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Abstract: In patients with lung cancer (LC), understanding factors that impact the dynamics of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike antibody (SAb) titers over
time is critical, but challenging, due to evolving treatments, infections, vaccinations, and health
status. The objective was to develop a time-dependent regression model elucidating individual
contributions of factors influencing SAb levels in LC patients using a prospective, longitudinal, multi-
institutional cohort study initiated in January 2021. The study evaluated 296 LC patients—median
age 69; 55% female; 50% stage IV. Blood samples were collected every three months to measure SAb
levels using FDA-approved ELISA. Asymptomatic and unreported infections were documented
through measurement of anti-nucleocapsid Ab levels (Meso Scale Discovery). Associations between
clinical characteristics and titers were evaluated using a time-dependent linear regression model
with a generalized estimating equation (GEE), considering time-independent variables (age, sex,
ethnicity, smoking history, histology, and stage) and time-dependent variables (booster vaccinations,
SARS-CoV-2 infections, cancer treatment, steroid use, and influenza vaccination). Significant time-
dependent effects increasing titer levels were observed for prior SARS-CoV-2 infection (p < 0.001) and
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vaccination/boosters (p < 0.001). Steroid use (p = 0.043) and chemotherapy (p = 0.033) reduced titer
levels. Influenza vaccination was associated with increased SAb levels (p < 0.001), independent of
SARS-CoV-2 vaccine boosters. Prior smoking significantly decreased titers in females (p = 0.001). Age
showed no association with titers. This GEE-based linear regression model unveiled the nuanced
impact of multiple variables on patient anti-spike Ab levels over time. After controlling for the major
influences of vaccine and SARS-CoV-2 infections, chemotherapy and steroid use were found to have
negatively affected titers. Smoking in females significantly decreased titers. Surprisingly, influenza
vaccinations were also significantly associated, likely indirectly, with improved SARS-CoV-2 titers.

Keywords: SARS-CoV-2 antibody levels; lung cancer therapies; time-dependent regression model

1. Introduction

Prior to the availability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
vaccines, initial studies showed that patients with lung cancer (LC) were at increased risk of
serious complications of SARS-CoV-2 infection, including hospitalization and death [1–7].
Increased mortality risk was associated with advanced age, male sex, smoking, number of
comorbidities, performance status, and actively progressing cancer [8]. In another meta-
analysis of cancer patients, factors significantly associated with mortality included age,
male sex, hypertension, and diabetes, with LC having the highest case fatality rate (32.9%)
among solid tumors [9].

Post-vaccination studies indicated that most LC patients developed durable antibody
responses to SARS-CoV-2 vaccinations. However, multiple studies investigating SARS-
CoV-2 spike protein antibody (SAb) titers, specifically in LC patients after vaccination,
revealed a small subpopulation that appeared to have compromised immune responses.
Our previous work revealed a small but significant percentage of patients (5%) with
no detectable titer levels after full vaccination, a phenomenon not observed in healthy
controls [10]. Valanparambil et al. found that 25% of LC patients showed notably poorer
antibody responses (p < 0.001) [11]. Others have reported similar results, finding minimal
to moderate deficits in SAb titers in LC patients but overall high (>90%) seroconversion
rates [12,13].

The underlying clinical, demographic, and tumor biologic factors contributing to
this suboptimal titer response in this vulnerable cancer population have not been fully
elucidated. Potential reasons include the immunosuppressive activity of LC therapeutics
and ancillary steroid use, the underlying malignancy, and history of cigarette smoking.
When analyzing these effects, a substantial complicating factor stems from the timing and
severity of SARS-CoV-2 infections and the timing of vaccinations and boosters relative to
cancer-related events, including changes in disease status, cancer treatments, and use of
steroids. We hypothesized that an analytic approach that takes into account the timing
of vaccinations, SARS-CoV-2 infections, and cancer treatments relative to plasma draws
conducted to measure Sab titers would provide more precise information regarding the
effect of these events on immune response. To address this, we developed a time-dependent
linear regression model to analyze the effects of cancer treatments, steroid use, demograph-
ics, infections, vaccinations, and other factors in the period immediately before anti-spike
antibody titer level measurements. We applied this model to our large, well-annotated
cohort of LC patients who have undergone serial plasma analysis every three months to
measure Sab titer levels.

2. Materials and Methods
2.1. Study Design and Participant Data Collection

A prospective observational study (Mount Sinai STUDY-20-01470) received Institu-
tional Review Board approval on 11 November 2020. This ongoing study is enrolling
patients with LC treated at the Center for Thoracic Oncology, Tisch Cancer Institute at
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Mount Sinai Hospital, NY; the University of Texas Southwestern Medical Center in Dallas,
TX; and National Jewish Health in Denver, CO. Adult patients diagnosed with LC of any
stage, histology, or treatment status were eligible, regardless of SARS-CoV-2 infection
or vaccination status. We continuously collected and updated clinical and demographic
information, including previous SARS-CoV-2 infection, COVID-19 severity, vaccination
(influenza and SARS-CoV-2) status and dates, patient self-reported smoking status, age
at enrollment, co-morbidities, and treatments. Inclusion criteria were limited to an age of
18 years or older, no other ongoing cancer types, and ability to comprehend the informed
consent form (produced in English, Spanish, Chinese, and Bengali). For this study, en-
rollment was limited to patients who had contributed at least one blood draw and were
fully vaccinated, defined as two weeks after completion of initial vaccination series (for
mRNA vaccines—after the second dose). Patients enrolled to the master study were not
required to have received any vaccinations or boosters (SARS-CoV-2, viral influenza, or
otherwise) or to have had documented SARS-CoV-2 infections; however, this sub-study
analysis was limited to those who were fully vaccinated with the initial series. A compari-
son of these cohorts is shown in Table 1. Further cohort details are provided in our initial
publication [10].

Table 1. Demographics.

Full Cohort Analysis Cohort

N = 398 N = 296

Gender

Female 53% (209) 55% (164)

Male 44% (175) 45% (132)

Missing 4% (14) 0% (0)

Ethnicity

Asian 8% (30) 8% (25)

Black/African American 20% (79) 20% (59)

Hispanic 9% (36) 9% (28)

Hawaiian/Pacific islander 0% (1) 0% (1)

White 44% (176) 47% (138)

Missing 19% (76) 15% (45)

Smoking

Never 23% (93) 26% (77)

Current or Former 71% (281) 74% (218)

NA 6% (24) 0% (1)

Stage

1 10% (39) 10% (30)

2 7% (28) 8% (24)

3 25% (98) 27% (79)

4 46% (183) 50% (148)

Missing 13% (50) 5% (15)
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Table 1. Cont.

Full Cohort Analysis Cohort

Histology

Adenocarcinoma 64% (253) 68% (201)

Large cell 1% (3) 1% (3)

Mixed 1% (2) 0% (1)

NSCLC NOS 6% (23) 7% (21)

Other 1% (5) 2% (5)

Small cell 8% (31) 6% (18)

Squamous Carcinoma 15% (58) 16% (46)

Missing 6% (23) 0% (1)

First vaccine type

Johnson 4% (15) 4% (12)

Moderna 29% (115) 33% (97)

Moderna BA.4/BA.5 0% (1) 1% (1)

Pfizer 56% (221) 63% (187)

Missing 12% (46) 0% (0)

Age

Med (IQR) 68 (61–68) 69 (62–76)

2.2. Blood Draws and Processing

Blood sample collection was planned at enrollment and every 3 months up to 24 months.
For titer analyses, blood was drawn into ethylenediaminetetraacetic acid (EDTA) tubes
using a double-spin approach, aliquoted, and stored at −80 ◦C.

2.3. SARS-CoV-2 Binding Antibody Assessment

Anti-spike antibodies to SARS-CoV-2 were measured using a well-established two
step enzyme-linked immunosorbent assay (ELISA) [14–17], as previously reported for
this cohort [10]. Anti-nucleocapsid antibody analysis was conducted in separately frozen
aliquots using the methodology and dichotomizations previously reported [11,18].

2.4. Statistical Considerations

The primary objective of this longitudinal cohort study was to investigate the associa-
tion of anti-spike antibody titers with clinical characteristics in patients with LC who have
been fully vaccinated (defined as: two doses of mRNA vaccines, Moderna mRNA-1273 or
Pfizer BNT162b2, or one dose of adenoviral vaccine, J&J Ad26.COV2.S). A time-dependent
linear regression model with generalized estimating equations (GEE) [19] was applied
(described in detail below), where the exchangeable correlation structure was used for
the modeling of within-patient titers (logarithm base 10). We considered age at enroll-
ment, self-reported gender, smoking history, race/ethnicity, cancer stage, and histology
as time-independent variables, whereas time interval after being fully vaccinated, the use
of anti-inflammatory medicine/anti-cancer treatments (steroids, chemotherapy, targeted
therapy, or immunotherapy) within 30 days prior to the titer measurements, the receipt
of influenza vaccine/SARS-CoV-2 booster within 90 days prior to the titer measurements,
and the infection with SARS-CoV-2 prior to the titer measurements were considered time-
dependent variables. In the primary regression model, the two continuous variables (age
and time interval after being fully vaccinated) were transformed by cubic B-splines. Forest
plots and waterfall plots were employed to visualize the significance and magnitude of
association between the titers and the clinical characteristics. A sensitivity analysis was
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also conducted to assess the reliability of the findings (Supplementary Tables S4 and S5). In
the sensitivity analysis, we excluded 16 titer measurements from 16 patients that occurred
when both the influenza vaccine and the SARS-CoV-2 booster were administered within
90 days prior to the measurements and the two vaccines were administered within 10 days
of each other. Furthermore, to explore the relationship between the titers and the clinical
characteristics in different subgroups, we performed subgroup analyses, where the analysis
cohort was divided by gender, ethnicity, or histology. All data analyses were carried out
using base R 4.0.3 and the R packages Hmisc 4.5-0, mice 3.16.0, geepack 1.3-2, splines 4.0.3,
and ggplot2 3.3.3.

2.5. Generalized Estimating Equations (GEE)

Let Yji be the j-th measurement of log10(anti-S) after full vaccination of patient i,
j = 1, . . . , ni (ni varies with patients), and i = 1, . . . , m (patients). Denote µji and σji as
the mean and the variance of Yji, respectively. We assume µji = βTxji and σji = σ, where

xji =
(
1, xji,1, . . . , xji,p

)T is the vector of covariates, where covariates can be time-dependent

or independent, and β =
(

β0, β1, . . . , βp
)T is the vector of coefficients to show the effect

magnitudes. Also, we assume the correlation of Yi =
(
Yji, j = 1, . . . , ni

)T as Ci(ρ) =
(1 − ρ)Ii + ρJi, where Ii is an identity matrix of dimension ni, and Ji is a square matrix
where all elements are 1 and its dimension is the same as Ii. ρ is the intra-patient correlation.

With the measurements Yi and xji, j = 1, . . . , ni and i = 1, . . . , m, the coefficient estimate β̂

for β can be obtained by solving the equation ∑m
i=1 DT

i V−1
i (Yi − µi) = 0, where Di = ∂µi/∂βT,

Vi = σ2Ci(ρ), and µi =
(
µji, j = 1, . . . , ni

)T. It is well-known from Ref. [20] that under mild

regularity conditions,
√

m
(
β̂ − β

)
approximates N

(
0, mW−1∑m

i=1 DT
i V−1

i cov(Yi)V−1
i DiW−1

)
when m is large, where W = ∑m

i=1 DT
i V−1

i Di and cov(Yi) is the covariance of Yi. The

estimate for Var
(

β̂
)

is given by V̂ar
(

β̂
)

= Ŵ−1∑m
i=1 D̂T

i V̂−1
i

̂cov(Yi)V̂−1
i D̂iŴ−1, where

̂cov(Yi) = (Yi − µ̂i)(Yi − µ̂i)
T . With β̂ and V̂ar

(
β̂
)
, the confidence intervals and p-values

can be calculated.

3. Results
3.1. Patients

Between 1 January 2021 and 13 March 2023, 398 patients were enrolled. For this
analysis, 296 patients who had at least one SARS-CoV-2 antibody titer measurement
and had received the full vaccination series at the time of data cut-off were included
(Supplemental Figure S1). Of these, 267 were from the Tisch Cancer Institute at the Mount
Sinai Hospital in New York City, 27 were from the University of Texas Southwestern
in Dallas, and 2 patients were from National Jewish Health in Denver, Colorado. The
median age was 69 (IQR: 62–76), 55% were female, and 26% self-reported as never-smokers.
There were no significant differences between the enrolled cohort and the analysis cohort.
Additional patient characteristics such as tumor stage, histology, first vaccination type, and
cancer therapy are summarized in Table 1. The number and vaccination type sequence
over time are shown by category and frequency in Supplemental Table S1.

3.2. Anti-Spike Antibody Titers over Time

SARS-CoV-2 anti-Spike antibody (SAb) measurements over time are shown in Figure 1A
as independent events with a trend line. In Figure 1B, longitudinal SAb timepoints for each
individual patient are connected by lines. Data points are color-coded based on number of
vaccinations received, with “zero” on the x-axis representing time of full vaccination (two
weeks past first dose of J&J or second dose of an mRNA-based vaccine). In this population,
where 75% (223/296) of patients received at least one booster vaccination and 40% (119/296)
received multiple boosters, the trend line shows an upward trend approximately 1 year
after initial vaccination.
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Figure 1. SARS-CoV-2 anti-Spike antibody titers (SAb) measurements over time. (A). Scatter plot 
with LOESS smoothing, with measurements shown as independent events with a trend line. (B). 
Spaghetti plot, with data from individual patients linked by a straight connecting line. Data points 
are color-coded based on number of vaccinations received, with “zero” on the x-axis representing 
time of full vaccination (two weeks past first dose of J&J or second dose of an mRNA-based vaccine). 
Y-axis: Log10 of Sab titers. Individual patients who received boosters trend toward increased titers 
over time. 

As we reported previously [10], there was a small contingent of patients (n = 11, 5%) 
that showed at least one SAb reading of zero after full vaccination. In seven of these cases, 
subsequent booster vaccinations resulted in seroconversion to positive readings, with the 
exception of one patient, who maintained a zero titer through two boosters. Nucleocapsid 
antibody titers (anti-N) were also modest in these patients, with three achieving positivity 
by our pre-established cut-off [18]. Anti-S and anti-N levels over time for patients with at 
least one zero SAb reading after full vaccination are shown in Supplemental Figure S2A,B, 
respectively. 

Figure 1. SARS-CoV-2 anti-Spike antibody titers (SAb) measurements over time. (A) Scatter plot with
LOESS smoothing, with measurements shown as independent events with a trend line. (B) Spaghetti
plot, with data from individual patients linked by a straight connecting line. Data points are color-
coded based on number of vaccinations received, with “zero” on the x-axis representing time of full
vaccination (two weeks past first dose of J&J or second dose of an mRNA-based vaccine). Y-axis:
Log10 of Sab titers. Individual patients who received boosters trend toward increased titers over time.

As we reported previously [10], there was a small contingent of patients (n = 11, 5%)
that showed at least one SAb reading of zero after full vaccination. In seven of these cases,
subsequent booster vaccinations resulted in seroconversion to positive readings, with the
exception of one patient, who maintained a zero titer through two boosters. Nucleocapsid
antibody titers (anti-N) were also modest in these patients, with three achieving positivity
by our pre-established cut-off [18]. Anti-S and anti-N levels over time for patients with at
least one zero SAb reading after full vaccination are shown in Supplemental Figure S2A,B,
respectively.
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3.3. Model Findings

Variable considerations are presented in Table 2, with time dependence or time indepen-
dence indicated. Variables that apply to all patients (age, gender, smoking history, ethnicity,
cancer stage, histology, and time after full vaccination) are scored for completeness of
data. Variable events which include specific cancer-related treatment interventions (steroid
use, cancer therapies categorized as chemotherapy, targeted therapy, and immunother-
apy), SARS-CoV-2 and influenza vaccinations, and SARS-CoV-2 infection are annotated for
proportion of patients affected. SARS-CoV-2 infection rates were calculated as a product
of clinically documented infections and/or nucleocapsid Ab positivity using previously
described definitions [18]. Figure 2 displays the effects of antibody titers according to
patient, cancer, and SARS-CoV-2 characteristics. The effect magnitude, p-value, and confi-
dence intervals are shown in Table 3, with nonlinear effects of time after full vaccination
and age detailed in Supplemental Table S3. In this cohort, steroid use (p = 0.043) and
chemotherapy (p = 0.033), but not targeted or immune therapy, were significant contribu-
tors to decreased titers, whereas SARS-CoV-2 vaccination/boosters (p < 0.001), SARS-CoV-2
infection (p < 0.001), and surprisingly, influenza vaccination (p < 0.001) were independent
significant contributors to increased titer levels. A history of tobacco smoking trended
towards a decrease in SAb levels, but did not achieve significance in the general population
(p = 0.089). Age in this LC population did not appear to influence titer levels (p = 0.819, a Chi-
square test of df = 3 for the three components of age). In addition, time after full vaccination
was associated with a population-level net increase in titer levels (p < 0.001, a Chi-square
test of df = 3 for the three components of the time variable), peaking approximately sixteen
months after full vaccination before trending downward.

Table 2. Variables Considered in Model.

Variable Time-Dependency Completeness Notes

Age Independent 100% Age at time of enrollment

Sex Independent 100%

Smoking history Independent 99.7% Never vs current/former

Ethnicity Independent 85%

Cancer stage Independent 95% At time of enrollment

Histology Independent 99.7% SCLC and NSCLC sub-histologies

Time after full vaccination Dependent 100% The time interval after the patient received a full vaccination

Variable Event Percent (N)

Steroid use Dependent; 30 Days 32.4% Systemic steroids such as prednisone, methylprednisolone,
dexamethasone, hydrocortisone, or other, used long-term (>7 days).

Chemotherapy Dependent; 30 Days 64.5% Taxanes, platinum, pemetrexed, gemcitabine, vinorelbine, or other

Targeted Therapy Dependent; 30 Days 18.6%

Osimertinib, erlotinib, gefitinib, afatinib, dacomitinib, bevacizumab,
ramucirumab, crizotinib, alectinib, brigatinib, ceritinib, lorlatinib,

entrectinib, selpercatinib, capmatinib, pralsetinib, larotrectinib,
cabozantinib, vandetanib, tepotinib, or other

Immune therapy Dependent; 30 Days 64.5% Pembrolizumab, nivolumab, atezolizumab, durvalumab,
cemiplimab, ipilimumab, or other

SARS-CoV-2 Booster Dependent; 90 Days 77% See Supplementary Table S3

Influenza vaccination Dependent; 90 Days 100% Unless administered concurrently with SARS-CoV-2 booster

SARS-CoV-2 infection Dependent; prior
to reading 51.7% Includes any report of a positive test or anti-N plasma values above

the 2000 unit threshold prior to the titer measurement.

“Completeness” indicates the completeness of data for variables that apply to all patients. “Days” indicates the
amount of time prior to a blood reading in which the event was considered. Variable Events indicates an optional
intervention or a SARS-CoV-2 infection.
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1 
 

 
Figure 2. Forest plot visualization of the magnitude with confidence intervals showing the effect
of each variable on Sab titers. Estimates to the left of the zero line indicate decreasing effects on
titer levels and to the right show increasing effects. Variable definitions and limits are articulated in
Table 2. Table 3 shows numeric values. Significantly increased effects are observed subsequent to
SARS-CoV-2 boosters, SARS-CoV-2 infections, and influenza vaccination. Significantly decreased
effects are observed after chemotherapy and steroid use.

Table 3. Impact of Variables.

Variable Effect Magnitude p-Value Confidence Interval

Sex * 0.111 0.270 −0.086 to 0.309

Smoking history −0.191 0.089 −4.110 to 0.029

Ethnicity
(Black vs. White) 0.090 0.308 −0.830 to 0.264

Ethnicity
(All other vs. White) 0.117 0.233 0.075 to 0.309

Cancer stage
(III/IV vs. I/II) −0.154 0.090 −0.333 to 0.024

Histology
(adeno vs. non) −0.057 0.619 −0.280 to 0.166

Steroid use −0.248 0.043 −0.488 to −0.008

Chemotherapy −0.186 0.033 −0.358 to −0.015

Targeted Therapy −0.113 0.347 −0.350 to 0.123

Immune therapy −0.009 0.912 −0.165 to 0.148

Influenza vax 0.330 <0.001 0.150 to 0.509

SARS-CoV-2 booster 0.412 <0.001 0.291 to 0.534

SARS-CoV-2 infection 0.276 <0.001 0.128 to 0.425
Negative effects (those associated with decreased titers) are indicated in red. Significant findings are bolded.
* Nonlinear effects of “Time after full vaccination” and “Age” on titers are shown in Supplemental Table S3.
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The combined effects of multiple factors on SAb levels are estimated as a waterfall
plot in Figure 3. Here, the individual and combined effects of smoking, steroid use,
chemotherapy use, influenza vaccine, and SARS-CoV-2 vaccination/booster are shown
in every possible combination, as indicated by the presence (Y) or absence (N) in the
left columns. The waterfall plot is organized from most positive collective effect to most
negative effect. The greatest positive effect on SAb levels resulted from a combination
of recent SARS-CoV-2 booster vaccination, recent influenza vaccination, and an absence
of smoking history, steroid use, and chemotherapy use. The greatest negative effect was
observed in patients with a combined history of smoking, steroid use, receipt of recent
chemotherapy, and temporal distance from vaccinations.

0

−0.191 (−0.411, 0.029)

−0.248 (−0.488, −0.008)

−0.439 (−0.794, −0.084)

−0.186 (−0.357, −0.015)

−0.377 (−0.646, −0.108)
−0.434 (−0.754, −0.114)

−0.625 (−1.031, −0.219)

0.330 (0.151, 0.509)

0.139 (−0.154, 0.432)

0.082 (−0.192, 0.356)

−0.109 (−0.495, 0.277)

0.144 (−0.092, 0.380)

−0.047 (−0.370, 0.276)
−0.104 (−0.441, 0.233)

−0.295 (−0.721, 0.131)

0.412 (0.290, 0.534)

0.221 (−0.037, 0.479)
0.164 (−0.122, 0.450)
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Figure 3. Estimated combined effect of multiple variables on Sab titers. Selected variables include
smoking history, steroid use, chemo use, influenza vaccination, and SARS-CoV-2 vaccination as
yes (Y) or no (N). Effect magnitude is indicated as positive (teal) or negative (red) annotated for
magnitude estimate and CIs. The variable groups are ordered vertically, with the most positive
combination at the top and the most negative combination at the bottom (normalized to an “all zero”
configuration). The most positive effect was observed in the N-N-N-Y-Y, which indicates a grouping
of never-smokers with no recent steroid or chemo use, as well as recent receipt of both influenza and
SARS-CoV-2 vaccines. The most negative effect occurs in group Y-Y-Y-N-N, with positive smoking
history with recent use of both steroids and chemotherapy, but no recent receipt of vaccine boosters.
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3.4. Differences by Gender

The distribution of analysis variables between females (n = 164) and males (n = 132)
is shown in Supplemental Table S2. Females were more likely to be never-smokers
(32% vs. 18%; p = 0.007) and more likely to be diagnosed with adenocarcinoma histology
(74% vs. 60%; p = 0.008). Tumor stage and ethnicity did not significantly differ by gender.
The effect estimate by forest plot is shown in Supplemental Figure S3 for each gender. In
females, a significant negative effect from smoking on SAb levels was observed, which was
not seen in males (who had an overall significantly increased smoking history). In contrast,
the positive effect on SAb levels from influenza vaccination trended in females, but was
significant in males. In males, the vaccination effect (both SARS-CoV-2 and influenza),
along with SARS-CoV-2 infection, were more pronounced.

4. Discussion

As COVID-19 segues into an endemic problem, strategies now turn to identifying
vulnerable populations, including cancer patients, that may respond suboptimally to vacci-
nation and/or are at greater risk of severe COVID-related disease. Aspects of SARS-CoV-2
that make it particularly dangerous are its ability to evolve and rapidly proliferate new
variants, as exemplified by its penchant for zoonotic infections [20]. With increased survival
rates in advanced non-small cell LC patients due to modern therapies, ongoing studies
necessarily evolved along with the pandemic to investigate potential interactions of these
two diseases and implications for cancer therapies. However, such longitudinal studies
are challenging due to the continuing, patient-specific evolution of both diseases. The
principal obstacle stems from the highly variable timing of key events that serve as critical
variables when studying the SARS-CoV-2—lung cancer juxtaposition. From the cancer care
perspective, therapy, disease status, steroid use, and secondary interventions are constantly
evolving. From the COVID-19 side, booster vaccinations, infections with emerging vari-
ants, and specific infection therapies occur sporadically. These time-dependent variables
complicate the interpretation of SARS-CoV-2 antibody titer levels (vaccine- or infection-
induced) already influenced by time-independent variables (ethnicity, age at diagnosis,
gender, smoking history) and disease-specific variables (stage, histology).

To directly address this challenge, we developed a time-dependent linear regression
model incorporating an estimating equation using an exchangeable correlation structure
for modeling the association of within-participant titers. The model proved necessary in
order to disentangle the effects of time-dependent variables on longitudinal SAb levels.
This analysis revealed several key effects that were not previously discernable without an
understanding of the events and interventions immediately preceding each titer reading.
Obvious time-based effects on titer levels included booster shots and infections, both of
which proved, as expected, to have a significant impact on SAb levels. By accounting for
these large effects in a temporal context, we were able to explore the more subtle impact of
other events and interventions.

One such feature was the negative effect of chemotherapy on titer levels. Modeling
revealed a significant decline in patient SAb levels after chemotherapy treatment, which
were not observed after targeted therapy or immunotherapy. In many cases, patients may
have received combined treatment with chemotherapy and immune therapy; however,
only chemotherapy had an impact on titer levels. The model assessed chemotherapy
impact, if it was received within a 30-day window prior to titer measurement. Previous
LC studies have been mixed in terms of identifying an effect of chemotherapy on titer
levels. Poor seroconversion was linked to various cancer therapies in solid tumors, of which
10% were LC [21]. Others did not observe an effect in specific LC populations [11,12,22].
Bowes et al. compared LC patients receiving radiotherapy to two separate control groups,
showing significantly lower SAb levels in the treated group, although this group also had
other concurrent immune suppressive conditions [23]. In our study, radiotherapy was
not investigated.
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Steroid use also emerged as a significant negative factor in regards to titer levels when
evaluated in proximity to titer readings. In this population, steroids were sporadically
used in response to acute conditions such as COPD exacerbation, radiation pneumonitis, or
checkpoint inhibitor toxicity. Its modest but significant impact was unseen when using a
static, population-based model. While we expected to see that steroid use could have an
adverse effect on titer levels, its influence only became statistically apparent when using
time-adjacent measurements, an indicator of this model’s effectiveness.

The effect of prior smoking was observed specifically and most strongly in females.
Whether this was causative or associative with the significantly increased number of female
never-smoker patients in this study, and the consequently significantly higher rate of
adenocarcinoma, cannot be determined. Trontzas et al. observed an association between
active smokers and lower post-vaccination anti-SARs-CoV-2 spike titer levels, but with no
comparison of gender [24].

An intriguing observation from this study was the effect of influenza vaccines on
SARS-CoV-2 titer levels. This unexpected finding appears to be independent of whether the
patients received this vaccination within the same time window with a SARS-CoV-2 booster.
However, a sufficient number of patients also received those vaccinations at different times
or received just one or the other, allowing for the effects to be measured independently. In
the overall population and in the male-only subgroup, receipt of an influenza vaccination
within 90 days prior to a titer reading had a significant positive effect on SAb levels. The
underlying mechanism for this effect is currently being explored, and it certainly cannot
be ruled out that it is associative rather than causative. For instance, patients in better
health or with a better performance status may opt for receiving the influenza vaccination
in addition to SARS-CoV-2 vaccine, creating an untestable bias. Future studies of cancer
vaccines may consider inclusion of patient vaccination and infection history.

While the effects of SARS-CoV-2 infection and booster vaccinations are expected to
increase SAb levels, as confirmed in this dataset, a modeling strategy that accounts for
these large effects was nevertheless essential to investigate more subtle effects of other
variables. To identify mild or asymptomatic infections, anti-SARS-CoV-2 nucleocapsid
antibody levels were measured as a proxy for infection to supplement reported incidents.
This analysis revealed a substantial and significant increase in infection rates for this study
population compared to the documented infection rate alone, as described recently [18].
In this fully vaccinated population, we did not observe many severe complications from
COVID-19, as was the case in patients prior to vaccination.

At the population level, the positive influences on titer levels from vaccination boosters
and infections outweighed the negative effects from variables such as smoking history,
chemotherapy, and steroid use, as well as the expected generalized decline of titer levels
over time. This resulted in a net increase in population SAb levels for the first year or so
before the levels plateaued and ultimately diminished approximately 16 months after full
vaccination. Despite a subset of patients who initially did not respond to vaccination [10],
median anti-spike titer levels in this fully vaccinated LC population remained elevated
more than 20 months after vaccination.

Factors that did not appear to significantly affect SAb levels in our population of
patients with LC included age, tumor stage, histology, ethnicity, and gender. In the current
study, the median age was 69, and a lack of representation from younger individuals
(typical to LC cohorts) may skew the results. Comparisons between tumor stages showed
non-significant trends towards higher stages associated with lower SAb levels, but signifi-
cance was not observed in the general population (comparison of Stage I/II versus III/IV:
p = 0.090), but trended in the male-only subgroup (p = 0.054). Patients of Caucasian descent
represented 47% of the analysis dataset, with African Americans representing 20%, but no
significant distinctions were observed in terms of variable effects on SAb levels between
race/ethnicity (p = 0.407).

Beyond these clinically important immediate concerns involving vaccine-induced
protection against SARS-CoV-2 infection, there is a significant knowledge gap regarding
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factors that influence B and T cell immunologic responses in LC patients in general. With
the advent of mRNA vaccines directed against tumor acquired neo-antigens [25], it is
important to develop statistical approaches, such as the model developed and used here,
as well as baseline data to help guide these studies. It will be of great interest to see if these
anti-SARS-CoV-2 results are mirrored by those for anti-neoepitope vaccines, illustrating
the need to prospectively plan for the long-term serial collection of multi-factorial data in
such studies.

5. Conclusions

Advanced modeling that takes into account the timing of key events relative to longitu-
dinal measurements of SARS-CoV-2 antibody levels provides a more detailed and granular
assessment of variables that can positively or negatively impact serology. These studies
revealed the expected positive effects of SARS-CoV-2 infection and booster vaccinations on
Sab titer levels, as well as the negative effects of steroid use and chemotherapy treatment.
Additionally, an unanticipated positive impact of influenza vaccination was observed on
patient titers. Future studies, both specifically in the context of COVID-19 and LC, as
well as for all types of other health studies that rely on the long-term serial collection of
multi-factorial data, could benefit from similar modeling.
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