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Abstract: The RNA viruses SARS-CoV, SARS-CoV-2 and MERS-CoV encode the non-structural Nsp16
(2′-O-methyltransferase) that catalyzes the transfer of a methyl group from S-adenosylmethionine
(SAM) to the first ribonucleotide in mRNA. Recently, it has been found that breaking the bond
between Nsp16 and SAM substrate results in the cessation of mRNA virus replication. To date, only
a limited number of such inhibitors have been identified, which can be attributed to a lack of an
effective “recipe”. The aim of our study was to propose and verify a rapid and effective screening
protocol dedicated to such purposes. We proposed four new indices describing structure-binding
strength (structure–binding affinity, structure–hydrogen bonding, structure–steric and structure–
protein–ligand indices) were then applied and shown to be extremely helpful in determining the
degree of increase or decrease in binding affinity in response to a relatively small change in the
ligand structure. After initial pre-selection, based on similarity to SAM, we limited the study to
967 compounds, so-called molecular chameleons. They were then docked in the Nsp16 protein
pocket, and 10 candidate ligands were selected using the novel structure-binding affinity index.
Subsequently the selected 10 candidate ligands and 8 known inhibitors and were docked to Nsp16
pockets from SARS-CoV-2, MERS-CoV and SARS-CoV. Based on the four new indices, the best ligands
were selected and a new one was designed by tuning them. Finally, ADMET profiling and molecular
dynamics simulations were performed for the best ligands. The new structure-binding strength
indices can be successfully applied not only to screen and tune ligands, but also to determine the
effectiveness of the ligand in response to changes in the target viral entity, which is particularly useful
for assessing drug effectiveness in the case of alterations in viral proteins. The developed approach,
the so-called chameleon strategy, has the capacity to introduce a novel universal paradigm to the
field of drugs design, including RNA antivirals.

Keywords: chameleon strategy; molecular chameleons; RNA viruses; SARS; structure–binding
affinity index; structure hydrogen bond index; structure steric effect index; structure protein–ligand
index; drug design; novel approach; molecular docking; molecular dynamics simulations

1. Introduction

The chameleon strategy is the ability to adapt to any environment and circumstances
and thus to changing conditions. Molecules that exhibit certain properties that allow them
to adapt to an environment or mimic naturally occurring moieties can be called “molecular
chameleons”. New broadly acting drugs with inhibitor activity against SARS should be
able to use this strategy and easily adapt to mutating viral structures as well as different
types of viruses. It seems that the ideal inhibitor should act like a Trojan horse: unnoticeable
to the host and virus, harmless to the host but harmful to the virus. Crypsis helps to avoid
detection by the host and can be realized using shapes, conformation, polarization, etc.,
comprising total binding ability. Therefore, this branch of research represents a significant
area of current interest in the field of drug design targeting human RNA viruses. Our goal
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was to determine factors which should be taken into account when designing them and
approaches that may be helpful and accelerate the whole process.

1.1. The State of the Art

So far, seven different strains of human coronaviruses have been identified, namely
α-CoV (HCov-229, 1960s [1] and HCov-NL63, 2004 [2]) and β-CoV (HCov-OC43, 1960s [3];
HCov-HKU1, 2005 [4]; SARS-CoV, 2002–2003 [5]; MERS-CoV, 2012 [6] and SARS-CoV-2,
2019 [7]); see Table 1. Among them, SARS-CoV, MERS-CoV and SARS-CoV-2 are highly
aggressive [8]. The Global Initiative on Sharing All Influenza Data (GISAID) classifies
SARS-CoV and SARS-CoV-2 in Clade I, lineage B, while MERS-CoV is in Clade I, lineage C.
At the whole genome level, SARS-CoV-2 shares approximately 79% sequence similarity
with SARS-CoV and approximately 50% sequence similarity with MERS-CoV [9]. All
SARS-CoV-2 variants of concern share 97% sequence similarity.

Table 1. The classification, host cell receptors and genotype resemblance of SARS-CoV, MERS-CoV
and SARS-CoV-2.

Virus First
Appearance Genus Receptor Dominant

Host Receptor Co-Receptors
Length
of Nucleotides
[Kilobases]

Genotype
Resemblance
to
SARS-CoV-2

SARS-CoV-2 7/12/2019
Wuhan, China

Clade I,
lineage B

cellular serine
protease
TMPRSS2;
endosomal
cysteine
proteases
cathepsin B/L

angiotensin-
converting
enzyme 2
(ACE-2)

CD147-SP 29.9 100%

SARS-CoV 16/11/2002
Foshan, China

Clade I,
lineage B

cellular serine
protease
TMPRSS2;
endosomal
cysteine
proteases
cathepsin B/L

angiotensin-
converting
enzyme 2
(ACE-2)

DC-SIGN
(CD209)
L-SIGN
(CD209L)

29.75 79%

MERS-CoV 4/04/2012
Zarqa, Jordan

Clade I,
lineage C

cellular serine
protease
TMPRSS2;
endosomal
cysteine
proteases
cathepsin B/L

dipeptidyl
peptidase
4 (DPP4,
CD26)

- 30.11 50%

However, regardless of the different level of sequence conservation, their genomic
arrangement is generally similar [10,11]. Their core is primarily composed of four structural
proteins: nucleocapsid protein (N), spike protein(S), envelope protein (E), membrane
protein (M), 16 non-structural (Nsps) and 9 accessory (ORFs) proteins [12–14]. Each CoV is
an enveloped virus with numerous club-like spikes protruding from the surface, having
an unsegmented, single-stranded, positive-sense RNA (+ssRNA) genome with a 5′-cap
and 3′-poly(A) tail. Both allows genome to act as functional mRNA for translational
synthesis of the replicase polyproteins [15]. The 5′-cap, essential for stability and function,
serves to protect mRNA molecules from degradation to recruit processing factors and
initiate translation [16]. Furthermore, the 5′ end RNA cap is analogous to human mRNA,
as both contain C2′-O-methylribosyladenine and N-methylated guanosine triphosphate.
This enables the virus to utilize the host cell for protein production and protects the
viral mRNA from recognition as foreign by cellular sensors, thereby evading the host
cell’s immune system. Two-thirds of the viral genome is occupied by a replicase gene
consisting of two open reading frames (ORFs), ORF 1a and ORF1ab, which encode the non-
structural proteins (Nsps), the so-called pp1a and pp1ab polyproteins, respectively. The
two non-structural proteins pp1a and pp1ab include Nsp1 to Nsp11 and Nsp12 to Nsp16,
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respectively. The 3′UTR-poly (A) tail follows the translation termination codon of mRNA,
with accessory genes such as ORF3a, ORF3d, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF14
and ORF10 [17] interspersed among the structural genes preceding the 3′ end of the viral
RNA genome. These structural genes encode nine accessory proteins and are considered
important virulence factors involved in various pathogenesis mechanisms during SARS-
CoV-2 infection [18,19]. The capsid, a shell of a virus enclosing its genetic material, formed
from the nucleocapsid protein (N), is located outside the +ssRNA genome. The genome is
additionally covered by an envelope that is mainly associated with three structural proteins:
membrane (M), spike (S) and envelope (E). The S protein, responsible for binding to the host
entry receptor—angiotensin-converting enzyme-2 (ACE-2) [20,21] or dipeptidyl peptidase
4 (DPP4) [22]—and for cell attachment and entry to the host cell (membrane fusion) forms
homotrimers that can protrude from the viral surface and act as a direct target of the host’s
immune response [23]. The E protein, as a viral ion channel (viroporin), is responsible
for ion conduction. It is considered the smallest of the main structural proteins, but an
important element of virulence in SARS-CoV-2 [24]. E-protein plays a vital role because
it assists in the insertion of the virus into the host cell and controls the pathogenicity of
the virus. The M protein, the most common viral structural protein, is the main driver of
viral assembly and membrane construction [25]. It is a dominant structural protein that can
combine with other structural proteins such as S and E proteins [26]. Thus any mutation in
the M protein is expected to have a significant impact on the interactions with the infected
cell [27]. Recently, there has been a notable increase in optimism regarding the potential
of nonstructural proteins (Nsps) as therapeutic targets. This is attributed, among other
factors, to the observation that Nsp proteins are highly conserved regions in the genomes
of SARS-CoV, MERS-CoV and SARS-CoV-2. Most Nsps participate mainly in the virus
replication, immune response and modulation (see Table 2), but also have specific roles in
the replication of CoVs [28].

Table 2. A comparison of the key roles of the most important targets.

Function S Protein E Protein M Protein N Protein Nsp Proteins

binding to cell receptor + − − − −
mediate cell fusion + − − − −

virus assembly − + + + +
morphogenesis − + − −
virus replication − − − + +

immune response − − − + +
modulation − − − + +

The plus sign (+) indicates that the function is active and the minus sign (−) indicates that it is inactive.

Immediately after infection, the resulting viral RNA is translated to produce a polypro-
tein, which is then cleaved to produce 16 non-structural proteins (Nsps) involved in
genomic/subgenomic RNA transcription [29]. The replication and transcription complex,
which participates in genome replication and transcription of mRNA, includes nonstruc-
tural proteins Nsp12 (RNA-dependent RNA polymerase, RdRp), Nsp7 and Nsp8. However,
these proteins form only the so-called RdRp core complex, which binds several additional
nonstructural proteins Nsp9, Nsp10, Nsp13, Nsp14 and Nsp16. CoVs adopt different strate-
gies to escape the multifaceted immunity of infected cells by using Nsps. Their caps are
composed of Nsp10 (cofactor), Nsp13 (5′-triphosphatase), Nsp14 (N7-methyltransferase)
and Nsp16 (2′-O-methyltransferase). Nsp13, guanylate kinase (GK1), Nsp14 and Nsp16
participate in enzymatic reactions responsible for the RNA cap installation, which is crucial
for virus stability. Melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic
receptor playing a role of intracellular sensor of viral RNA, triggers the innate immune
response. Nsp16 (2′-O-Ribose-methyltransferase), active only in the presence of Nsp10
playing a catalytic role, protects RNA viruses from identification by MDA5 [19]. Nsp16
combined with Nsp10 is responsible for efficient viral mRNA cap 2′O-methylation, which
allows the virus to mimic the host mRNA and enables it to replicate efficiently without
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activating immune defense. The enzymatic activity exhibited by the heterodimer compris-
ing Nsp10 and Nsp16 is essential for the methylation of the 5′ end of the RNA transcript,
specifically the viral cap. S-Adenosylmethionine (SAM, AdoMet), Figure 1a, formed from
adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase, is a
methyl group donor that moves to the 2′-O position of the ribose in the Cap-0 [30].
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Methylation of the RNA cap shields viral RNA from MDA5 recognition [19] and helps
deceive innate human immune mechanisms, which recognize the viral RNA and activate
the immune response. Thus, Nsp16, an S-adenosyl-L-methionine (SAM, SAM-e)-dependent
methyltransferase, is essential for coronavirus replication [30,31]. It has been demonstrated
that the disruption of the binding between Nsp16 and the substrate SAM inhibits its activity,
which subsequently results in a cessation of viral replication. The replication of SARS-CoV,
which lacks functional Nsp16, is significantly reduced in vitro and in mouse models [32].
Consequently, the SAM binding site is regarded as a highly attractive target. The high
conservation of the MTase active site across SARS-CoV-2, SARS-CoV and MERS-CoV
implies that Nsp16 inhibitors have the potential to target multiple RNA viruses. The Nsp16
from the three coronaviruses shows significant conservation exceeding 65%, with SARS-
CoV and SARS-CoV-2 showing 93% sequence similarity, SARS-CoV-2 and MERS-CoV
66% and SARS-CoV and MERS 65%. Given that SARS-CoV-2 variants of concern share
97% sequence similarity, higher than SARS-CoV or MERS, conserved SAM binding pocket
seems a very promising target. The conservation of Nsp10–Nsp16 is an indication that
broad-spectrum inhibitors may be developable. Therefore, an approach targeting Nsp16
seems to be future-proof and viable for combating existing and future CoVs, as well as other
RNA viruses that use the 2′O-MTase mechanism for capping. The advantage of inhibiting
Nsp16 is that it effectively hinders the process of viral replication while enhancing the
immune response.

Known Nsp16 inhibitors include S-adenosyl-L-homocysteine analogs: sinefun-
gin [33,34], Figure 1b; tubercidin [35] and its derivative, SS148 [36,37]; toyocamycin;
sangivamycin; 5-iodotubercidin (Kremling et al., Protein Data Bank (PDB), accessed on
10 February 2024); the adenine derivative WZ16 [36,37] and adenosine derivative W08
(Kremling et al., Protein Data Bank (PDB), accessed on 10 February 2024); and adeno-
sylhomocysteinase (AHCY) [35]. Sinefungin shows low inhibitory effect in cell culture-
based assays [38–40]. Tubercidin has broad antiviral effects but is poorly selective and
cytotoxic. However, its derivatives have better activity profiles [36,37]. Toyocamycin has
a better profile than sangivamycin and 5-iodotubercidin, but its efficiency is not known.
As Rosas-Lemus [38] suggests, the greatest hopes for Nsp16 inhibitors are associated
with analogues of SAM and its demethylated form, S-Adenosyl-L-homocysteine (SAH).
SAH, the product of all adenosylmethionine (SAM)-dependent biological transmethy-
lations, is broken down to homocysteine and adenosine by S-adenosylhomocysteine
hydrolase enzyme.
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1.2. The Underlying Motivation and Approach Concept

Identification of effective inhibitors for viral proteins represents a significant challenge
in the field of antiviral research. However, the entire process of finding candidate ligands
and then leads is extremely time-consuming and, even in silico, expensive. In the context
outlined above, the objective of our paper was to propose an approach helping to identify
ligand sufficiently similar to SAM and flexible enough to form a strong binding with Nsp16.
The challenge was to discover a method to achieve it quickly.

Typically, a pre-search is conducted using already known ligands, 2D structure tem-
plate or principal component analysis [41–48], but SAM and SAH are extremely flexible
structures; thus the success of this strategy can be limited. A combined data mining
using the SAM/SAH structure as a template and 3D conformational similarity as an ac-
ceptance/rejection criterion helped to identify 967 candidate ligands with relatively high
structural 3D similarity to SAM, the so-called molecular chameleons. Subsequent molecular
docking reduces the chemical space in the search for ligands that are able bind to a target
protein [49–54]. However, the decision process based on these data is not easy. The classical
analysis of docking results is limited to the docking scores or binding affinity (BA), which
describe the strength of the protein–ligand interactions. They are generally not used for
bulk screening of ligands. In light of the aforementioned considerations, we have put
forth a set of dedicated indices, comprising a finite number of instructions and exhibiting
low computational complexity. Furthermore, we have proposed an approach based on
these indices that is expected to markedly enhance the decision-making process. Four
structure–interaction strength indices: structure-binding affinity index (SBAI), structure
hydrogen bonding index (SHBI), structure steric effect index (SSEI) and structure protein
ligand index (SPLI) reveal the extent to which binding affinity, hydrogen bondings, steric
effect or protein–ligand interaction strength are gained or lost in response to the relatively
small changes in the ligand structure. Each of these indices elucidate the strength of binding
between protein and ligand in relation to structure. The absolute value of SBAI may be
employed as a means of identifying potential ligand candidates. In order to facilitate further
analysis of the candidate ligands all four indices are utilized. These indices, combined
with in-depth analysis of protein–ligand binding modes based on mathematical metrics
and heatmaps, constitute an approach we call the chameleon strategy, which allows us
to fine-tune candidate ligands and find promising new ones. The developed approach
supports effective screening and the search for new directions for improving inhibitors.

The usefulness of the developed chameleon strategy was verified on the SAM ana-
logues, molecular chameleons. As demonstrated below, the chameleon strategy can be
successfully applied to ligand screening and tuning, but also for determining the efficacy
of the ligand in response to alterations in the targeted viral entity. The approach proposed
in this paper is a continuation of our ongoing research [51–55] towards developing new
techniques for searching and analyzing known inhibitors as well as candidates for them.

2. Materials and Methods
2.1. Ligand Selection

In the first step, data mining using the SAM structure as a template and 3D simi-
larity (so-called conformational similarity) as an acceptance/rejection criterion was used.
The simplified molecular-input line-entry system SMILES, which obtains a string when
traversing the tree of a chemical graph representing the spanning tree of a chemical graph
and improves ligand preparation workflows, was used as a molecular fingerprint. In
its extended form, it provides a linear notation describing chemical structure, including
composition, bond order, aromaticity, branching and stereochemistry. The pre-selection of
structurally similar compounds from the whole set of a few thousand structures somehow
related to SAM was based on the Tanimoto [56,57] coefficient, which quantifies the degree
of similarity between the fingerprints. Replacement of the sulfur by another atom (e.g., N
or O) was assumed to be permissible when searching for structures containing SAM as a
substructure and the 90% similarity criterion was employed. In this manner, a selection
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of a set of structurally similar 967 ligands, the so-called molecular chameleons, was made.
Subsequently, their structures were optimized at the M062X/6-31G(d,p) level of theory.
The calculations were carried out using Gaussian 16 rev. C01 [58]. As we have shown
previously, M062X provides a reliable electron density distribution in single molecules and
cluster systems with non-covalent interactions [51–55].

2.2. Target Selection

Nearly 5000 experimental structures of SARS-CoV-2, SARS-CoV-1 and MERS-CoV
were deposited in the Protein Data Bank (PDB) (see Table 3) including 16 protein structures,
two functional domain structures of nucleocapsid (N) protein and dozens of complexes.

Table 3. The numbers of the experimental structures of SARS-CoV-2, SARS-CoV-1 and MERS-CoV.

Experimental Structural Data

Total X-ray Electron Microscopy Solution NMR Neutron
Diffraction

Solid State
NMR

SARS-CoV-2 4156 2805 1331 16 7 4
SARS-CoV
MERS-CoV 323 242 78 3 - -

Although much research has focused on the spike protein S and critical structural
proteins M and E, the crystal structures of the non-structural proteins are also available. The
co-crystal structures with S-adenosylmethionine (SAM, AdoMet), necessary for coronavirus
replication, and sinefungin, a known Nsp16 inhibitor, were searched for at the best available
resolutions. The crystal structures of the Nsp10-Nsp16 heterodimers from MERS-CoV
(5YN6 and 5YNB [59]), SARS-CoV (3R24 [60] and 2XYR [30]) and SARS-CoV-2 (6W4H [38],
6WKQ [38] and 6XKM [61]) were retrieved from the Protein databank PDB database
(https://www.rcsb.org, accessed on 20 March 2024).

2.3. Molecular Docking

In order to achieve conclusive outcomes, it is necessary to possess not only a trust-
worthy structure of the ligand and protein, but also to employ an appropriate molecular
docking (MD) protocol. MD is used to model the protein–ligand poses and provides a basis
for the further analysis of protein–ligand interactions and predicting ligand activity [62–65].

The initial molecular docking attempt was conducted using automated docking tools
AutoDock ver. 4.2.6 [66] and AutoDock Vina ver. 1.2.3 [67]. The receptor and ligand
structures were converted to the .pdbqt format using MGLTools ver. 1.5.7. Since the
semi-empirical docking does not always give reliable results, it was verified by re-docking
using the empirical one, i.e., genetic evolutionary method for molecular DOCKing (GEM-
DOCK) [68]. GEMDOCK scoring employs a different evolution operator and piecewise
potential energy integrated into the differential evolutionary algorithm during the docking
process. The advantage of GEMDOCK is the use of empirical scoring, which includes
pharmacophore potential, and the accuracy of the results obtained is comparable to that
of results from AutoDock 4 or AutoDock Vina. Prior to docking, the native ligand that
co-crystallized with Nsp-10-Nsp16 heterodimer and water molecules were removed from
the structure, and the protein protonation state was corrected. To check the correctness of
the docking protocol, re-docking of native ligand was performed. The root means square
deviation (RMSD) of the pose from its conformation in the parent structure, not exceeding
2–3 Å, was employed as a metric for the validity of the docking protocol. The candidate
ligands were docked in the protein structure using two techniques: template docking and
docking with a defined search space (the grid box of size 9–15 Å was centered on the active
site). One of the most important limitations in molecular docking is the neglect of protein
flexibility. To address this problem, a certain degree of flexibility was assumed for selected
residues within the active site. After docking, the optimal poses that provide the most
robust stabilization of the protein–ligand complex were selected for further analysis.

https://www.rcsb.org
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The Gehlhaar model [69] with original empirical parameterization was used for the
estimation of the binding affinity. The final 2D and 3D visualizations of the binding modes
were made using PoseEdit [70] and VMD [71].

2.4. Molecular Dynamics Simulation (MDS)

Molecular dynamics simulations (MS), widely used to refine structural models, were
performed using the coarse grain technique [72,73], which is a modification of the classical
molecular dynamics approach (MD). The coarse-grained approach [74] can be described as
a process of renormalization of the interactions into new representation with simultaneous
dimensionality reduction. The equivalent particles concept helps to reduce the computa-
tional complexity of the simulation. A total of 50,000 models can be produced in each MS
task, with 2% selected for subsequent comparison studies.

RMSF (root mean square fluctuation), which indicates the differences in the positions
of entire structures over time, was used to assess the individual flexibility of the residuals.
RMSF is defined as

RMSF =
√

∑
i
< (xi −< xi >)2 > (1)

where xi—the coordinates of particle i and 〈xi〉 the ensemble average position of i. Plotting
the RMSF per residue versus residue number enabled the identification of the amino acids
in the protein that contribute most to molecular motion. It is worth noting that the backbone
or alpha-carbon atoms are usually more indicative of conformational changes than the
more flexible side chains.

2.5. Numerical Techniques
2.5.1. Root Mean Square Deviation of the Binding Mode

The average deviation between the binding modes was calculated using the newly
defined quantity. Root mean square deviation of the binding modes (RMSD_BM) [51] was
calculated as follows:

RMSD_BM(P, Q) =

√
1
n∑

i
(pi − qi)

2 (2)

where pi and qi are the binding interactions in each structure and P = {pi} and Q = {qi}.

2.5.2. Heatmaps

Heatmaps, a two-dimensional data visualization technique in which the magnitude of
individual values in a dataset are color-coded, was used to help capture the most relevant
data. We applied gridded color-coded heatmaps to visualize the following:

- the protein–ligand binding modes,
- the new indices (defined below),
- the normalized B-factors (the distribution of residue harmonic oscillations),
- the root-mean-square-fluctuation (RMSF).

Native and docking-derived complexes were compared using a red–yellow–blue
scheme, with dark red and dark blue indicating strong and weak interactions, respectively.

2.5.3. Structure–Binding Strength Indices

To assess differences in the protein–ligand binding affinity, we defined in this paper a
set of new parameters, the so-called structure-binding strength indices (SBSI), as follows:

(a) Structure-binding affinity index, SBAI:

SBAI =
BAre f erence − BAligand

1 − s
=

dBA
1 − s

(3)
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which measure the difference in the protein–ligand binding affinity between the
candidate and reference ligands (numerator) with respect to their structural similarity
(denominator),

(b) Structure–hydrogen bond index, SHBI:

SHBI =
HBre f erence − HBligand

1 − s
=

dHB
1 − s

(4)

which measures the difference in the energy of hydrogen bonds (connecting the protein
with the ligand) in the complex between the selected ligand and the reference compound
(numerator) with respect to their structural dissimilarity, 1 − s, (denominator),

(c) Structure–steric effect index, SSEI:

SSEI =
SEre f erence − SEligand

1 − s
=

dSE
1 − s

(5)

which measures the difference in the energy of steric effects between the complex
with the selected ligand and the reference (numerator) with respect to their structural
dissimilarity, 1 − s, (denominator),

(d) Structure–protein–ligand index, SPLI:

SPLI =
PLre f erence − PLligand

1 − s
=

dPL
1 − s

(6)

which measures the difference in the strength of the protein–ligand interactions
between the ligand and reference (numerator) with respect to their structural dissimi-
larity, 1 − s, (denominator).

di, i ∈ {BA, HB, SE, PL} in the numerator is derived from the molecular docking results,
while s in the denominator is the 3D pharmacophore similarity.

Mathematically speaking, all four indices (Equations (3)–(6)) are 2D functions that
change rapidly as the values of the independent variables’ dBA/dHB/dSE/dPL and s change.
A uniform mathematical function SBSI(di, s) = di/(1 − s), where i ∈ {BA, HB, SE, PL} can be
used to describe all of them. Its domain is DSBSI = {{di, s}: di ∈ R, s ∈ <0, 1>}. Nevertheless,
the di variable is only theoretically capable of reaching infinite value; consequently, it
can be truncated to a reasonable range from −20 to 20. The codomain, or range, is as
follows: D’SBSI = R. The 3D surface plot and the contour plot show SBSI(di, s) variability;
see Figure 2.
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The smaller the structural difference between the ligand and reference, the higher
the index values; for the ligand identical to the reference, indices are infinitely large; see
Figure 2. The function SBSI(di, s) is very sensitive to small structural changes, but poorly
sensitive to large ones. The specific construction of the function helps differentiate whether
the studied parameter i ∈ {BA, HB, SE, PL} is slightly better or worse for the studied ligand
in comparison to the reference.

SBSI indices are a measure of the extent to which binding affinity/hydrogen bonds/steric
effect/protein–ligand energy are gained or lost in response to the relatively small changes in
the ligand’s structure. The heatmap generated using SBSI indices enables the identification of
the most promising ligand.

2.6. ADMET Drug-Likeness Evaluation

The in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
drug-likeness evaluation was performed using the SwissADME developed by the Swiss
Institute of Bioinformatics [75] and ADMET 2.0 [76]. Drug-likeness was tested according
Lipinski, Veber and Egan’s rules of 5 (RO5). The Abbot Bioavailability scores were com-
puted to predict the probability of a compound to have at least 10% oral bioavailability.
Lipophilicity was predicted with iLOGP, XLOGP3, WLOGP, MLOGP and SILICOS-IT
models from which a consensus log Po/w was determined [75]. The solubility (log S)
of the ligands was predicted using SILICOS-IT model. The synthetic availability (SA)
was determined based on the frequency of molecular fragments in “truly” obtainable
molecules. The mutagenicity/carcinogenicity risk scores, Caco-2, Madin–Darby Canine
Kidney (MDCK) intestinal cell permeability and QED, a complex measure of attractive-
ness, were calculated on the basis of drug-likeness parameters: molecular weight (MW),
lipophilicity (log P), NHBA (number of HB acceptors), NHBD (number of HB donors), PSA,
Nrotb, the number of aromatic rings (NAr), molecular polar surface area (PSA) and the num-
ber of alerts for undesirable functional groups, were predicted using models implemented
in ADMET2.0 [76].

3. Results and Discussion

The workflow diagram illustrating so called chameleon strategy, which was proposed
in this paper, is shown in Figure 3.

3.1. Step I: The Analysis of the Targets, Native Ligand and Known Inhibitor
3.1.1. The Targets

In the first step (see Figure 2) the entire target sequences and binding modes of
the native ligand SAM and known inhibitor, sinefungin, in co-crystals were analyzed.
The crystal structures of the Nsp10-Nsp16 heterodimers from MERS-CoV (5YN6 and
5YNB [59]), SARS-CoV (3R24 [60] and 2XYR [30]) and SARS-CoV-2 (6W4H [38], 6WKQ [38]
and 6XKM [61]) were compared.

Protein alignment provides a global comparison of the percentage of identity (the per-
centage of identical residues), similarity (likelihood for sequence homology) and gaps
(residues deleted) across the entire sequence, Figure 4. The Needleman–Wunsch al-
gorithm [77] was used, and the scores were computed using the most efficient EBLO-
SUM62 matrix [78], with the gap opening penalty (GOP) = 2.0 and gap extension penalty
(GEP) = 2.0. The result is visualized using heatmaps.
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and (c) gaps—right in the protein sequences. The most similar protein pairs in terms of identity and
similarity are marked in red and the least similar in green. The largest number of gaps are marked in
red; the smallest number is marked in green. The EBLOSUM62 matrix with gap penalty (GOP) = 2.0
and gap extension penalty (GEP) = 2.0 was used.

The Nsp16 of the same viruses but with a different ligand show the greatest similarity
and identity as expected. The least similarity/identity is shown by the following pairs
(5YN6, 6W4H), (5YNB, 6WKQ), (5YNB, 6W4H) and (5YNB, 6WKQ). Thus, Nsp16 from
SARS-CoV-2 and SARS-CoV reveals a higher level of conservation than that from MERS-
CoV. The largest gaps occur in pairs (5YN6, 6W4H) and (5YN6, 6WKQ).

The geometry of the Nsp16 chain A also reveals a high degree of resemblance; see
Table 4 and Figure 5. The root mean square deviation (RMSD) between the pairs is low,
with (6W4H, 6WKQ), (5YN6, 5YNB) and (3R24, 2XYR) differing by two, eight and six
residues, respectively.
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Table 4. A comparison of the chain A resemblance between the pairs of non-structural Nsp16 proteins.

(6W4H, 6WKQ) (5YN6, 5YNB) (3R24, 2XYR)

RMSD [Å] 0.798 0.703 0.6363

Different
residues

ALA6798
SER6799

LYS31
GLU32
SER33
ILE34

GLY141
VAL294
LEU295
VAL296

TYR136
LYS137
HIS138
VAL139

ASP293
ILE294
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The SAM-engaging residues are indeed conserved in RNA viruses (SARS-CoV-2, 
SARS-CoV and MERS-COV) (Figure 6) which is in line with [79,80].  

Figure 5. The superimposed structures of Nsp16 (a) SARS-CoV-2 (6W4H) vs. MERS-CoV (5YN6) and
(b) SARS-CoV-2 (6W4H) vs. SARS-CoV (3R24) with the rigid areas marked in red (red ∆B = +4, blue
∆B = −2). The region of increased rigidity is located near Glu7062 (6W4H) and TYR30, Thr140 and
Gln266 (6XKM), Arg38 (5YN6) and TYR 30 and Lys141 (3R24 and 2XYR).

The SAM-engaging residues are indeed conserved in RNA viruses (SARS-CoV-2,
SARS-CoV and MERS-CoV) (Figure 6) which is in line with [79,80].

The superimposed structures of Nsp16 from SARS-CoV 2 (6W4H), MERS-CoV (5YN6)
and SARS-CoV (3R24) with the areas of increased rigidity marked in red are shown in
Figures 5 and 6. The replacement of SAM with sinefungin results in an increase in the
stiffness in MERS-CoV and SARS-CoV, but in a decrease in SARS-CoV-2, albeit at sites far
from the binding site; see Figure 6.

The size, shape and hydrophobicity of the pocket are important factors in predicting
protein–ligand binding. The parameters describing the anatomy of protein pockets are
listed in Table 5.

Table 5. Anatomy of protein pockets.

SARS-CoV-2 MERS-CoV SARS-CoV

6W4H 6WKQ 5YN6 5YNB 3R24 2XYR

Acceptors 24 27 22 26 27 34
Donors 17 22 17 18 21 25
Depth [Å] 21.67 21.82 22.78 22.88 20.92 22.87
Surface [Å2] 1016.91 1218.48 1052.29 1055.14 1160.49 1410.73
Volume [Å3] 707.58 762.88 680.96 701.95 731.65 918.02
Surface–Volume Ratio 1.44 1.60 1.55 1.50 1.59 1.54
Hydrophobicity 0.56 0.59 0.64 0.64 0.61 0.64
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The surface–volume ratio lies within the range of 1.44 to 1.59. Sinefungin forms
more hydrogen bonds than SAM; however, both accept rather than donate protons to
hydrogen bonds. The average hydrophobicity of the pocket is relatively constant and
slightly lower for SARS-CoV-2. The analysis of the details in the surface hydrophobicity
help to identify regions of the pocket most likely to interact with a binding ligand. In
general, the highly hydrophobic residues bind the non-polar adenine moiety and the less
hydrophobic non-polar methionine moiety of the native ligand.

3.1.2. The Native Ligand and Known Inhibitor Binding Mode

As follows from the Tables S1–S7 and Figures 5 and 6, the overall pattern of binding
within the pairs of Nsp16 is similar and protein–ligand energy should depend on the
contribution of the hydrogen bonds. To assess the potential influence of these differences
on binding, we conducted further detailed analysis of the protein–ligand binding modes.

In the 6W4H [38] co-crystal, the adenosine part of SAM is hydrogen-bonded to
LEU6898, CYS6913 and ASP6912, the glycone part is hydrogen-bonded to GLY6871,
ASN6899 and TYR6930, and the methionine part is hydrogen-bonded to ASN6841, GLY6869
and GLY6879; see Table S1. Furthermore, each ligand moiety is stabilized by three water
bridges with GLY6869, Ser6872 and ASP6897. Additionally, a long salt bridge of 4.93 Å
binds ASP6928 to sulfur.

In the 6XKM [61] co-crystal, the adenine part of SAM is hydrogen-bonded to As114
and CYS115, the glycone part is hydrogen-bonded to TYR132, LEU100, ASN101 and GLY73,
and the methionine part is hydrogen-bonded to ASN43, Ty47, GLY71, ASP130 and GLY81;
see Table S2. Each ligand moiety is further stabilized by four water bridges with GLY71,
Ala72, Ser 74 and ASP99. Additionally, a long salt bridge of 4.88 A binds ASP130 to sulfur.

In the 6WKQ [38] co-crystal the hydrogen bonding pattern is similar to that described
above. The adenine moiety of sinefungin is hydrogen-bonded to ASP6912 and CYS6913,
the glycone moiety to GLY6871, LEU6898 and TYR6930 and the methionine moiety to
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ASN6841, TYR6845, GLY6869 and ASP6928; see Table S3. Each ligand moiety is stabilized
by ten water bridges with GLY6869, ASP6873, ASP6897, ASN6899, ASP6928, PHE6947
and LYS6968.

In the 5YN6 co-crystal [59], the hydrogen bonding pattern is close to that described
above. Th adenine moiety of SAM binds to LEU100, CYS15 and ASP114, the glycone moiety
to GLY73, ASN101 and TYR132 and the methionine moiety to ASN43, TYR47 and GLY71;
see Table S4. Additionally, a long salt bridge of 4.90 A binds ASP130 to sulfur. The only
difference between SARS-CoV-2 and MERS is that methionine binds to TYR instead of GLY
and additionally to ASP.

In the 5YNB co-crystal [59], the hydrogen bonding pattern is highly similar to that
described above. They adenine moiety of sinefungin binds to LEU100, CYS15 and ASP114,
the glycone moiety to GLY73 and TYR132 and the methionine moiety to ASN43, TYR47,
GLY71, GLY81 and ASP130; see Table S5.

In the 3R24 co-crystal [60], the adenine of SAM binds with hydrogen bonds to LEU100,
CYS115 and ASP114, the glycone moiety to GLY73 and TYR132 and the methionine moiety
to TYR47, GLY71, GLY81 and TYR132; see Table S6. Additionally, a long salt bridge of 5.08
A binds ASP130 to sulfur. The only difference between SARS-2 and SARS-CoV binding
mode is that methionine forms 4 hydrogen bonds instead of 3, while glycone forms only 2
instead of 3. Structure is additionally stabilized by seven water bridges binding the ligand
to GLY71, ALA72, SER74, ASP99, ASN101 and PHE149.

In the 2XYR co-crystal [30], the adenine moiety of sinefungin binds to LEU100, CYS115
and ASP114 using hydrogen bonds, the glycone moiety to GLY73, ASN101 and TYR132 and
the methionine moiety to ASN43, GLY71 and GLY81; see Table S7. Structure is additionally
stabilized by one water bridges binding the ligand with PHE149.

Thus, the binding pattern of the native ligand, SAM, shows more variation in residues
among different CoVs than sinefungin.

3.2. Step II: The Pre-Selection of Ligands

Known inhibitors, including sinefungin, tubercidin, toyocamycin, sangivamycin, 5-
iodotubercidin, adenosine and S-adenosylhomocysteine were optimized at the M062X/6-
31G(d,p) level of the theory and prepared for docking.

A set of 967 pre-selected ligands, structurally resembling SAM, the so-called molecular
chameleons, was established based on a 3D conformational fingerprint template (SMILES)
with a 90% Tanimoto coefficient. Their structures were subjected to verification and op-
timization at the M062X/6-31G(d,p) level of the theory. In principle, a straightforward
geometry optimization using classical molecular mechanics would be sufficient. However,
the pre-selected ligands possess numerous degrees of freedom, and the selection of an
equilibrium conformation while disregarding electronic effects can have significant and
far-reaching consequences [53,54].

3.3. Step III: The Pre-Selected Ligands Docking and Screening

Subsequently, the pre-selected ligands were docked in the Nsp16 protein pocket. The
6W4H structure was used for this bulk task. The atomic hybridization and protonation
state of the protein was checked and corrected prior to docking. The total time for the
single docking attempt of the entire set of ligands about 1000 ligands was several hours.
The same procedure was used to establish protein–ligand models for all ligands.

The binding affinity prediction was used to rank ligands considering the top energy
poses of each compound. For each pre-selected ligand, the structure–binding affinity index,
SBAI, was calculated according to Equation (3), with the 3D pharmacophore similarity as s.

The chart showing rejected/pre-selected ligands is shown in Figure 7. The color
spectrum ranges from red (low absolute SBAI) to green (high absolute SBAI).
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During the screening, it was found that all 2′-deoxy derivatives have weaker binding
affinity ad thus were rejected. A further study was conducted on 8 already known inhibitors
and 10 candidate ligands selected based on high absolute SBAI vales. The chemical names
of the selected ligands and Tanimoto coefficient (used exclusively in the pre-selection task,
Step II) as well as 3D pharmacophore similarity coefficients (used for the calculation of
the similarity parameter s in SBAI, Equation (3) and subsequent candidate selection) are
summarized in Table 6.

Table 6. The list of inhibitors and candidate ligands and their similarity to S-adenosyl-L-methionine (SAM).

No. Chemical Name Chemical Structure Tanimoto Similarity to
SAM [%]

3D Pharmacophore
Similarity

1
Tubercidin
(2R,3R,4S,5R)-2-(4-aminopyrrolo[2,3-d]pyrimidin-7-
yl)-5-(hydroxymethyl)oxolane-3,4-diol
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Table 6. Cont.

No. Chemical Name Chemical Structure Tanimoto Similarity to
SAM [%]

3D Pharmacophore
Similarity

4

S-adenosyl-L-methionine, SAM
(2S)-2-amino-4-[[(2S,3S,4R,5R)-5-(6-aminopurin-9-
yl)-3,4-dihydroxyoxolan-2-yl]methyl-
methylsulfonio]butanoate
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3D pharmacophore, which is defined as an ensemble of structural features that are crucial
to attach or bind to an active site of an enzyme or molecule [81], helps to incorporate not
only the ligand’s shape or conformation, but also its entire set of features (e.g., hydrogen
bond donors, hydrogen bond acceptors, charged groups and hydrophobic regions).

3.4. Step IV: The Docking of the Candidate Ligands and Known Inhibitors

Six target structures were used in the further MD study: three with the native SAM
ligand (6WH4, 5YN6 and 3R24) and three with the inhibitor sinefungin (6WKQ, 5YNB
and 2XYR). The RMSD of the pose of the native ligand from its conformation in the parent
structure did not exceed 0.3 Å. The docking procedure of the 17 candidate ligands and
known inhibitors was conducted in accordance with the established protocol.

A total of 102 complexes obtained during MD were subjected to analysis. The docking
results are summarized in Table S8 and visualized as heatmaps in Figures 8 and 9.
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The candidate ligands appear to be more promising than 8 already known inhibitors.
They bind more strongly to the targets; see Figures 8 and 9. In general, the protein–ligand
binding energy depends by about 42% on the number of hydrogen bonds and 46% on the
strength of hydrogen bonds, about 58% on the number of heavy atoms and nearly 95% on
steric interactions. In the context of the pocket construction and binding mode analysis,
both the electrostatic and hydrophobic interactions are crucial factors.

The degree of similarity between the ligands measured by Tanimoto similarity varies
from 63.58 to 98% and reaches 98% in ligand 8 (SAH). The degree of similarity between the
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ligands measured by the 3D pharmacophore similarity varies from 80 to 98% and reaches
98% in ligand 11. However, the binding affinity for this ligand is not the highest. The
MD results do not seem to correlate directly with the classical Tanimoto similarity; the 3D
pharmacophore similarity seems a better choice. A rough analysis of the data listed in Table
S8 and shown in Figure 9 suggests that ligand 10 should represent the optimal choice.

3.5. Step V: In-Depth Investigation of Protein–Ligand Binding
3.5.1. Classical In-Depth Analysis

An in-depth investigation of the MD results reveals more details concerning the entire
binding mode. In addition to the aforementioned docking scores, it is important to ensure
that the necessary packing is carried out in the protein pocket. The best poses of the known
inhibitors and candidate ligands are illustrated in Figures 10 and 11, respectively.
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Figure 10. The best poses of the known inhibitors: 1 (dark green), 2 (yellow), 3 (cyan), 4 (green),
5 (white), 6 (red), 7 (blue) and 8 (violet); target from 6WH4. The hydrogen bonds between the ligand
and the Nsp16 residues are shown with a blue dashed line. The residues are colored according to their
hydrophobicity. The colors of the hydrophobic surface reflect the hydrophobicity of the residues.

The hydrogen bonds between the ligand and the Nsp16 residues are shown with a
blue dashed line. The colors of the lines forming the hydrophobic surface grid reflect the
hydrophobicity of the individual residues. The residues are colored according to their
hydrophobicity. It is evident that the polarity of the pocket changes from hydrophilic
(adenine moiety) to hydrophobic (glycone and methionine moieties). Substituents play
a pivotal role in both the filling of the pocket and the orientation of the ligand within
the pocket.

The highly polar substituent -CF3 of ligands 9 and 10 is responsible for effectively
locking the ligand inside the pocket. However, the methionine moiety in ligands 10 and
9 is oriented in a mirrored manner; see Figure 11. In general, the candidate ligands are
observed to fill the pocket to a greater extent than the known inhibitors. The assessment
of the electrostatic match between ligands and binding pockets, in conjunction with the
investigation of hydrophobicity, provides valuable insights into the underlying mechanisms
of ligand binding and the potential for improving binding affinity; see Figures 9 and 10.
As a consequence of the uneven distribution of electrostatic and hydrophobic charges, the
protein pocket is dipolar. The most optimal orientation for the ligand in the pocket is one
that provides the greatest benefit, in terms of the ligand’s ability to interact with the protein.
The most promising Nsp16 ligands are oriented in a manner that allows the adenine and
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methionine residues to be immersed in negative/hydrophobic and positive/hydrophilic
potentials, respectively.

Viruses 2024, 16, x FOR PEER REVIEW 19 of 32 
 

 

the known inhibitors and candidate ligands are illustrated in Figures 10 and 11, 
respectively. 

 
Figure 10. The best poses of the known inhibitors: 1 (dark green), 2 (yellow), 3 (cyan), 4 (green), 5 
(white), 6 (red), 7 (blue) and 8 (violet); target from 6WH4. The hydrogen bonds between the ligand 
and the Nsp16 residues are shown with a blue dashed line. The residues are colored according to 
their hydrophobicity. The colors of the hydrophobic surface reflect the hydrophobicity of the 
residues. 

 
Figure 11. The best poses of the candidate ligands: 9 (brown), 10 (red), 11 (dark cyan), 12 (light pink), 
13 (light blue), 14 (dark violet), 15 (orange), 16 (navy) and 17 (yellow). The native ligand, SAM, is 
shown in light green; target from 6WH4. The residues are colored according to their hydrophobicity. 
The colors of the hydrophobic surface reflect the hydrophobicity of the residues. 

The hydrogen bonds between the ligand and the Nsp16 residues are shown with a 
blue dashed line. The colors of the lines forming the hydrophobic surface grid reflect the 
hydrophobicity of the individual residues. The residues are colored according to their 
hydrophobicity. It is evident that the polarity of the pocket changes from hydrophilic 
(adenine moiety) to hydrophobic (glycone and methionine moieties). Substituents play a 

Figure 11. The best poses of the candidate ligands: 9 (brown), 10 (red), 11 (dark cyan), 12 (light pink),
13 (light blue), 14 (dark violet), 15 (orange), 16 (navy) and 17 (yellow). The native ligand, SAM, is
shown in light green; target from 6WH4. The residues are colored according to their hydrophobicity.
The colors of the hydrophobic surface reflect the hydrophobicity of the residues.

The number of the available hydrogen bond donors, acceptors and interactions in-
volved in the ligand–protein binding (hydrogen bonds and hydrophobic) were quantified
for each ligand (see Table 7) and visualized; see Figure 12. The analysis was carried out
using [82,83].

Table 7. The numbers of the donors, acceptors and interactions participating in the binding pattern
in studied ligands.

No. Donors Acceptors
Hydrogen
Bonds in

Total

Adenine
Moiety

Glycone
Moiety

Methionine Moiety
(or Its Replacement)

Hydrophobic
Interactions in

Total

1 4 7 4 1 2 1 8
2 4 8 5 1 4 - 7
3 5 8 5 1 4 - 8
4 4 10 7 2 2 4 8
5 4 8 5 2 3 - 7
6 6 11 8 2 2 5 7
7 4 7 4 1 3 - 7
8 5 11 8 2 2 4 9
9 5 14 8 2 2 4 10
10 4 16 8 3 3 2 11
11 4 15 8 2 3 3 10
12 5 12 8 2 2 4 7
13 10 21 12 2 2 8 7
14 7 12 9 2 2 5 11
15 5 11 7 2 1 4 11
16 5 13 5 3 - 2 14
17 7 13 11 3 1 7 12

New 8 12 11 4 1 6 7
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and 12, respectively. 

By comparing the binding patterns for the native and candidate ligands, a particular 
effect of the resemblance of ligands 10 and 11 to SAM can be observed; see Figure 13. 

Figure 12. A comparison of the components of the binding pattern (hydrophobic interactions and
hydrogen bonds) (a) SAM (b) sinefungin, (c) ligand 9 (d) ligand 10 (e) ligand 11 and (f) ligand 17.
(The best poses are shown in Figures 9 and 10.).

The number of interactions differs significantly depending on the ligand type,
with weekly fluctuations observed in the case of the viral Nsp16 protein type. For lig-
and 10, 8/9/10 hydrogen bonds and 11/11/10 hydrophobic interactions are formed in
6W4H/5YN6/3R24 targets, respectively. (The number of residues involved in hydropho-
bic interactions remains constant). The ligand with the greatest difference between the
number of donors and acceptors exhibited the highest binding affinity. It is somewhat
surprising that ligand 13, which has a considerable number of donor and acceptor groups
and forms 12 hydrogen bonds with residues, binds relatively weekly. It seems that the
optimal number of hydrogen bond donors and acceptors in ligands should not exceed 8
and 12, respectively.

By comparing the binding patterns for the native and candidate ligands, a particular
effect of the resemblance of ligands 10 and 11 to SAM can be observed; see Figure 13.
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The names of the key residues that bind the protein to the ligand via hydrogen bonds are marked
with a color (adenine, methionine and glycone moieties in blue, yellow and pink, respectively).

The average distance between the binding modes is the smallest for ligand 11 (of
8 kcal/mol) and the highest for adenosine (of 72 kcal/mol). RMSD_BM, Equation (2),
ranges from 30 kcal/mol for ligand 11 to 37 kcal/mol for sinefungin to 86 kcal/mol for
adenosine. For the most promising ligands, i.e., 10 and 17, RMSD_BM is about 60 kcal/mol.
The ligand change results in the largest differences at residues TYS6930, ASP6828, GLY6869,
ASN6841, TYR 68590, PRO6878, ALA6970, GLY6871, SER 6872 and GLY 6879; see Figure 11.
The most effective compounds are those that bind with the greatest strength to the residues,
namely GLY6871, PHE6947, TYR6930 and ASP6928, which suggests that the glycone moiety
of the ligand plays a key role. The low effectiveness of known inhibitors compared to
candidate ligands also results from the weakened binding of methionine moiety (or its
replacements) to protein residues GLY6869 and to a lesser extent ASN6841 and GLY6869;
see Figure 13.
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3.5.2. Rapid Global Analysis

As demonstrated above, the analysis of binding modes and finding most promising
ligands is a complex process that necessitates the consideration of numerous factors. In
order to facilitate such an analysis, we proposed the use of new indices. The four SBS
indices SBAI, SHBI, SSEI and SPLI were calculated via Equations (3)–(6) and are shown
in the heatmaps, which allow for the visual representation of the datasets in an easily
understandable form; see Figure 14.
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Figure 14. The heatmaps of SBS indices (a) structure–binding affinity index (SBAI), (b) structure–
hydrogen bond index (SHBI), (c) structure–steric effect index (SSEI) and (d) structure–protein–ligand
index (SPLI) for 102 complexes (17 ligands and six targets). (Red represents the negative values, while
green indicates positive values.). Ligand 4 (SAM) is the reference.

The greater the absolute value of the indices, the more promising the ligand. Negative
values indicate an increase in protein–ligand binding strength, while positive values in-
dicate its weakening relative to the reference ligand. Based on the SBAI and SPLI values,
ligands 10 and 9 emerged as the most optimal candidates. The SBAI and SPLI values
for them are highest in absolute value, which indicate strong binding to Nsp16 and high
similarity to SAM. Both ligands contain at least one trifluoromethyl group, which has a
strong electron-withdrawing nature, poor polarizability and a broad hydrophobic domain.
This moiety increases the hydrophobicity (lipophilicity) of the ligand. Subsequent analysis
based on SSEI revealed that ligands 10 and 11 are optimal from a steric point of view. If
hydrogen bonds are of significant importance, then according to SHBI, ligands 13 and 17
will be a superior choice. However, ligand 13 contains the triphosphoric moiety, which
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is unfavorable. Although triphosphates represent the active form of the antiviral drugs,
direct delivery of the triphosphates into cells is not a viable option, as these multi-charged
molecules are unable to permeate lipophilic cell membranes.

The use of indices facilitates the assessment of selectivity; see Figure 13. The heatmaps
indicate that ligands 11 and 16 should be the most selective. It can be postulated that the
former should inhibit MERS-CoV and the latter SARS-CoV-2. Ligand 15 does not appear
promising due to the butyl moiety, which is flexible but non-polar and hydrophobic.

On the other hand, ligands 16 and 17 were investigated to identify molecules that inter-
act with methyltransferase and purify methyltransferase proteins (patent WO-2012016704-
A1). Ligand 14 happened to be a coactivator-associated arginine methyltransferase 1
(CARM1) inhibitor (5ISE [84]). CARM1 is a protein arginine methyltransferase that asym-
metrically dimethylates histone H3 and non-histone proteins to regulate gene transcrip-
tion [85].

3.6. Step VI: Ligand Tuning

Based on abovementioned analysis, the modification of the amine group in the adenine
moiety from -NH2CH2CH2CH2NH2 to -NH2CH2NH2 in ligand 17 was proposed; see
Figure 15. To the best of our knowledge, this compound has never been synthesized.
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Figure 15. The structural formula of 2-Amino-4-[[5-[6-amino-2-(3-aminomethylamino)purin-9-yl]-3,4-
dihydroxyoxolan-2-yl]methylsulfanyl]butanoic acid).

The (2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-(aminomethylamino)purin-9-
yl]-3,4-dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic acid ligand was docked in
the pocket in 6WH4. The outcome was a notable change in all four indices: SBAI = −316,
SHBI = −70, SPLI = −280 and SSEI = −402, which are negative and of a consider-
able magnitude. Indeed, the binding affinity of this modified ligand, 2~{S})-2-amino-4-
[[(2~{S},3~{S},4~{R},5~{R})-5-[6-(aminomethylamino)purin-9-yl]-3,4-dihydroxy-tetrahydrofuran-
2-yl]methylsulfanyl]butanoic acid to Nsp16 from SARS-CoV-2, is −9.88 kcal/mol, and
the hydrogen bond and protein–ligand interactions are −22.46 and −203.70 kcal/mol,
respectively. The aforementioned values are the most proximate to those for ligand 10. The
3D pharmacophore similarity of the new ligand to SAM is 94%. Despite the high similarity
of the binding mode, the RMSD_BM distance is relatively high at 141 kcal/mol, which is
caused by the stronger binding to GLY6911, ASP6912, TYR6930 and Lys6968 and ASP6932;
see Figures 12, 16 and 17. The binding of the new ligand to Nsp16 from SARS-CoV and
MERS-CoV is weaker, at −6.35 and −6.26 kcal/mol.

The best pose of the 2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-
(aminomethylamino)purin-9-yl]-3,4-dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic
acid is shown in Figure 16.
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tetrahydrofuran-2-yl]methylsulfanyl]butanoic acid—Nsp16 complex. 

2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-(aminomethylamino)purin-9-yl]-
3,4-dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic acid forms hydrogen bonds 
with CYS6913, GLY6911 and SER6896 (complementary to the protein–ligand complex 
with SAM), binds to GLY6872 with a hydrogen bond instead of a hydrophobic interaction 
and participates in hydrophobic interactions with ALA6877 instead of SER6872, but, 
unlike SAM, it does not bind to ASP6897. The ligand is oriented with the adenine and 
methionine residues to be immersed in negative/hydrophobic and positive/hydrophilic 

Figure 16. The best pose of the new ligand 2-Amino-4-[[5-[6-amino-2-(3-aminomethylamino)purin-9-
yl]-3,4-dihydroxyoxolan-2-yl]methylsulfanyl]butanoic acid (magenta). The native ligand, SAM, is
shown in light green; target—6WH4. The hydrogen bonds between the ligand and the Nsp16 residues
are shown with a blue dashed line. The residues are colored according to their hydrophobicity. The
colors of the hydrophobic surface reflect the hydrophobicity of the residues.
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Figure 17. The components of the binding pattern: hydrophobic interactions and hydro-
gen bonds, (2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-(aminomethylamino)purin-9-yl]-3,4-
dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic acid—Nsp16 complex.

2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-(aminomethylamino)purin-9-yl]-3,4-
dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic acid forms hydrogen bonds with
CYS6913, GLY6911 and SER6896 (complementary to the protein–ligand complex with SAM),
binds to GLY6872 with a hydrogen bond instead of a hydrophobic interaction and partici-
pates in hydrophobic interactions with ALA6877 instead of SER6872, but, unlike SAM, it
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does not bind to ASP6897. The ligand is oriented with the adenine and methionine residues
to be immersed in negative/hydrophobic and positive/hydrophilic potentials, respectively.
Polar glycone moiety forms a kind of bridge between both parts of the molecule.

3.7. Step VII: Drug-Likeness Validation—ADMET Evaluation of the Ligands

The pharmacokinetic parameters that a given inhibitor should exhibit depends on
the specific target requirements. The druggability of the ligands can be verified based
on ADMET analysis. In general, the ligand candidates have better physicochemical than
already known inhibitors. The parameters describing the physicochemical profile and
pharmacokinetics behavior as well as toxicity of the candidate ligands estimated using
different ADMET [61,62] protocols are listed in Tables S9 and S10 and shown in Figure 18.
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Figure 18. The radar view of physicochemical properties (a) SAM, (b) ligand 10,
(c) new ligand (2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-(aminomethylamino)purin-9-yl]-3,4-
dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic acid; ADMET 3.0.

The flexibility of the ligand candidates is higher than that of known inhibitors. More-
over, for ligands 10 and 17, it is the highest, so flexibility seems to be a key factor. The
ligands 9 and 10 have trifluoromethyl groups, which should alter their solubility. How-
ever, their profile is not optimal. ADMET parameters suggests that compound 17 has a
better pharmacokinetic profile; higher QED; lower carcinogenicity; low AMES, H-HT and
DILI; optimal solubility; an octanol–water partition coefficient; synthesis accessibility; SAS;
PAMPA; and CaCo-2. Moreover, the so-called “golden triangle rule” is not violated. The
lack of halogens is not a challenge but rather a favorable circumstance from the point of view
of formation of hydrogen bonds and toxicity. The physicochemical, pharmacokinetic and
toxicity profiles of the new ligand (2-Amino-4-[[5-[6-amino-2-(3-aminomethylamino)purin-
9-yl]-3,4-dihydroxyoxolan-2-yl]methylsulfanyl]butanoic acid) are not worse than ligand 17.
It is important to note that there is no definitive set of ideal pharmacokinetic parameters
that a given inhibitor should exhibit, as these depend on the specific requirements of the
target in question. ADMET, which can be regarded as a form of support for the design pro-
cess, but not as a criterion for selection, suggests that the pharmacological profile exhibited
by prospective ligands is comparable to that demonstrated by known inhibitors.

3.8. Step VIII: Stability Evaluation—Molecular Dynamic Simulations

The weak point of classical molecular docking is the limited flexibility of the residues.
We therefore applied two different docking techniques: flexible ligands and flexible residues,
the latter being used to the extent possible. Nevertheless, further investigation is necessary
to address this issue in a slightly more comprehensive way. Molecular dynamics simula-
tions (MS) were performed using a coarse-grained approach. First, the flexibility of the
protein residues was checked in the absence of the ligands. In the next step the entire
protein–ligand complex was examined. The root mean square fluctuation (RMSF) of a struc-
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ture which represent the root mean square deviation of atomic positions from their mean
positions over time (RMSD) and provide information about the flexibility and dynamics of
the complexes; see Figure 19. It is worth noting that the binding site is relatively stable even
when the pocket is empty. The high flexibility was observed only nearly the three residues:
GLU6821, LYS6822 and THR6938 (RMSF is equal 7.30, 7.45 and 6.03 Å, respectively).
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Figure 20. Multimodel (several models superimposed) visualization of the fluctuations of the Nsp16 
complexed with (a) ligand 10, (b) ligand 17, (c) (2-Amino-4-[[5-[6-amino-2-(3-
aminomethylamino)purin-9-yl]-3,4-dihydroxyoxolan-2-yl]methylsulfanyl]butanoic acid); residue 
position color scheme was used. 

Figure 19. Root means square fluctuation (RMSF) graph representing MDS of the individual residues.
The color scale bar is displayed in the image; the most flexible residues are shown in red.

The RMSF fluctuation plot, depicted in Figure 19, illustrates the residue-wise fluctua-
tions observed throughout the simulation.

For the protein–ligand complexes, the RMSF value does not exceed 3.5 Å. (The terminal
residues in ligands 10 and the newly designed ligand exhibit a scattering from this trend).
The radius of gyration changed relatively little, by no more than 4%. The multimodel
(several main models superimposed) visualization of the fluctuations is shown in Figure 20.

Viruses 2024, 16, x FOR PEER REVIEW 27 of 32 
 

 

step the entire protein–ligand complex was examined. The root mean square fluctuation 
(RMSF) of a structure which represent the root mean square deviation of atomic positions 
from their mean positions over time (RMSD) and provide information about the flexibility 
and dynamics of the complexes; see Figure 19. It is worth noting that the binding site is 
relatively stable even when the pocket is empty. The high flexibility was observed only 
nearly the three residues: GLU6821, LYS6822 and THR6938 (RMSF is equal 7.30, 7.45 and 
6.03 Å, respectively). 

The RMSF fluctuation plot, depicted in Figure 19, illustrates the residue-wise 
fluctuations observed throughout the simulation. 

 
Figure 19. Root means square fluctuation (RMSF) graph representing MDS of the individual 
residues. The color scale bar is displayed in the image; the most flexible residues are shown in red. 

For the protein–ligand complexes, the RMSF value does not exceed 3.5 Å. (The 
terminal residues in ligands 10 and the newly designed ligand exhibit a scattering from 
this trend.) The radius of gyration changed relatively little, by no more than 4%. The 
multimodel (several main models superimposed) visualization of the fluctuations is 
shown in Figure 20. 

 
 

 

(a) (b) (c) 
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complexed with (a) ligand 10, (b) ligand 17, (c) (2-Amino-4-[[5-[6-amino-2-(3-
aminomethylamino)purin-9-yl]-3,4-dihydroxyoxolan-2-yl]methylsulfanyl]butanoic acid); residue 
position color scheme was used. 

Figure 20. Multimodel (several models superimposed) visualization of the fluctuations of
the Nsp16 complexed with (a) ligand 10, (b) ligand 17, (c) (2-Amino-4-[[5-[6-amino-2-(3-
aminomethylamino)purin-9-yl]-3,4-dihydroxyoxolan-2-yl]methylsulfanyl]butanoic acid); residue
position color scheme was used.

The differences in binding modes are within the range produced by different docking
techniques and do not affect the final conclusions. The ligands presence stiffens the
whole complexes.
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4. Conclusions

The aim of our study was to propose and validate an effective screening protocol
dedicated to identify potential drug candidates that may act as Nsp16 inhibitors and reveal
the presence of the virus to the immune defense system. To date, only a limited number of
such inhibitors have been identified.

Our innovative approach includes eight well-defined steps, and the entire process,
called the chameleon strategy, is shown in the flowchart. The core this methodology is
the use of novel SBSI indices. Structure–binding affinity index (SBAI), structure–hydrogen
bonding index (SHBI), structure–steric effect index (SSEI) and structure–protein–ligand
index (SPLI) are proposed in this paper to screen SAM analogues to reveal the extent to
which binding affinity is gained or lost in response to the relatively small changes in the
ligand structure.

The proposed approach has proven to be effective in the search for suitable SAM
analogues and Nsp16 inhibitors. Combined data mining using the SAM/SAH structure as
a template and Tanimoto similarity as an acceptance/rejection criterion helped to identify
967 candidate ligands with relatively high structural 3D similarity to SAM, the so-called
molecular chameleons. Then, molecular docking supported by the new SBAI index reduced
the chemical space in the search for ligands that capable of binding to the target protein
and revealed 10 candidate ligands. A dedicated approach designed for in-depth analysis
of the protein–ligand binding modes based on the mathematical metrics and heatmaps
helped analyze protein–ligand binding modes. But in identifying three highly promis-
ing ligands and designing the new one, 2~{S})-2-amino-4-[[(2~{S},3~{S},4~{R},5~{R})-5-[6-
(aminomethylamino)purin-9-yl]-3,4-dihydroxy-tetrahydrofuran-2-yl]methylsulfanyl]butanoic
acid, four novel SBSI indices were proved to be the most efficient.

As demonstrated above, this methodology can be successfully applied not only to
screen and tune ligands, but also to determine the effectiveness of the ligand in response to
changes in the target viral entity, which is particularly useful for assessing drug effectiveness
in the case of alterations in viral proteins.

The developed strategy is so general that it can effectively support screening tests
and set new directions for improving inhibitors, not only antiviral ones. In conclusion, the
chameleon strategy has the capacity to introduce a novel universal paradigm to the field of
RNA antiviral design and drug design in general.

Supplementary Materials: The following supporting information can be downloaded at: https:
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S-adenosylmethionine (SAM), SARS-CoV 2 (co-crystal 6W4H [38]); Table S2: The binding mode of the
native ligand S-adenosylmethionine (SAM), SARS-CoV-2 (co-crystal from 6XKM [61]); Table S3: The
binding mode of the native ligand Sinefungin, SARS-CoV-2 (co-crystal from 6WKQ [38]); Table S4:
The binding mode of the native ligand S-adenosylmethionine (SAM), MERS-CoV (co-crystal from
5YN6 [59]); Table S5: The binding mode of sinefungin, MERS-CoV (co-crystal from 5YNB [59]);
Table S6: The binding mode of the native ligand S-adenosylmethionine (SAM), SARS-CoV (co-
crystal from 3R24 [60]); Table S7: The binding mode of the native ligand sinefungin, SARS-CoV
(co-crystal from 2XYR [60]); Table S8: The docking results: PL—protein -ligand, HB—hydrogen
bonds, BA—binding affinity and RMSD expressed in kcal/mol and Å, respectively; Table S9: The
physico-chemical parameters describing the studied ligands; Table S10: The pharmacokinetic and
toxicity profiles of the studied ligands.
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