART [24].
Indeed, CRP, an acute-phase marker of inflammation, has been shown to be elevated in
ART-naïve and ART-treated PWH [82–85]. Additionally, increased CRP has been used as a
biomarker of malaria severity [86,87]. In our pilot study, we observed increased levels of
serum CRP that coincided with peak parasitemia, indicating that P. fragile exposure is linked
with increased systemic inflammation. We also observed that serum CRP was significantly
positively correlated with not just neutrophil frequency but also with markers of NE and
CitH3, biomarkers of NET formation [102]. Notably, neutrophil-associated inflammation
contributes to pathogenesis during separate HIV and Plasmodium infection [50,89–92].
Prior work has also identified links between residual viral replication during ART and
uncontrolled inflammation [116,117]. Thus, neutrophil-associated systemic inflammation
could constitute a mechanism underlying continued SIV replication during P. fragile co-
infection despite ART.

In this pilot study, ART-treated SIV/P. fragile co-infection resulted in increased MCP-1,
a potent monocyte chemoattractant produced by many cells, including neutrophils [118].
Additionally, we observed significant correlations between plasma MCP-1 with NE and
CitH3. Previously, increased MCP-1 was associated with NET release in individuals
with myocardial infarction, which, in turn, stimulates further MCP-1 production [119].
Taken together, increased MCP-1 production during ART-treated SIV/P. fragile co-infection
could result from increased NET formation [120], and these processes may cooperatively
contribute to heightened inflammation, allowing for persistent viral replication. Supporting
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this, plasma MCP-1 was correlated with SIV VL, indicating a potential association between
neutrophil-mediated inflammation and SIV reactivation during P. fragile co-infection.

Notably, although neutrophil frequency was minimally altered throughout our ART-
treated SIV/P. fragile co-infection pilot study, a significant shift in NE, a peripheral marker
of neutrophil function, was detected. We identified that the increase in this marker of NET
formation was significantly inversely correlated with anemia, a clinical marker of Plasmod-
ium infection. Conversely, we noted decreased expression of the neutrophil degranulation
marker CATG and unchanged neutrophil phagocytosis. Neutrophil selection between
defense mechanisms appears to be size-dependent: the phagocytosis of smaller microbes
inhibits NET release, but inhibition of phagocytosis due to microbe size prompts NETo-
sis [121]. Notably, previous studies have shown that both opsonized and non-opsonized
monocyte/macrophage phagocytoses of P. falciparum-infected erythrocytes are impaired in
PWH in vitro and in vivo [121–123], although non-opsonized parasite phagocytosis was
restored after 6 months of ART [123]. Our pilot data could therefore indicate that an insuf-
ficient phagocytic response during SIV/P. fragile co-infection skews neutrophils towards
NET formation, providing a potential mechanism by which they contribute to systemic
inflammation during ART-treated SIV/P. fragile co-infection.

GI dysfunction is a major pathogenic process in separate HIV and malaria
infection [42–44,124]. Plasmodium parasite sequestration in the GI tract causes barrier
permeability [103,125], while HIV-associated GI mucosal dysfunction is linked with the
loss of barrier integrity and elevated microbial translocation [43,107]. Our data indicating
that SIV VL is positively correlated with plasma zonulin levels are in agreement with this.
Importantly, GI neutrophil infiltration and survival have previously been correlated with
HIV-associated GI mucosal dysfunction [39–41]; thus, GI neutrophil activity in response
to parasite sequestration could further exacerbate SIV-associated GI dysfunction. Our
data indicating that plasma markers of GI barrier permeability (plasma sCD14, iFABP,
LBP) were associated peripheral markers of NET formation (plasma NE and CitH3) in
ART-treated SIV/P. fragile-co-infected RMs support this. Moreover, our observation of an
inverse correlation between sCD14, LBP, and anemia, a hallmark of clinical malaria infec-
tion, further supports a potential relationship between malaria-induced GI dysfunction,
possibly mediated by GI neutrophil infiltration and inflammation, during ART-treated SIV
co-infection. A caveat of these data is that they are currently limited to plasma markers
of neutrophil function, GI barrier integrity, and microbial translocation. Future studies
will focus on assessing the relationship between these factors in mucosal tissues to fully
define the mechanistic relationships between neutrophil-associated GI dysfunction and
SIV/malaria co-infection pathogenesis.

A major strength of our work is the utilization of an NHP model that mimics HIV and
P. falciparum infection [54,55,69,70]. Additionally, our longitudinal assessments provided an
opportunity to identify how Plasmodium co-infection could influence SIV pathology in the
setting of viral suppression. Caveats of our study are the short duration of ART and the lack
of complete viral suppression for an extended period prior to P. fragile co-infection. Our
rationale for initiating the ART at week 8 p.i. was to allow RMs to establish an early viremic
setpoint, representative of late acute/early chronic infection, which has previously been
reported to occur as early as 42 days post-infection for SIVmac239 [64–66]. While previous
work has shown that ART initiation in SIV+ RMs results in decreased viremia within two
weeks of initiation, in some cases it may take longer to achieve consistently undetectable
VLs [63,108]. In addition, while current guidelines recommend that individuals with recent
HIV infection, defined as the ≤ 6-month period after infection when anti-HIV antibodies
are detectable, begin ART as soon as possible, there are often delays in ART initiation
post-diagnosis [67,68,126]. This means that even with access to routine, point-of-care HIV
testing and same-day ART initiation, it is likely that most individuals will have had time
for HIV pathogenesis to be established prior to ART initiation. Therefore, considering these
data in both humans and NHPs, in our pilot study, we elected to initiate ART at 8 weeks
p.i. in order to balance the goals of establishing pathogenic SIV infection prior to ART
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initiation and modeling a scenario of early diagnosis and ART treatment. These choices,
along with the pilot nature of our study, mean that we are limited in the scope of the
conclusions that can be made in regard to the impact of P. fragile co-infection during fully
ART-suppressed SIV infection. Future studies to address this limitation by extending the
amount of time that RMs are on ART to allow for full viral suppression prior to co-infection
are warranted. Additionally, it may be possible to use this model to iteratively test the
impact of co-infection before and after full viral suppression, with the goal of elucidating
the impact of Plasmodium infection at different stages following ART initiation on pathology,
disease outcome, and ART efficacy.

It is important to note that in malaria-endemic areas, there is the potential for re-
current Plasmodium spp. infections. Recurrent infections are defined as newly detectable
blood-stage parasitemia after the clearance of a previous infection [127]. In the context of
P. falciparum, recurrent infections can occur either due to re-infection via a new mosquito
bite or recrudescence associated with sub-patent parasitemia that was previously unde-
tectable [128]. Given the pilot nature of our study, here, we elected to examine the effects
of a single P. fragile exposure in ART-treated SIV+ RMs. However, by establishing the
utility of this NHP model of P. fragile co-infection in the context of ART-treated SIV infec-
tion, future work exploring recurrent P. fragile infection in SIV+ RMs will be possible and
important to gain a full understanding of the increased disease pathogenesis that occurs
during co-infection.

Another caveat to this pilot study is the usage of chloroquine and quinine sulfate as
antimalarial treatments. Both quinine sulfate and chloroquine have been shown to influence
various immune parameters, including NET formation and phagocytosis [129–133]. Given
that our data indicate that neutrophil phagocytosis was unchanged throughout antimalarial
drug treatment, and because the significant increase we observed in NE occurred prior
to quinine sulfate and chloroquine administration, the use of these drugs in our study
likely did not impact our observations on the effects of P. fragile co-infection on neutrophil
responses in ART-treated SIV+ RMs. Nonetheless, we cannot completely discount the
possibility that quinine sulfate and/or chloroquine administration may have affected
these parameters, and future studies should include antimalarial-drug-treatment-only
groups in not just healthy RMs but also in SIV+ and ART-treated SIV+ RMs to control for
this possibility.

The work presented here is from a pilot study; thus, an inherent limitation is the
small number of RMs used, particularly since inter-animal variation was observed in
some parameters, which may have contributed to the lack of statistical significance ob-
served at some timepoints. Additional work with more animals, with the addition of
matched, contemporary ART-treated SIV-only, P. fragile-only, and ART and antimalarial
treatment only control groups, will be necessary to fully characterize the kinetics and impact
of co-infection.

Here, we primarily focused on the peripheral innate immune response and neutrophils
in particular. Future work on mucosal tissues, including immune cell enumeration and
immunophenotyping in the context of ART-treated SIV/P. fragile co-infection, is needed.
Moreover, work to determine the role of additional innate immune cells, such as monocytes
and macrophages, and their interactions with adaptive immune cells, such as CD4 T-cells
and their subsets, is warranted. For example, Th17 CD4 T-cells have been shown to play a
key role in maintaining GI homeostasis and have been shown to recruit neutrophils to sites
of inflammation and mucosal injury [134–136]. Thus, an important future direction will
be to assess neutrophil/Th17 cell dynamics both in the periphery and directly in mucosal
tissue to determine how these interactions impact GI impairment and damage in the context
of SIV/P. fragile co-infection.

Finally, in this pilot study, we elected to infect RMs with P. fragile via i.v. inoculation
with blood-stage parasites. This means that the P. fragile infection in our model bypassed
the clinically silent liver stage of Plasmodium infection. Previous work has found that
although neutrophil frequency and function are unchanged during the pre-erythrocytic



Viruses 2024, 16, 1036 21 of 28

stage of Plasmodium infection, total leukocytes are significantly increased [137]. Future
studies that incorporate Plasmodium transmission through infected mosquito bites will
be more reflective of vector parasite transmission and allow for the assessment of the
pre-erythrocytic stage of Plasmodium infection.

In this present study, we focused on establishing the SIV/P. fragile co-infection model
in the context of ART, in an effort to validate the utility of our model and guide its
use in future explorations. The pilot data presented here indicate that ART-treated
SIV/P. fragile-co-infected RMs displayed clinical signs of SIV and malaria, which were
associated with shifts in neutrophil function and increased markers of GI mucosal dysfunc-
tion. These observations could have implications for HIV and malaria co-endemic areas.
Plasmodium co-infection in PWH may lead to viral reactivation, creating a scenario in which
the rates of HIV transmission are sustained even despite widespread use and adherence to
ART. Indeed, PWH who have viral loads greater than 1000 copies/milliliter, regardless of
ART, are at an increased risk of transmitting HIV [138]. It is important to note, however,
that little work has been conducted to examine whether a sustained SIV VL correlates
with an increased risk of SIV transmission; thus, additional work will be needed to extend
our observations using an NHP model to ART-treated PWH with Plasmodium co-infection.
Moreover, our observations of a link between neutrophil function and clinical signs of
SIV/P. fragile and GI dysfunction highlight the need for additional research to define the
role of this cellular subset during co-infection and supports the rationale for examining the
potential of neutrophil-targeted interventions to reduce the burden of HIV and malaria,
separately and in the context of co-infection. In summary, the pilot data presented here
support the utility of this NHP model of ART-treated SIV/P. fragile co-infection to answer
pertinent questions about the impact of co-infection on immunity and disease outcomes.
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