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Simple Summary: Porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis
virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA) are the four
significant pathogens of viral diarrhea of piglets in large-scale pig farms, which have caused huge
economic losses to the pig industry all over the world. Since these four viruses have very similar
clinical symptoms, it is necessary to develop an excellent detection method that can differentiate and
diagnose these four viruses. In this study, we developed a multiplex real-time RT-PCR method that
can simultaneously differentiate and diagnose these four viruses. The method has high specificity and
does not cross-react with other porcine viruses. The lower limit of detection was 2.18 × 102 copies/µL.
In addition, we tested 97 clinical samples collected by this method, and the results were consistent
with the detection results of traditional RT-PCR, indicating that this method is reliable. In summary,
we developed a multiplex real-time RT-PCR method for simultaneous detection of PEDV, TGEV,
PDCoV, and PoRVA, and the results of this study can provide technical means for the differential
diagnosis and epidemiological investigation of these four porcine diarrhea virus diseases.

Abstract: Porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV),
porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA) are the four main pathogens
that cause viral diarrhea in pigs, and they often occur in mixed infections, which are difficult to
distinguish only according to clinical symptoms. Here, we developed a multiplex TaqMan-probe-
based real-time RT-PCR method for the simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA
for the first time. The specific primers and probes were designed for the M protein gene of PEDV, N
protein gene of TGEV, N protein gene of PDCoV, and VP7 protein gene of PoRVA, and corresponding
recombinant plasmids were constructed. The method showed extreme specificity, high sensitivity,
and excellent repeatability; the limit of detection (LOD) can reach as low as 2.18 × 102 copies/µL in
multiplex real-time RT-PCR assay. A total of 97 clinical samples were used to compare the results
of the conventional reverse transcription PCR (RT-PCR) and this multiplex real-time RT-PCR for
PEDV, TGEV, PDCoV, and PoRVA detection, and the results were 100% consistent. Subsequently, five
randomly selected clinical samples that tested positive were sent for DNA sequencing verification,
and the sequencing results showed consistency with the detection results of the conventional RT-PCR
and our developed method in this study. In summary, this study developed a multiplex real-time RT-
PCR method for simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA, and the results of this
study can provide technical means for the differential diagnosis and epidemiological investigation of
these four porcine viral diarrheic diseases.
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1. Introduction

Porcine enteric viruses pose significant challenges in pig farming worldwide. These
viruses are responsible for causing acute diarrhea in piglets, leading to substantial eco-
nomic losses in the swine industry worldwide [1], including porcine epidemic diarrhea
virus (PEDV), porcine deltacoronavirus (PDCoV), porcine transmissible gastroenteritis
virus (TGEV), porcine enteric alphacoronavirus (PEAV), porcine hemagglutinating en-
cephalomyelitis virus (PEHV), porcine norovirus (PNoV), etc. Among these porcine en-
teroviruses, coronaviruses are a massive viral family that can cause digestive and res-
piratory tract diseases in humans and animals, posing a serious threat to human and
animal health [2,3]. The prevalence of porcine enteric coronaviruses (PECs) affects scaled
swine farms globally and creates a potential risk of cross-species transmission [4,5]. Of
these, the three most vital and prevalent viruses are TGEV, PEDV, and PDCoV; previous
research findings have shown that the sequencing findings of the swine enteric coronavirus
(SeCoV) observed in various European countries, along with the Canine CoronaVirus-
Human Pneumonia-2018 (CCoV-HuPn-2018) virus discovered in Malaysia, both indicate a
strong connection between these recently discovered coronaviruses and TGEV [6]. Recently
conducted research has indicated that human small intestinal epithelial cells can be infected
by PEDV, thereby suggesting the likelihood of PEDV being transmitted across different
species [7]. In the year 2021, scientists from the United States reported that blood sam-
ples taken from three Haitian children who were experiencing unexplainable fever tested
positive for PDCoV. This finding suggests the potential of PDCoV transmission between
different species [8,9]. Nevertheless, it is important to note that rotavirus (RV) is a major
cause of acute gastroenteritis in animals, particularly nursing and weaned piglets, and
should not be disregarded [10,11]. Ten categories (A to J) of RVs can be distinguished by the
antigenic connections found in their VP6 proteins. Among these groups, A, B, and C (RVA,
RVB, and RVC) are the most prevalent and infect both humans and animals. RVA strains,
in particular, have been extensively studied and are considered one of the leading causes
of acute dehydrating diarrhea from the perspectives of both public health and veterinary
health. Numerous global studies have established a link between diarrheal episodes and
RVC infections [12–15]. In addition, it is worth noting that the control effects have been
insufficient in recent years due to the vaccine’s specificity and the prevalence of various
RV genotypes or serotypes. Meanwhile, there have been reports of genetic reassortment
between porcine rotavirus (PoRVA) and bovine/human rotavirus, indicating the existence
of interspecies transmission between animals and humans [12,16,17].

The four viruses, PEDV, TGEV, PoRVA, and PDCoV, can lead to similar clinical symp-
toms and pathologic changes in pigs, which are difficult to distinguish [18]. In recent years,
diarrhea caused by porcine enteric coronaviruses has occurred frequently in pig farms, and
co-infections and secondary infections of PEDV, PoRVA, TGEV, and PDCoV have been
common [18,19], which has made differential diagnosis difficult in clinical practice [19–22].
Consequently, it is crucial to develop a cost-effective, rapid, and accurate method for the
detection and differential diagnosis of these viral swine diarrhea pathogens. So far, several
relevant and good multiplex qPCR methods have been developed to address the above
problems [23,24]. However, these methods were primarily designed for PECs alone, ig-
noring the increase in clinical cases of PoRVA with co-infections in swine herds and their
current epidemiological significance. Here, we developed a TaqMan-probe-based multi-
plex real-time RT-PCR method for the simultaneous differential diagnosis of PEDV, TGEV,
PDCoV, and PoRVA, which, to the best of our knowledge, is the first quadruplex RT-qPCR
method for the simultaneous detection of the three major PECs and PoRVA. The devel-
opment of this method can provide a technical tool for differential diagnosis, molecular
epidemiological investigation, prevention, and control of swine diarrhea virus diseases.
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2. Materials and Methods
2.1. Viruses and Clinical Samples

The virus samples were as follows: PEDV, TGEV, PDCoV, PoRVA, pseudorabies virus
(PRV), porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus
(PRRSV), classical swine fever virus (CSFV), and Seneca Valley virus (SVV); these were
previously preserved in our laboratory and confirmed by conventional PCR and genetic
sequencing (Tsingke biotech, Qingdao, China).

Clinical test samples were obtained from 97 clinical diarrhea samples, which mainly
included small intestines, intestinal contents, and feces, sent from large-scale in various
regions of Shandong Province from 2020 to 2023. All samples were preserved at −80 ◦C in
our laboratory.

2.2. Primers and Probes

The reference strains used to design primers and probes were derived from GenBank-
logged gene sequences. Based on the virus strains, PEDV-HNAY 2016 (Accession No.
MT338518.1), TGEV-KT2 (Accession No. JQ693059.1), PDCoV-USA/Ohio 137/2014 (Ac-
cession No. KJ601780.1), and PoRVA-DZ-2 (Accession No. KT820775.1) were designed to
target the PEDV-M, TGEV-N, PDCoV-N, and PoRVA-VP7 genes and used to design primers
and probes. Four pairs of primers and probes were designed on the NCBI Primer-BLAST
website (Primer designing tool (nih.gov)) and synthesized by Tsingke Biotech (Qingdao)
Co., Ltd. The information on primers and probes is shown in Table 1.

Table 1. Primer and probe sequences.

Pathogens Primers and Probe Sequences (5′ to 3′) Size (bp) Gene

PEDV Forward TACTCTGCGTTCTTGTATGG 92 M
Reverse CTAGCCCATGCATCAAAAAG
Probe TAMRA-AATAGCCATCTTGACACCATACA-FAM

TGEV Forward GTGACAAGATTTTATGGAAC 157 N
Reverse CTTCCTTTGAAGTCCAATAG
Probe HEX-CTAGACACAGATGGAACACATTCA-BHQ1

PDCoV Forward ACTCCCTCCTAATGATAC 87 N
Reverse GCAACATGAGGTTTAATAG
Probe Texas Red-CAGCAACCACTCGTGTTACTT-BHQ2

PoRV-A Forward CGAACACATGTACTATAAGA 99 VP7
Reverse CAGCTGTTATGTCAAGTATA
Probe Cy5-TTGGACCTCCTACCTGAATTAC-BHQ3

2.3. RNA Extraction and Reverse Transcription

All clinical samples were resuspended with 10 mL of saline solution, vortexed, and
centrifuged at 12,000 rpm at 4 ◦C for 15 min. Nucleic acids were extracted using the
MiniBEST Viral RNA/DNA Extraction Kit (Beijing Takara Biotech Co., Ltd., Beijing, China),
following the manufacturer’s instruction. Reverse transcription was performed using the
PrimeScriptTM IV 1st strand cDNA Synthesis Mix (Beijing Takara Biotech Co., Ltd.).

2.4. Construction of Recombinant Plasmids for Standard Curves

The cDNAs of PEDV, TGEV, PDCoV, and PoRVA were used as templates, respectively,
and the target gene fragments were amplified by PCR with the corresponding primers in
Table 1. The amplified PCR products were recovered by a PCR purification kit, and the
recombinant plasmids were identified by PCR and DNA sequencing after being ligated
with the pMD18-T vector.

In order to establish a standard curve, we determined the concentration of the plasmids
of the four viruses, calculated the copy number of the plasmids according to the formula,
diluted the four plasmids 10-fold, and then diluted the plasmids from 2.18 × 108 copies/µL

nih.gov


Vet. Sci. 2024, 11, 305 4 of 14

to 2.18 × 101 copies/µL. Finally, we performed a singleplex real-time PCR amplification of
the four 10-fold-diluted plasmids as PCR templates to generate the standard curve.

2.5. Reaction Conditions of the Singleplex Real-Time PCR

The system of this singleplex real-time PCR was composed of 10 µL 2 × T5 Fast qPCR
Mix, 10 µL of forward primer, 0.6 µL (10 µM) of each of the reverse primers, 0.2 µL (10 µM)
of TaqMan probe, 2 µL of template, and the rest of the volume was nuclease-free water.
The following program was used to perform the amplification on a Roche LightCycler®

96 Instrument (Roche, Basel, Switzerland): 95 ◦C for 180 s; 40 cycles of 95 ◦C for 10 s; and
52 ◦C for 40 s (Ramp 2.2 ◦C/s). At the conclusion of each cycle, the fluorescence signal was
automatically captured.

2.6. Optimization of Reaction Conditions for Multiplex Real-Time PCR

For multiplex real-time PCR reaction systems, 10 µL of 2 × T5 Fast qPCR Mix was
mixed with four primers (0.6 µL), probe (0.6 µL), template (1 µL), and nuclease-free wa-
ter in a reaction system with a final volume of 20 µL. In order to investigate the ideal
concentrations of primers and probes for this multiplex method, the multiplex reaction
conditions were optimized using primers and probes of varying concentrations (10 µM).
The method’s final primer and probe concentrations ranged from 300 nM to 500 nM and
100 nM to 300 nM, respectively. As templates, 2.18 × 106 copies/µL of plasmid standards
were used (Table 2).

Table 2. The Cq values of PEDV, TGEV, PDCoV, and PoRVA detected by this multiplex real-time PCR
assay with different probe and primer concentrations.

PEDV TGEV

Probe
concentration (nM)

Primer concentration (nM) Probe
concentration (nM)

Primer concentration (nM)

300 400 500 300 400 500

100 18.80 18.76 18.77 100 21.07 21.35 21.67
200 18.90 18.85 18.92 200 21.66 21.84 21.65
300 19.32 19.37 19.63 300 21.61 22.16 22.2

PDCoV PoRVA

Probe
concentration (nM)

Primer concentration (nM) Probe
concentration (nM)

Primer concentration (nM)

300 400 500 300 400 500

100 15.84 15.33 15.6 100 16.85 16.9 16.79
200 16.02 15.92 16.18 200 17.24 17.05 16.99
300 16.29 17.00 16.46 300 17.48 17.27 17.19

2.7. Specificity of Multiplex Real-Time RT-PCR

In order to assess the specificity of this multiplex RT-qPCR, we used standard DNA
or cDNA of major porcine viruses as amplification templates, including CSFV, PRRSV,
PRV, PCV2, and SVV. Meanwhile, the PEDV-M, TGEV-N, PDCoV-N, and PoRVA-VP7
recombinant plasmids were used as a positive control, and the nuclease-free water served
as a negative template control.

2.8. Sensitivity of Multiplex Real-Time PCR

To assess the limit of detection (LOD) of the multiplex real-time PCR method, we
performed a 10-fold serial dilution of the standard plasmid ranging from 2.18 × 107 to
2.18 × 101 copies/µL. Then, we amplified the diluted plasmid as a template using the
multiplex method. Subsequently, to determine the reliable LOD of this method, we used
the method to amplify 15 replicates of plasmids at concentrations from 2.18 × 103 to
2.18 × 101 copies/µL, and a detection rate ≥ 90% was determined to be actual and reliable.
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2.9. Repeatability of Multiplex Real-Time PCR

To evaluate the reproducibility, ten-fold serially diluted standard plasmids between
2.18 × 107 copies/µL to LOD were employed to investigate the multiplex real-time PCR
coefficients of variation (CV%). In addition, for intra-assay repeatability, each sample
was replicated three times. The assays were independently repeated three times using a
different batch of standard plasmids for inter-assay repeatability.

2.10. Clinical Sample Detection

Using the above-developed multiplex real-time RT-PCR method, the four diarrhea
viruses, PEDV, TGEV, PDCoV, and PoRVA, were detected in 97 samples stored in our
laboratory between 2020 and 2023 for clinical delivery. These clinical samples consisted
mainly of small intestine tissue and diarrheal feces and were treated in the same way as the
RNA extraction procedure described above. To validate the detection accuracy, the results
of this multiplex real-time RT-PCR on clinical samples were compared with the results of a
conventional RT-PCR assay and confirmed by DNA sequencing.

3. Results
3.1. Establishment of Single Real-Time PCR Standard Curves

The recombinant plasmids, ranging from 2.18 × 108 to 2.18 × 101 copies/µL, were
used to create standard curves. The standard curves showed a good amplification efficiency
and correlation coefficient: PEDV (R2 = 0.9995; Efficiency = 101%), TGEV (R2 = 0.9998;
Efficiency = 95%), PDCoV (R2 = 0.9950; Efficiency = 99%), and PoRVA (R2 = 0.9984; Effi-
ciency = 110%); all standard curves were generated using GraphPad Prism 8.0 software.
The results showed that our standard plasmids were reliable and that primers and probes
were qualified (Figure 1).
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Figure 1. Establishment of amplification curves and standard curves. (a–d) Amplification curves of
PEDV, TGEV, PDCoV, and PoRVA. (e–h) Standard curves of PEDV, TGEV, PDCoV, and PoRVA.

3.2. Establishment and Optimization of the Multiplex Real-Time PCR Reaction Method

During the establishment and optimization of the multiplex real-time PCR method,
due to mutual interference between different fluorophores, various concentrations of
primers and probes can result in different amplification efficiencies. In this regard, we
designed a combination of different concentrations of probes and primers, the probe
ranging from 100 nM to 300 nM and the primer ranging from 300 nM to 500 nM, and then
selected the optimal amplification curve. The results showed that the optimal concentration
of probes and primers was a combination of 100 nM and 300 nM (Figure 2).
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Figure 2. Probe and primer combinations at different concentrations. (a–d) Amplification curves of
PEDV, TGEV, PDCoV, and PoRVA with different probe and primer concentrations. The pink lines are
the optimal amplification curves, respectively.

3.3. Specificity of the Multiplex Real-Time RT-PCR

In order to evaluate the specificity of this multiplex real-time RT-PCR method, six other
major common viruses in swine were used as detection templates, including CSFV, PRRSV,
SVV, PRV, and PCV2. Then, the recombinant plasmids of PEDV-M, TGEV-N, PDCoV-N, and
PoRVA-VP7 were used as the positive control, and the concentration of the four plasmids
was uniformly selected to be 2.18 × 103 copies/µL. Meanwhile, nuclease-free water was
used as the negative control for amplification. The results showed that only four positive
amplification curves were presented, indicating that only all four target viruses in this
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study were detected (Figure 3), proving that the specificity of the multiplex method was
reasonable.
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Figure 3. Specificity assays of the multiplex real-time RT-PCR. The four amplification curves represent
the four positive controls for PEDV, TGEV, PDCoV, and PoRVA. No fluorescent signal was observed
for other swine pathogen samples and the negative control (NC).

3.4. Sensitivity of the Multiplex Real-Time PCR

To determine the sensitivity of this multiplex real-time PCR method, four recom-
binant plasmids were added to a reaction system after 10-fold serial dilution ranging
from 2.18 × 107 copies/µL to 2.18 × 101 copies/µL, the results showed that the method
for every viral pathogen was effectively established at the limit of detection (LOD) at
2.18 × 101 copies/µL. However, a recombinant-plasmid-positive detection rate of
2.18 × 101 copies/µL was found to be less than 90% in follow-up experiences, so the
reliable LOD was judged to be 2.18 × 102 copies/µL (Table 3, Figure 4).

Table 3. Sensitivity results of the multiplex real-time PCR.

Pathogens Concentration Total Positive Detection Rate 90% Detection Rate

PEDV
1000 copies/µL 15 15 100% >90%
100 copies/µL 15 15 100% >90%
10 copies/µL 15 9 60% <90%

TGEV
1000 copies/µL 15 15 100% >90%
100 copies/µL 15 15 100% >90%
10 copies/µL 15 0 0% <90%

PDCoV
1000 copies/µL 15 15 100% >90%
100 copies/µL 15 15 100% >90%
10 copies/µL 15 3 20% <90%

PoRVA
1000 copies/µL 15 15 100% >90%
100 copies/µL 15 15 100% >90%
10 copies/µL 15 6 40% <90%

Negative was determined by Cq ≥ 35 and positive was validated by Cq < 35.
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Figure 4. Sensitivity assay of the multiplex real−time RT−PCR. (a) Amplification curves are
FAM−PEDV, Hex−TGEV, Texas Red−PDCoV, and Cy5−PoRVA, respectively. (b) Amplification
curves were created by using the standard plasmid (2.18 × 102 copies/µL) of PEDV, TGEV, PDCoV,
and PoRVA.

3.5. Repeatability Test of the Multiplex Real-Time PCR

The four standard plasmids were used as templates for PCR amplification after 10-fold
dilution, and both the intra-assay and the inter-assay were repeated three times; the results
showed that the variation coefficients (CV%) of Cq values in the intra-assay and inter-assay
tests ranged from 0.08% to 1.64% and 0.11% to 3.18%, respectively, indicating that this
multiplex real-time PCR method is repeatable and stable (Table 4).

Table 4. Repeatability results (Cq value) of the multiplex real-time PCR.

Plasmid Dilutions
Intra-Assay Inter-Assay

Mean ± SD CV% Mean ± SD CV%

PoRVA

107 14.92 ± 0.05 0.37 15.00 ± 0.09 0.60
106 17.35 ± 0.01 0.10 17.38 ± 0.04 0.25
105 22.25 ± 0.13 0.59 20.27 ± 0.64 3.18
104 24.63 ± 0.08 0.34 24.70 ± 0.07 0.28
103 29.35 ± 0.34 1.17 29.31 ± 0.25 0.86
102 32.51 ± 0.53 1.64 32.95 ± 0.35 1.08

NTC ND ND ND ND

TGEV

107 15.27 ± 0.04 0.29 15.32 ± 0.07 0.46
106 19.11 ± 0.08 0.40 19.04 ± 0.13 0.66
105 21.11 ± 0.04 0.19 21.19 ± 0.05 0.23
104 24.14 ± 0.03 0.13 24.16 ± 0.03 0.12
103 27.58 ± 0.08 0.28 27.63 ± 0.06 0.21
102 31.67 ± 0.15 0.47 31.55 ± 0.36 1.15

NTC ND ND ND ND
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Table 4. Cont.

Plasmid Dilutions
Intra-Assay Inter-Assay

Mean ± SD CV% Mean ± SD CV%

PEDV

107 15.03 ± 0.06 0.40 15.04 ± 0.14 0.91
106 18.36 ± 0.02 0.08 18.40 ± 0.02 0.11
105 22.40 ± 0.11 0.50 23.34 ± 0.45 1.91
104 26.57 ± 0.07 0.27 26.74 ± 0.25 0.92
103 28.99 ± 0.25 0.87 28.88 ± 0.05 1.74
102 32.42 ± 0.33 1.03 32.55 ± 0.46 1.37

NTC ND ND ND ND

PDCoV

107 11.82 ± 0.15 1.27 12.44 ± 0.32 2.54
106 15.68 ± 0.08 0.48 15.74 ± 0.13 0.85
105 19.27 ± 0.08 0.42 19.13 ± 0.23 1.18
104 22.54 ± 0.08 0.35 22.61 ± 0.26 1.14
103 25.23 ± 0.12 0.46 25.44 ± 0.40 1.58
102 28.02 ± 0.14 0.5 28.50 ± 0.47 1.65

NTC ND ND ND ND

3.6. Detection of the Clinical Samples

The established multiplex real-time RT-PCR method was employed to determine the
97 clinical samples collected from Shandong Province. As shown in Figure 5, the results
showed that positive rates of PEDV, TGEV, PDCoV, and PoRVA were 39.17% (38/97), 8.25%
(8/97), 5.15% (5/97), and 26.80% (26/97), respectively. Moreover, the co-infection rates of
PEDV + PoRVA, PEDV + TGEV, and PoRVA + TGEV were 12.37% (12/97), 5.15% (5/97),
and 3.09% (3/97), respectively, while the PEDV + TGEV + PoRVA mixed infection rate was
3.09% (3/97). Subsequently, our method was compared with the results of a conventional
single RT-PCR assay, the coincidence rate of the two methods was 100%. The five randomly
selected samples that returned positive results were sequenced and identified with the
corresponding viral gene fragments.
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4. Discussion

China is a largely agricultural country, and porcine enterovirus outbreaks have severely
affected the farm industry. The epidemics of four viruses, PEDV, TGEV, PDCoV, and PoRVA,
have undermined the agricultural economy; they threaten public safety for both humans
and animals due to their cross-species transmission and may be steadily adapting to a new
host. For instance, the sudden outbreak of COVID-19, caused by Severe Acute Respiratory
Syndrome Coronavirus Type 2 (SARS-CoV-2) virus, is estimated to have originated in
bats and then spread to humans [25]. With the current rapid development of the farming
industry, the link between humans and pigs is becoming closer, which further increases the
possibility of cross-species transmission of viruses to humans.

Currently, accurate detection of animal pathogens is performed in the laboratory;
there are a number of serological assays for these four diarrhea viruses, for example,
researchers have developed multiplex ELISA methods that can be used to target PDCoV,
TGEV, PEDV, and PoRV [26–28]. However, these four porcine enteroviruses predominantly
infect suckling piglets, which have an immature immune system, so molecular diagnosis
is relatively preferable to serologic diagnosis. Currently, singleplex and multiplex qPCRs
have been widely used for the molecular detection of porcine diarrhea viruses. Still, there
is no quadruplex real-time RT-PCR method that can simultaneously detect PEDV, TGEV,
PDCoV, and RVA. For this reason, we have successfully developed a sensitive, specific, and
cost-effective multiplex qPCR method.

In this study, the method requires the design of primer probes for the N protein gene
of TGEV and PDCoV, the M protein gene of PEDV, and the VP7 protein gene of PoRVA,
respectively, and the sequences of the selected genes are all highly conserved and not
easily mutated, which allows the method to be used for a much more extended period.
The test results also showed that the four pairs of probes and primers could only bind to
their respective target sequences, and no cross-amplification between viruses or primer
dimerization was found, which indicates that the specificity was excellent. However,
bovine viral diarrhea virus (BVDV), which is currently increasingly prevalent in swine
herds and, similarly, generates diarrhea symptoms in piglets [29–31], was not detected in
the specificity test, which would have likely complicated the clinical differential diagnosis.
In addition, theoretically, fluorescent probes can interfere with each other, thus affecting
the final LOD, especially in the case of multiple pairs of probes. The results of the multiplex
sensitivity test show that the effective LOD can reach 102 copies/µL, indicating that the
probes are designed to work well together. Finally, we speculate that the sensitivity of this
study may be higher if the minor groove binder (MGB) probes are used for labeling, which
can effectively reduce the fluorescence background signal.

To investigate the prevalence of PEDV, TGEV, PDCoV, and PoRVA in Shandong
Province, China, from 2020 to 2023, we analyzed 97 clinical samples using multiplex real-
time RT-PCR. The findings revealed that positive rates of PEDV, TGEV, PDCoV, and PoRVA
were 39.17% (38/97), 8.25% (8/97), 5.15% (5/97), and 26.80% (26/97), respectively. Based
on the results, it can be concluded that the positivity rates of PEDV and PoRVA dominate
the porcine diarrhea viruses in Shandong Province. Meanwhile, a study by Li et al. showed
a significant increase in PEDV positivity in Hunan and Hubei Provinces during 2020–2021
and a gradual increase in PDCoV and PoRVA positivity in 2020–2022 as the main pathogens
responsible for porcine diarrhea in the region at that time; they also found that PEDV-
PoRVA was the dominant co-infection mode [32]. Their results largely support our findings.
However, in this study, we did not find any mixed infection with PDCoV in the co-infection
assay and only found different degrees of mixed infection with the other three viruses.
Based on the available epidemiologic findings, this may be due to the small number of
clinical samples we tested. For example, Zhang et al. investigated 2987 diarrhea samples
collected from 168 pig farms in five southern Chinese provinces between 2012 and 2018.
The results showed that, among the 2987 samples, the separate infection rates of PDCoV,
PoRVA, PEDV, and TGEV were 14.23% (425/2987), 0.60% (18/2987), 45.53% (1360/2987),
and 0.33% (10/2987). They also reported that PEDV and PDCoV were the two viruses



Vet. Sci. 2024, 11, 305 12 of 14

with the highest detection rates and that co-infections of these two viruses were also the
most frequent, with a mean detection rate of 12.72% (380/2987) [21]. In addition, there
are a number of related studies with similar findings that show the presence of PDCoV in
co-infections [2,32–35]. They tested a large number of clinical samples, and the findings
indicated the presence of PDCoV co-infection in all of them, which, to some extent, explains
the absence of PDCoV in our study, and we will continue to conduct clinical tests to further
refine the data in the next step.

In this study, a TaqMan-probe-based real-time RT-PCR method was developed to de-
tect four pathogens in a single PCR reaction for more efficient detection of co-infections. The
method has good specificity and sensitivity and is an effective tool for clinical differential
diagnosis and epidemiologic investigation.
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