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Dynamic formulation and inertia 
fast estimation of a 5‑DOF hybrid 
robot
Qi Liu 1,2, Tingzheng Yan 1,2, Bin Li 1,2 & Yue Ma 1,2*

As the main driving mechanism of a hybrid robot, the parallel mechanism is a nonlinear time‑varying 
system. The load inertia of its actuated joints changes with the configuration of the robot. Analyzing 
and fitting the inertia variation is of great significance to the design and control of hybrid robots. By 
taking a hybrid robot named TriMule as an example, the variation of load inertia of each actuated 
joint in the whole workspace is first revealed based on the dynamic analyses of the robot. Then two 
methods based on the circular and elliptical membership are proposed to calculate fitted inertia over 
the whole workspace using inertia information at a few configurations. Finally, the fitting methods of 
the two membership functions are compared and discussed. The results show that the maximum value 
and global mean value of the fitting error of the elliptical membership method are 39.18% (51.23%) 
and 65.79% (81.25%) for actuated joint‑1 (joint‑2 and joint‑3) lower than those of circular membership 
method, which promise a better global fitting accuracy. The proposed method can be used to estimate 
the joint load inertia or other control variables affected by inertia in a quick manner, allowing the 
algorithm to be easily integrated into the robot control system.

Keywords Rigid body dynamics, Parallel mechanisms, Inertia estimation

Hybrid robots composed of a 3-DOF parallel mechanism and a 2-DOF A/C wrist (a wrist with A-axis and C-axis) 
show desirable performance in workspace, modularity, stiffness, accuracy and dynamic characteristics, which is 
especially suitable for machining large and complex  parts1.  Tricept2 and  Exechon3 robots are typical successful 
application cases of this kind of robot, which have been widely used in aircraft floor beam milling, skin machin-
ing, wing drilling and riveting. The two robots have become important technical solutions for Boeing, Airbus 
and other large aircraft manufacturers.

As the main driving mechanism of hybrid robots, the parallel mechanism is a nonlinear time-varying system, 
because the load inertia of actuated joints changes with the robot configuration. In view of the impact of this 
variation on the robot design and control performance, lots of researches have been carried out on dynamic 
performance  analysis4, motor  selection5, control  strategy6, and controller parameter  tuning7. In terms of dynamic 
performance analysis, the local and global inertia indices were proposed to evaluate the dynamic performance 
and analyse the coupling characteristics between joints for guiding the optimal  design8–11. The inertia matrix was 
established for the decoupling  control12 and servo motor  selection5,13. It can be seen that the accurate knowledge 
of the variation of the load inertia is of great significance in analyzing the design performance and control of the 
robot. Inertia identification divides roughly into two categories: model-based methods and data-driven methods. 
In model-based methods, the dynamics model is established first to calculate the joint driving  torque14, and then 
the least square  method15, the Kalman filtering  method16 or particle filtering  method17 is employed to identify 
parameters. The effectiveness of inertia in design or control is highly dependent upon the degree of dynamic 
complexity and practical accuracy of the parameter  identification18. In data-driven methods, neural  networks19, 
genetic  algorithm20, or extended Kalman  filter21 can be used to replace the dynamic model in constructing 
input–output relationships for parameter identification. A large amount of data support and complex fitting 
algorithms are required to ensure the identification accuracy though the heavy workload of math modeling is 
avoided. Unlike the offline identification methods mentioned above, the online identification methods calculate 
inertia parameters by using the input and output data of the system in real-time, and update the control model 
by using these calculation results to improve control  quality22,23. This idea is suitable for robots with dynamic 
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characteristics, but it requires minimizing the complexity of the algorithm to meet the computational capacity 
limitations of motion controllers in limited memory  space24.

Currently, the commonly used on-line process for inertia estimation is implemented in three steps: (1) Estab-
lish the rigid body dynamic model. (2) Measure the dynamic parameters of the virtual prototype or identify those 
by the physical prototype experiments. (3) Calculate each element of the inertia matrix based on the dynamic 
model. However, this method needs to establish a complex dynamic model and identify many dynamic param-
eters by experiments to improve the calculation accuracy. The inertia matrix is obtained through the calculation 
of the Jacobian matrix and the inertia parameters of the components. This process involves a large number of 
complex matrix and vector operations. The algorithm complexity increases the real-time computational burden 
of the motion controller, leading to difficulties and costs in the application of the robot control system. Therefore, 
it is a valuable attempt to construct a simple algorithm that can calculate the inertia value in the whole workspace 
by only using the inertia information at a limited number of configurations, which can quickly estimate the load 
inertia of each actuated joint of the robot at any configuration, or other control variables affected by the inertia 
(PID controller parameters, acceleration feedforward parameters, friction compensation amplitude, etc.).

Motivated by the practical needs arising from the above-mentioned issues, this paper investigates the dynamic 
formulation and fast inertia estimation of a hybrid robot. The remainder of the paper is organized as follow: Hav-
ing reviewed the methods for inertia identification methods in Section “Introduction”, kinematics and inverse 
dynamics analysis of the robot is carried out in Section “Kinematics and inverse dynamics analysis”, which is 
used for the inertia variation analysis and evaluation requires. In Section “Inertia fast estimation”, two inertia 
estimation algorithms are proposed based on circular and elliptical membership functions, respectively. In Sec-
tion “Verification”, both simulations and experiments are carried out to verify the effectiveness of the proposed 
method on the accuracy of inertia calculation before conclusions are drawn in Section “Conclusions”.

Kinematics and inverse dynamics analysis
System description
Figure 1 shows the CAD model of the hybrid robot named TriMule, which is composed of a 3-DOF parallel 
mechanism and a 2-DOF wrist. The parallel mechanism comprises an actuated UPS limb plus a 1T1R planar 
linkage containing two actuated RPS limbs and a passive RP limb. The base link of the planar parallel mecha-
nism is connected by a pair of R joints with the machine frame. Here, R, P, U, and S denote revolute, prismatic, 
universal, and spherical joints, and the underlined P denotes an actuated prismatic joint.

Figure 2 shows a schematic diagram of the TriMule robot. For the convenience of description, the UPS limb 
and two RPS limbs are numbered as limb 1, 2 and 3 respectively. The RP limb plus the A/C wrist is numbered as 
limb 4, which is composed of five joints and six components numbered 0–5. The five joints include the R joint of 
the base link, the two joints of the RP limb and the two joints of the A/C wrist, which do not include the spindle. 
Joint j

(

j = 1 . . . 5
)

 connects the component j − 1 and j . P represents the intersection of the two rotating axes of 
the A/C wrist, and C represents the tool tip point.

In order to effectively describe the position and attitude of each component, the reference coordinate system 
{R0} is established at the point B4 . The x0 axis coincides with the axis of the base link. The z0 axis is perpendicular 
to the plane determined by Bi(i = 1, 2, 3) . Figures 3 and 4 show the body-fixed frame 

{

Rj,i
}

 of the j-th component 
in the i-th limb and the tool frame 

{

R5,4
}

 established by the D-H method.
Then the orientation matrix of 

{

R5,4
}

 with respect to {R0} can be expressed by

where 0R3,4 =
[

s2,4 × s3,4 s2,4 s3,4
]

 is the orientation matrix of 
{

R3,4
}

 with respect to {R0} , 3,4R5,4 is the orienta-
tion matrix of 

{

R5,4
}

 with respect to 
{

R3,4
}

 respectively. Here, s2,4 × s3,4 , s2,4 and s3,4 represent the unit vectors 
of three coordinate axes of 

{

R3,4
}

 . u , v and w represent that of three coordinate axes of 
{

R5,4
}

 . θj,4(j = 1, 2, 4, 5) 
is the angle of rotation about the zj−1,4 axis.

(1)0R5,4 =
0R3,4

3,4R5,4 =
[

u v w
]

Base link RP limb

RPS limb

UPS limb

Platform

2-DOF wrist

Figure 1.  CAD model of the TriMule robot.
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Figure 2.  Schematic diagram of the TriMule robot.

Figure 3.  Body-fixed frames of limb i(i = 1, 2, 3).

Figure 4.  Body-fixed frames of limb 4.
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Kinematic analysis
Inverse displacement analysis
The inverse displacement analysis is to solve the two rotation angles of the A/C wrist and the length of three 
actuated limbs of the parallel mechanism by the known dimensional parameters, tool tip position vector and 
tool axis vector.

The position vector of P fixed on the platform can be expressed as

where

Here rC and w represent the tool tip vector and the tool orientation vector, q3,4 is the length of the RP limb, 

dw =

∥

∥

∥

∥

⇀

QC

∥

∥

∥

∥

 , dv =
∥

∥

∥

∥

⇀

PQ

∥

∥

∥

∥

.

Taking norm on both sides of Eq. (3), leads to

According to Eqs. (2) and (4), the rotation angles θ1,4 and θ2,4 of R(RP) limb can be obtained

Then 0R3,4 can be determined. Rewrite Eq. (1) as

Then, the rotation angles θ4,4 and θ5,4 of the A/C wrist can be obtained by

The closed-loop equation formed by B4 − Bi − Ai − A4 − P − B4 limb can be expressed as

where q3,i and s3,i are the length and unit vector of the i − th actuated limb respectively, ai = 0R3,4ai0.

a20 = ax x̂, a30 = −ax x̂, a10 = −ay ŷ,

b2 = bx x̂, b3 = −bx x̂, b1 = −by ŷ
 , 
ax =

∥

∥

∥

−−→
A4A2

∥

∥

∥ =

∥

∥

∥

−−→
A4A3

∥

∥

∥

ay =
∥

∥

∥

−−→
A4A1

∥

∥

∥

 , 
bx =

∥

∥

∥

−−→
B4B2

∥

∥

∥ =

∥

∥

∥

−−→
B4B3

∥

∥

∥

by =
∥

∥

∥

−−→
B4B1

∥

∥

∥

 , x̂ =
(

1 0 0
)T , 

ŷ =
(

0 1 0
)T.

Taking norm on both sides of Eq. (8), leads to

So far, the inverse displacement solution of the TriMule robot has been solved.

Velocity and acceleration analysis
The velocity analysis is concerned with the determination of axial telescopic velocity q̇3,i(i = 1, 2, 3 ) of three actu-
ated limbs of parallel mechanism and angular velocity θ̇j,4( j = 4, 5 ) of the A/C wrist according to linear velocity 
vector vC of tool tip C and tool angular velocity vector ωC.

The velocity vector vC and ωC can be expressed as

where vP represents linear velocity vector of point P , rPC represents the position vector from point P to point C, 
Jw = [ s4,4 s5,4 ] , θ̇ =

(

θ̇4,4 θ̇5,4
)T , s4,4 and s5,4 represent the C-axis vector and A-axis vector of the wrist, ω3,4 

represents the angular velocity vector of the 3-th component in limb 4. Here, the relationship between q̇3,i , ω3,i

(i = 1, 2, 3, 4 ) and vP can be expressed as

where q̇ =
(

q̇3,1 q̇3,2 q̇3,3
)T and q̇3,4 represent the velocity vector of the actuated joints and the passive joint. J , 

J3,4 and Jω3,i represent the Jacobian matrices.

(2)rP = rC − dww − dvv

(3)rP =
(

q3,4 + e
)

s3,4

v = w × u, u =
n× w

�n× w�
,n =

rQ
∥

∥rQ
∥

∥

, rQ = rC − dww, e =
∥

∥

∥

−−→
A4P

∥

∥

∥

(4)q3,4 = �rP� − e, s3,4 =
rP

�rP�
=





s3,4x
s3,4y
s3,4z





(5)θ1,4 = arctan

(

−s3,4y

s3,4z

)

, θ2,4 = arcsin
(

s3,4x
)

(6)0RT
3,4

0R5,4 =
3,4R5,4 =

[

r11,4 r12,4 r13,4
r21,4 r22,4 r23,4
r31,4 r32,4 r33,4

]

(7)θ4,4 = arctan2
(

r21,4, r11,4
)

, θ5,4 = arctan2
(

r32,4, r33,4
)

(8)rP − bi − es3,4 + ai = q3,is3,i , i = 1, 2, 3

(9)q3,i =
∥

∥rP − bi − es3,4 + ai
∥

∥, s3,i =
(

rP − bi − es3,4 + ai
)

/q3,i , i = 1, 2, 3

(10)vC = vP + ωC × rPC ,ωC = ω3,4 + Jw θ̇

(11)q̇ = JvP ,ω3,i = Jω3,ivP(i = 1, 2, 3), q̇3,4 = J3,4vP ,ω3,4 = Jω3,4vP
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Substitute Eq. (11) into Eq. (10), the mapping relationship between joint velocity and operation velocity can 
be constructed by

where J+v =
(

JTv Jv
)−1

JTv  , Jv =
[

J−1 − [rPC×]Jω3,4 J
−1 −[rPC×]Jw

Jω3,4 J
−1 Jw

]

 , [rPC×] is the skew-symmetric matrix of rPC
.

The acceleration analysis is concerned with the determination of axial telescopic acceleration q̈3,i(i = 1, 2, 3 ) 
of three actuated limbs of parallel mechanism and angular acceleration θ̈j,4( j = 4, 5 ) of the A/C wrist according 
to the acceleration vector aC of point C and tool angular acceleration vector εC.

Taking the derivatives of Eq. (10) with respect to time yields

where ̇Jw = [ω4,4 × s4,4 ωC × s5,4 ] , ¨θ =

(

¨θ4,4 ¨θ5,4
)T , aP is the acceleration vector of point P . Here, the relation-

ship between q̈3,i , ω̇3,i(i = 1, 2, 3, 4 ) and aP can be expressed as

where q̈ =

(

q̈3,1 q̈3,2 q̈3,3

)T.
Substitute Eq. (14) into Eq. (13), we have the acceleration mapping function

w h e r e  J+a =
(

JTa Ja
)−1

JTa  ,  Ja =

[

J−1 − [rPC×]Jω3,4 J
−1 −[rPC×]Jw

Jω3,4 J
−1 Jw

]

 , 

K1 = −J−1J̇vP + K2 × rPC + ωC × (ωC × rPC) , K2 = J̇ω3,4vP − Jω3,4 J
−1 J̇vP + J̇w θ̇.

Inverse dynamic formulation
The inverse dynamic analysis is concerned with the determination of the driving torque required for achieving a 
given motion according to the inertia parameters of the moving components, which provides a theoretical basis 
for analyzing the variation of load inertia of the actuated joints in the whole  workspace25,26.

Motion analysis of component centroid
Considering that the mass and inertia of spherical joints, Hooke joints and the connecting frame rotating pair 
are small, these components are ignored. Therefore, the inertia force and torque in the TriMule robot system are 
generated by the following components: component 2 (limb outer tube) and component 3 (push rod) in limb i
(i = 1, 2, 3 ); component 1 (base link), component 2 (outer ring), component 3 (platform assembly), component 
4 (C-axis assembly) and component 5 (A-axis assembly and Spindle) in limb 4; the driven assembly of actuated 
joints (lead screw assembly, A/C wrist driven assembly).

The position vector of the centroid of component j in limb i can be expressed as

where j,irCj,i represents the position vector of centroid Cj,i measured in 
{

Rj,i
}

 , rj,i represents the position vector 
of coordinate origin of 

{

Rj,i
}

 measured in {R0}.
Taking the first and second derivatives of Eq. (16) with respect to time yields, we can get

where Jv3,i is the Jacobian matrix of component centroid velocity with respect to moving platform velocity.

Inverse dynamic analysis
The virtual work principle can be used to obtain

where FCj,i and TCj,i represent the inertia force and torque of each component j in limb i(i = 1, 2, 3, 4 ), FGj,i and 
TGj,i represent the gravity and gravity torque of each component j in limb i  , T3,i(i = 1, 2, 3 ) and Tj,4( j = 4, 5 ) 
represent the inertia torque generated by the actuated joint assembly rotating around its own axis. Fe and Te 
represent the external force and torque on the spindle, τp =

(

τ1 τ2 τ3
)T , τi(i = 1, 2, 3 ) represents the driving 

torque of the actuated joint in the i-th limb of the parallel mechanism, τs =
(

τ4 τ5
)T , τi(i = 4, 5 ) represents the 

(12)
(

q̇

θ̇

)

= J+v

(

vC
ωC

)

(13)aC = aP + εC × rPC + ωC × (ωC × rPC), εC = ω̇3,4 + J̇w θ̇ + Jw θ̈

(14)q̈ =
˙JvP + JaP , ω̇3,i =

˙Jω3,i
vP + Jω3,i

aP(i = 1, 2, 3), q̈3,4 = ˙J3,4vP + J3,4aP , ω̇3,4 =
˙Jω3,4

vP + Jω3,4
aP

(15)
(

q̈

θ̈

)

= J+a

(

aC − K1

εC − K2

)

(16)rCj,i =
0Rj,i

j,irCj,i + rj,i

(17)vC3,i = Jv3,ivP , aC3,i = Jv3,iaP + J̇v3,ivP

(18)

4
∑

i=1

ne1,i
∑

j=ns1,i

(

FTCj,i
vCj,i

)

+

4
∑

i=1

ne2,i
∑

j=ns2,i

(

TT
Cj,i

ωj,i

)

+

4
∑

i=1

ne3,i
∑

j=ns3,i

(

FTGj,i
vCj,i

)

+

4
∑

i=1

ne4,i
∑

j=ns4,i

(

TT
Gj,i

ωj,i

)

+

3
∑

i=1

T3,i
2πq̇3,i

p
+

5
∑

j=4

Tj,4

(

iw,j θ̇j,4

)

+ FTe vC + TT
e ωC +

2π

p
τ
T
p q̇ + τ

T
s diag

[

iw,j
]

θ̇ = 0
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driving torque of the actuated joint in the A/C wrist, iw,j is the gear ratio. nsk,i and nek,i(k = 1, 2, 3, 4 ) refer to the 
number of components considering inertia force (torque) or gravity, as shown in Table 1.

By rewriting Eq. (18) into matrix form, the dynamic equation of the hybrid robot can be obtained

where p represents lead screw pitch, Is and Iw,j represent the inertia about their respective axes, respectively, iw,j 
represents the transmission ratio, I3 is 3× 3 identity matrix, and

It can be seen from Eq. (19) that the driving torque τp of the parallel mechanism consists of two parts: (1) All 
external force or torque of each component of the whole system; (2) Inertia torque generated by the rotation of 
the lead screw around its own axis. The driving torque τs of the A/C wrist consists of two parts: (1) Gravity, inertia 
torque and external load term of each component; (2) Inertia torque generated by the transmission mechanism 
of the A/C wrist. It can be seen that τs has nothing to do with the gravity and inertia force of each component 
in the parallel mechanism.

Considering that the pose of the wrist and the load inertia around the A/C axis change little in  practice7, the 
variation of the load inertia of each actuated joint of the parallel mechanism is the key issue that needs attention 
and research. The A/C wrist and the moving platform are regarded as a component, and then the rigid body 
dynamic equation of the parallel mechanism can be constructed according to Eqs. (16), (17) and Eq. (19) as

where M is the inertia matrix of the parallel mechanism in the operating space; H is the Coriolis force and 
centrifugal force acting on the system, which is a function of the position, attitude and velocity of the moving 
platform; G reflects the influence of gravity; E refers to the term related to external load. For more information 
about the mathematical expressions of these components, please refer  to26.

The above formula can also be rewritten into the general form of rigid body dynamics equation by consider-
ing  friction27

where

The inertia matrix of the parallel mechanism in the joint space is only related to the joint position. Let Mi 
represents the main diagonal element of M

(

q
)

 , then the load inertia can be calculated by Ii =
p2

4π2Mi . Here, F3,i 
represents the friction force of the i-th actuated joint, fs , fc and fv denote the static, Coulomb, and viscous fric-
tion parameters, respectively. It is worth noting that the static and Coulomb friction forces vary with the normal 
forces, leading to fs and fc should be identified  accordingly28.

(19)

τ =

�

τp

τs

�

=













−
p

2π J
−T

�

Fp + FC5,4 + FG5,4 + Fe + JTω3,4

�

TC4,4
+ TC5,4 + Tω4,4 + Tω5.4

+Te + [rPC×]Fe

��

+ 2π
p
Isq̈

−diag
�

i
−1
w,j

�

JTw

�

TC5,4 + Tω5.4 + Te + [rPC×]Fe

+
�

I3 − s5,4s
T
5,4

��

Tω4,4 + TC4,4

�

�

+ diag
�

Iw,jiw,j

�

θ̈













Fp =

4
�

i=1

JTω3,i



Tω3,i +

3
�

j=2

TCj,i



+

3
�

i=1

JTω3,i
TG2,i + JTω3,4

s1,4s
T
1,4TC1,4 ,Tωj,i =

��

rωj,i×
�

+
��

0Rj,i
j,irCj,i

�

×
���

FCj,i + FGj,i

�

rωj,i =







q3,is3,i i = 1, 2, 3, 4,j = 3
�

q3,4 + e
�

s4,4 i = 4, j = 4
rPC i = 4, j = 5

(20)τp =
p

2π

(

MaP +Hvp + G + E
)

(21)τp =

p

2π

(

M
(

q
)

q̈ +H
(

q,q̇
)

q̇ + G
(

q
)

+ E
(

q
)

+ F
(

q̇
))

M
(

q
)

= MJ−1,H
(

q,q̇
)

=
(

H −MJ−1J̇
)

J−1,G
(

q
)

= G ,E
(

q
)

= E , F
(

q̇
)

=
(

F3,1 F3,2 F3,3
)T

F3,i = fcsgn
(

q̇3,i
)

+
(

fs − fc
)

e−(q̇3,i/ q̇s)
2

sgn
(

q̇3,i
)

+ fvq̇3,i , i = 1, 2, 3

Table 1.  The number of components considering inertia force (torque) or gravity.

ns1,i ne1,i ns2,i ne2,i ns3,i ne3,i ns4,i ne4,i

i = 1, 2, 3 3 3 2 3 3 3 2 2

i = 4 3 5 1 5 3 5 0 0
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Inertia fast estimation
Analysis of inertia variation and grid estimation method
Due to the load inertia of the actuated joint changes with the configuration of the robot, the calculation of that 
is significant for motor selection, controller parameter tuning, model-based control method, etc. In this sec-
tion, a fast estimation method is proposed to quickly and easily calculate the joint inertia of the robot at any 
configuration in the workspace.

Given the dimensional parameters  in29 and the inertial parameters of the main components measured in the 
body-fixed frames extracted from the CAD model in Table 2, the variation of the joint load inertia in the whole 
circular workspace is calculated and shown in Fig. 5. Here, 600 × 600 uniformly distributed sample points in 
the circular workspace are selected, and then the load inertia of each actuated joint at these sample points is 
calculated by using the dynamic model. Equipped with the inertia information at hand, the contour map can 
be drawn as shown in Fig. 5. It can be seen from the figure that Ii is distributed in an approximate concentric 
ellipse from the center to the boundary. The gradient closer to the boundary in the direction of the minor axis 
of the ellipse is larger, and the fluctuation amount can reach 37%. Here, the circular workspace refers to the 2D 
workspace of the parallel mechanism, and the 3D workspace of that can be found in  reference30. Generally, to 
solve this kind of fitting problem, firstly divide the workspace into grids as shown in Fig. 6, then determine the 

Table 2.  Inertial parameters of the TriMule robot. Pitch p = 10mm , Inertia of lead screw 
Is = 10.75× 10−4 kgm2.

Limb i Component j mj,i(kg) j,iICj,i(kgm2) j,irCj,i(m)

1, 2, 3
1 36.02 diag

[

5.33 5.33 0.07
]

(

0 0 −0.19
)T

2 13.83 diag
[

1.35 1.35 0.01
]

(

0 0 −0.47
)T

4

1 115.80 diag
[

8.63 1.17 8.63
]

(

0 0 0
)T

2 14.39 diag
[

0.13 0.09 0.11
]

(

0 0 0
)T

4 32.03 diag
[

0.50 0.28 0.40
]

(

0 −0.09 0
)T

5 38.48 diag
[

0.49 0.43 0.19
]

(

0 0 −0.16
)T

Figure 5.  Contours of inertia in the task workspace.

Current position

Sample position

Figure 6.  Inverse distance weighting method.
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sample inertia at the grid nodes through the dynamic model and the corresponding position coordinates, and 
finally use the inverse distance weighting method to fit the inertia at any configuration:

where Îi(rP) represents the estimated value of the load inertia of the i-th actuated joint at the current position 
rP , Ik,i represents the load inertia of the i-th actuated joint at the k - th(k = 1, 2, . . . ,N ) sample configuration rPk , 
dk = �rPk − rP� . It can be seen from Eq. (22) that this method belongs to a fuzzy algorithm, which estimates 
inertia by the membership degree µk of the fuzzy center Ik,i . However, this method needs to determine the sam-
ple inertia at each grid node first, which increases a lot of workload and the burden of calculation and storage.

Therefore, it is expected that the global inertia variation can be fitted using only a few sample data. Figure 7a 
shows the method of using 5 sample points as fuzzy centers to fit the inertia. Then, the inertia at any configura-
tion can be estimated by using the triangle-shape grade of the membership function:

where R represents the radius of the workspace, µk represents the membership degree of the inertia at the current 
configuration rP with respect to the inertia at the fuzzy central configuration rPk . Figure 7b shows three general 
cases of the fuzzy estimation by taking the P1 − P4 − P5 region as an example. Case 1: the calculation of inertia 
is only affected by P1 and P4 ; Case 2: the calculation of inertia is affected by P1 , P4 and P5 ; Case 3: the calculation 
of inertia is only affected by P1 and P5 . It can be seen that this method makes the inertia calculation only depend 
on the inertia information of the surrounding 2–3 points. In order to verify the effectiveness of this method, the 
fitting of the inertia of P6 and P7 is analyzed as shown in Fig. 8. In the figure, P6 and P4 are on the same inertia 
isoline. The calculation of the inertia at P6 is not only affected by the inertia at P4 , but also affected by that at 
P1 . Obviously, Data at P1 is an interference factor. P7 and P5 are on the same inertia isoline. The calculation of 
the inertia at P7 is affected by the inertia at P5 , P1 and P3 . Here, data at P1 and P3 are the interference factors. It 
can be seen that when the number of points as fuzzy centers is small, the estimation of inertia is not accurate if 
the uniformly distributed fuzzy centers are simply selected. Therefore, the variation of inertia should be further 
considered when determining the fuzzy center point and constructing the membership function.

(22)Îi(rP) =

N
∑

k=1

Ik,i

d2k

/

N
∑

k=1

1

d2k
=

N
∑

k=1

µkIk,i

(23)Îi(rP) =

5
∑

k=1

µkIk,i ,µk =

{

R−dk
R dk ≤ R

0 dk > R
, dk = �rP − rPk�

Figure 7.  Inertia fitting by fuzzy method.

Figure 8.  Analysis of the proposed method.
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Circle membership function fitting
By observing the inertia distribution shown in Fig. 5, it can be seen that the inertia isoline is distributed in the 
shape of an approximate concentric ellipse, so it is advisable to select the fuzzy center in the direction of the 
minor axis of the ellipse, and then choose the triangular membership function for fitting, as shown in Fig. 9. 
In the figure, P1 , P2 , P3 represent the points on the isoline corresponding to the minimum value, global mean 
value and maximum value of inertia, respectively. Let P1 be fixed, P2 moves on the circle with P1 as the center 
and |P1P2| as the radius, and P3 moves on the circle with P1 as the center and |P1P3| as the radius, then the influ-
ence range of these points can cover the whole circular workspace. Accordingly, the algorithm of Eq. (23) is 
improved as follows:

where

Here rP1 , rP2 , rP3 represent the position vectors of P1 , P2 , P3 in frame {R0}.
According to Eq. (24), the circle membership function (CMF) covering the whole workspace can be drawn, 

as shown in Fig. 10. Employed by the membership function and the inertia information shown in Table 3, the 
variation of the load inertia of each actuated joint in the whole workspace is fitted, as shown in Fig. 11. It can be 
seen from the figure that the fitting results are similar to the theoretical results shown in Fig. 5. However, since the 
membership function is constructed by scanning the entire workspace along the circular track using the triangu-
lar membership function, the fitted isoline is still quite different from the approximate elliptical isoline in Fig. 5.

Ellipse membership function fitting
The membership function is constructed by scanning the entire workspace along the elliptical track instead of 
the circular track, as shown in Fig. 12. In the figure, ak and bk represent the length of the long semi axis and the 
short semi axis of the ellipse, respectively. Then the ellipse membership function (EMF) can be constructed by

(24)Îi(rP) =

3
∑

k=1

µkIk,i ,µk =

{

Rk−dk
Rk

dk ≤ Rk
0 dk > Rk

Rk =

{

r1 k = 1
r2 − r1 k = 2
r2 − r1 k = 3

, dk =

{

�rP − rP1� k = 1
|r1 − �rP − rP1�| k = 2
|r2 − �rP − rP1�| k = 3

, r1 = �rP2 − rP1�, r2 = �rP3 − rP1� = R

Figure 9.  Improved fuzzy fitting method.

Figure 10.  Circle membership function.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17252  | https://doi.org/10.1038/s41598-024-68408-5

www.nature.com/scientificreports/

where

Here θk represents the parameter angle of the elliptic parametric equation, rP1 and rPak represent the position 
vectors of the ellipse center point P1 and the major axis vertex Pak , respectively. Accordingly, given the parameters 
shown in Table 4, the membership function covering the whole workspace is drawn, as shown in Fig. 13. The 
variation of the load inertia of each actuated joint in the whole workspace is fitted as shown in Fig. 14. It can be 
seen from the figure that the fitting results are very close to the theoretical results shown in Fig. 5.

(25)µ1 =







1 d ≤ r1
r2−d
r2−r1

r1 ≤ d ≤ r2
0 d ≥ r1

,µ2 =















0 d ≤ r1
d−r1
r2−r1

r1 ≤ d ≤ r2
r3−d
r3−r2

r2 ≤ d ≤ r3
0 d ≥ r3

,µ3 =







0 d ≤ r2
d−r2
r3−r2

r2 ≤ d ≤ r3
1 d ≥ r3

d = �rP − rP0�, rk =

{

0 k = 1
√

a2kcos
2θk + b2ksin

2θk k = 2,3
, θk = arctan

(

bk

ak
tanϕk

)

, tanϕk =
�(rPak − rP1)× (rP − rP1)�

(rPak − rP1)
T(rP − rP1)

Table 3.  Configuration information for constructing circle membership function. Inertia ( ×10−3 kgm2 ), rP 
(m)

Minimum value ( P1) Global mean value ( P2) Maximum value ( P3.)

Inertia rP1 Inertia rP2 Inertia rP3

Joint1 2.65 (

0 −0.29
)T 2.83 (

0 0.04
)T 3.51 (

0 0.41
)T

Joint2 2.69 (

0.06 −0.12
)T 2.88 (

−0.2 −0.32
)T 3.69 (

−0.5 −0.53
)T

Joint3 2.69 (

−0.06 −0.12
)T 2.88 (

0.2 −0.32
)T 3.69 (

0.5 −0.53
)T

Figure 11.  Fitting results of circle membership function.

Figure 12.  Ellipse membership function.
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Verification
Simulations
In this section, simulations will be carried out to verify the effectiveness of the proposed methods. The simula-
tions are designed to examine two important issues: (1) the accuracy of calculating inertia; (2) the simplicity 
and fastness of the algorithms.

Figures 15 and 16 show the errors of the fitting results of Figs. 11 and 14 relative to the theoretical results of 
Fig. 5 respectively. The maximum values and global mean values of the errors are shown in Table 5. It can be 

Table 4.  Configuration information for constructing ellipse membership function (m).

a1 , b1 a2 , b2 a3 , b3 rP1 rPak

Joint 1 0.11, 0.09 0.52, 0.35 0.78, 0.69 (

0 −0.29
)T (

0.3 −0.29
)T

Joint 2 0.12, 0.08 0.56, 0.35 0.87, 0.82 (

0.06 −0.12
)T (

−0.03 0.06
)T

Joint 3 0.12, 0.08 0.56, 0.35 0.87, 0.82 (

−0.06 −0.12
)T (

0.03 0.06
)T

Figure 13.  Ellipse membership function.

Figure 14.  Fitting results of ellipse membership function.

Figure 15.  Fitting errors of circle membership function.
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seen that the maximum values and the global mean values of the fitting errors of the elliptic membership func-
tion are within 0.22× 10−3 kgm2 and 0.26× 10−4 kgm2 respectively. Compared with the fitting errors of the 
circle membership function, the maximum value and the global mean value of the fitting errors of joint 1 are 
reduced by 39.18% and 65.79%, and those of joint 2 and 3 are reduced by 51.23% and 81.25%, which proves that 
the ellipse membership function has better global fitting accuracy.

Table 6 shows the memory space occupied and computation time of the three algorithms: the dynamic model-
based estimating algorithm, the grid estimating algorithm, and the fuzzy estimating algorithm with the ellipse 
membership function. It can be seen from the table that the memory space of the grid estimating algorithm is 
much larger than that of other algorithms. Here, the inertia values of 900 × 900 grid nodes occupy 10,421.06 kb 
and the inverse distance weighting calculation occupies only 1.41 kb, leading to a large amount of offline identi-
fication work and fewer online computing burden. The fuzzy estimating algorithm with the ellipse membership 
function occupies the minimum memory space, which can perform one operation within 4 ms less than the 
trajectory interpolation period of 10 ms.

Experiments
In this section, the proposed method for inertia fast estimation will be verified by experiments. Figure 17 shows 
the realized prototype of the TriMule robot and the verifying path. Equipped with an IPC + Turbo PMAC-PCI 
CNC system, the robot can move the platform reference point P at a maximum speed and acceleration of 60 m/
min and 10 m/s2, respectively.

To verify the effectiveness of the new estimation algorithm, the circular path was planned with R = 0.3 m, 
H = 1.2 m, h = 0.19 m by taking the values of 30 m/min and 5 m/s2 for the maximum velocity and acceleration of 
P along the path. The driving torque of each actuated joint is measured from the servo driver by employing the 
data acquisition card and Labview program. Figure 18 shows the driving torque of each actuated joint with time 
obtained by measurement experiments (ME), calculation using the dynamics model (CDM) and estimation using 
the proposed method (EPM). Here, the inertial torques are computed by CDM or EPM and the other torque 
components are computed by using the same dynamic model. It can be seen that three torque curves are similar 
and the root mean squares (RMS) of errors with CDM or EPM relative to ME listed in Table 7 are within 0.7Nm . 
These deviations are caused by the fitting errors of the elliptical membership function as shown in Fig. 16, which 

Figure 16.  Fitting errors of ellipse membership function.

Table 5.  Fitting errors of two membership functions ( ×10−3 kgm2).

Errors of Joint 1 Errors of Joint 2 Errors of Joint 3

Maximum value Global mean value Maximum value Global mean value Maximum value
Global mean 
value

CMF 0.268 0.076 0.447 0.128 0.447 0.128

EMF 0.163 0.026 0.218 0.024 0.218 0.024

Percent reduction 39.18% 65.79% 51.23% 81.25% 51.23% 81.25%

Table 6.  The memory space occupied and computation time of the three estimating algorithms.

The dynamic model-based estimating algorithm The grid estimating algorithm
The fuzzy estimating algorithm with ellipse membership 
function

The memory space (kb) 8.26 10,422.47 3.18

The computation time (ms) 50.01 2.75 3.06
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is within an acceptable range. As compensation, the proposed method has a lower computational complexity 
compared to using the dynamic model, leading to the reduction of the computational memory burden.

Conclusions
This paper presents the dynamic formulation and a method for inertia fast estimation of a hybrid robot. The 
conclusions are drawn as follows.

(1) Based on the analysis of kinematics and rigid body dynamics, the distribution of the load inertia of each 
actuated joint of the parallel mechanism in the whole workspace is revealed, and the isolines of that are 
approximately concentric ellipses.

(2) The method for fitting the inertia distribution, which only uses the inertia information of a few configura-
tions, is proposed using the circle or elliptical membership function. The results show that the elliptical 
membership function has better global fitting accuracy in comparison with the circle membership function 
and the torque estimation accuracy is within an acceptable range.

(3) The proposed method is also applicable to the off-diagonal elements of the inertia matrix (joint couplings) 
and the joint load inertia of other parallel mechanisms. It can be used to quickly predict other control 

Figure 17.  The prototype of the TriMule robot and the verifying path.

Figure 18.  The driving torque of each actuated joint with time.

Table 7.  The RMS of joint torque errors along the verifying path.

Joint 1 Joint 2 Joint 3

CDM 0.27 0.64 0.50

EPM 0.32 0.66 0.57
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variables (PID parameters and acceleration feedforward parameters) affected by the inertia, allowing the 
algorithm to be easily integrated into the robot control system.

Data availability
Due to [reasons for data non disclosure], the datasets generated and/or analyzed during the current research 
period are not publicly available, but can be obtained from the corresponding author.
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