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Modelling Salmonella Typhi 
in high‑density urban Blantyre 
neighbourhood, Malawi, using 
point pattern methods
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Tikhala M. Jere 2, Harrison Msuku 2, The STRA​TAA​ Consortium 2*, Robert S. Heyderman 7, 
Melita A. Gordon 2,8 & Emanuele Giorgi 1

Salmonella Typhi is a human-restricted pathogen that is transmitted by the faecal–oral route and 
causative organism of typhoid fever. Using health facility data from 2016 to 2020, this study focuses 
on modelling the spatial variation in typhoid risk in Ndirande township in Blantyre. To pursue 
this objective, we developed a marked inhomogeneous Poisson process model that allows us to 
incorporate both individual-level and environmental risk factors. The results from our analysis indicate 
that typhoid cases are spatially clustered, with the incidence decreasing by 54% for a unit increase 
in the water, sanitation, and hygiene (WASH) score. Typhoid intensity was also higher in children 
aged below 18 years than in adults. However, our results did not show evidence of a strong temporal 
variation in typhoid incidence. We also discuss the inferential benefits of using point pattern models 
to characterise the spatial variation in typhoid risk and outline possible extensions of the proposed 
modelling framework.

Salmonella enterica serovars Typhi (S. Typhi) is a human-restricted pathogen that is transmitted by the faecal-
oral route and the causative organism of typhoid fever. S. Typhi is estimated to cause more than 10.9 million 
cases each year, with about 116,000 of the cases resulting in death1,2. Whilst the global incidence of typhoid is 
estimated at 293 cases per 100,000 person-years, the highest burden of typhoid is reported to be in resource-
constrained settings, particularly in sub-Saharan Africa and South Asia2,3. A meta-analysis in 2017 estimated a 
typhoid incidence of 149 cases per 100,000 person-years in southern sub-Saharan Africa, whilst South Asia was 
estimated to have a typhoid incidence of 204 cases per 100,000 person-years2.

Typhoid is primarily transmitted when a healthy person comes into contact with stool-contaminated food 
or water3–5. Inadequate access to clean water and sanitation are thus two of the main risk factors associated with 
typhoid6. One study has indeed shown that, in Malawi, typhoid risk is highly affected by the type of water that a 
household uses for cooking and cleaning5. Elevation also plays an important role in the risk of typhoid infection. 
A study in Kenya showed that individuals, particularly children, living in low-elevation areas were twice more 
likely to contract typhoid than people living at higher elevations4. This can be explained by the accumulation of 
faecal waste in low-elevation areas due to the downstream flow of contaminated water4. Recent studies3,7 have 
also reported that rainy seasons are associated with an increased risk of typhoid, suggesting that the occurrence 
of typhoid follows a seasonal pattern with variations dependent on the climatic and environmental conditions 
of the region. On the other hand, heavy-intensity rainfall is shown to have a negative association with typhoid 
incidence as the high-intensity rainfall may wash away faecal substances7.

The risk of typhoid also varies across different groups of age and gender. Several studies have shown that 
the burden of typhoid is highest among children between 5 and 19 years, an age group typically identified as 

OPEN

1The Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster University, Lancaster, 
UK. 2Malawi Liverpool-Wellcome (MLW) Trust Programme, Blantyre, Malawi. 3School of Global and Public Health, 
Kamuzu University of Health Sciences, Blantyre, Malawi. 4Department of Infection, Immunity and Cardiovascular 
Disease, University of Sheffield, Sheffield, UK. 5Department of Epidemiology of Microbial Diseases, Yale University, 
New Haven, USA. 6Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK. 7Division 
of Immunity and Infection, Veterinary and Ecological Sciences, University College London, London, UK. 8Institute 
of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.  *A list of authors and their 
affiliations appears at the end of the paper. *email: jessiekhaki@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-66436-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17164  | https://doi.org/10.1038/s41598-024-66436-9

www.nature.com/scientificreports/

school-going children1. A study in Blantyre, Malawi, showed that the highest typhoid-attributable risk percentage 
among the children in the study arose from spending a day in a daycare or school5. This result is in agreement 
with the results from another study where the incidence of typhoid was highest among children aged 5–9 years, 
followed by those aged between 2 and 4 years8. Evidence of the effect of gender on typhoid is, on the other hand, 
contradictory. While other studies have shown that both occurrences of typhoid and mortality due to typhoid 
are higher among males1, others have reported a higher occurrence of typhoid among females9.

Typhoid is monitored using passive or enhanced surveillance methods depending on a country’s level of 
endemicity and public health objectives. The World Health Organisation (WHO) recommends that endemic 
countries such as Malawi should have, as a minimum, laboratory and facility-based surveillance10. The 
surveillance can be carried out through passive reporting of results from the laboratory, the establishment of a 
surveillance system, or active review of laboratory records to find patients whose results meet the criteria for a 
confirmed typhoid case10. The WHO, additionally, recommends surveillance through population-based studies to 
estimate the population-based incidence of a country and generate information for programmatic interventions10. 
In this study, we used data collected from a passive surveillance study in Malawi6,11,12.

In Malawi since 1998, blood cultures have been routinely collected from febrile patients at Queen Elizabeth 
Central Hospital (QECH) in Blantyre13. A study showed that an average of 14 cases per year were recorded 
between 1998 and 2010 at QECH14. The same study also reported a rapid increase in typhoid cases starting from 
2011, with a peak observed in 2014 at 782 cases14. The outbreak of typhoid in both Malawi and other African 
countries is due to a multidrug-resistant (MDR) typhoid strain to ampicillin, chloramphenicol, and cotrimoxazole 
that originated in Asia14,15. The escalating issue of antimicrobial resistance (AMR) is a threat to global health 
as current drug AMR trends may hinder efforts to control typhoid through antibiotic treatment and lead to an 
increase in the risk of typhoid worldwide16.

Understanding the spatial variation in the risk of typhoid can help to identify disease hotspots and develop 
more targeted control interventions. Spatial and spatio-temporal statistics can thus play a critical role by utilising 
information across time and space and making the best use of data from constrained resource settings. Among 
previous typhoid research, some studies have used a quasi-Poisson generalised linear model and an over-
dispersed Poisson generalised linear model to assess the relationships between typhoid and climatic variables, 
such as temperature and rainfall7,17. Another previous study in Blantyre, Malawi, used geostatistical methods to 
model and map the inhomogeneous distribution of typhoid genomic data18. Similarly, a study from Ghana has 
shown that typhoid incidence at the district level exhibits spatial and temporal patterns and modelled that using 
a negative binomial autoregressive moving average model19. Another study in Uganda used a spatial scan statistic 
for incidence to identify hotposts and a standard Poisson model with no overdispersion to investigate spatio-
temporal trends of typhoid20. One of the main drawbacks of spatial scan statistics is the inability to correctly 
identify non-circular or irregularly shaped clusters21. Our work builds on the current literature by developing a 
spatially explicit statistical model for point pattern process typhoid data.

The focus of this paper is to develop a spatial point pattern model to assess the effect of environmental 
and individual risk factors on typhoid fever, using health facility data. To the best of our knowledge, this is 
the first study that uses spatial point pattern models for the analysis of geo-located typhoid cases. This work, 
therefore, extends prior research on geostatistical modelling of typhoid genomic data in Blantyre, Malawi, by 
modelling geo-located households using both individual-level and spatial covariates in the modelling18. The 
specific objectives of the study were as follows:

•	 To investigate the association between spatial and temporal covariates with the occurrence of typhoid in 
Ndirande township after adjusting for individual-level markers, namely age and gender and;

•	 To investigate spatial and temporal trends of typhoid in Ndirande township.

Methods
Study site
The study was conducted in Ndirande township in Blantyre city in Malawi between October 2016 and February 
2020. Ndirande, which had a population of about 100,000 people in 2018, spans an area of approximately 6.7 km2 
and is serviced by one government health clinic6. Blantyre city, which is in the southern part of Malawi, lies 35◦ 
east of Greenwich Meridian and 15◦ south of the Equator. Blantyre city was selected for the study because of the 
well-known high burden of typhoid fever and the research capacity to carry out complex studies6.

Malawi has two main climate seasons: the rainy and dry seasons. The rainy season can be further distinguished 
between the early rain (November–February) and the late rain (March–April) seasons7. Similarly, the dry season 
can also be distinguished into the cool dry (May–August) and the hot dry (September–October) seasons7. A 
recent study protocol reported that the number of typhoid cases per month in Ndirande township in Blantyre 
district in Malawi increased in the months of December through February, which corresponds to the rainy season 
in Malawi6. Ndirande exhibits a variation in elevation, ranging from 970 to 1200 meters, with a median elevation 
of 1118 meters. Total precipitation also varied from 819 millimeters (mm) to 1602 mm from 2016 to 2019. The 
variation in total precipitation across Ndirande was, however, minimal with the maximum difference being 209 
mm each year. In this study, we included season as a temporal covariate in our modelling.

Data
Passive surveillance study of the STRA​ATA​ project
The Strategic Typhoid Alliance across Africa and Asia (STRA​TAA​) study was carried out in Bangladesh, Nepal 
and Malawi with the aim of measuring the burden of typhoid in these three sites6. In Malawi, the STRA​TAA​ 
study was carried out by the Malawi-Wellcome-Liverpool Clinical Research Programme at the government-run 
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Ndirande health clinic, which is the largest clinic in Ndirande township. In this paper, our focus is on the passive 
surveillance sub-study of the STRA​ATA​ project.

In the passive surveillance study, patients presenting with a history of fever for at least 2 days or a patient 
presenting with a temperature of at least 38.0 °C at the Ndirande health clinic were approached with the inten-
tion of enrolling them into the study6,12. Passive surveillance was, additionally, performed at Queen Elizabeth 
Central Hospital (QECH) for patients from Ndirande who presented to the Accident and Emergency Treatment 
Centre (AETC) or were admitted to the wards12. A blood culture was collected from the patients who consented 
to be enrolled in the study. A total of 161 typhoid cases were recorded at Ndirande health clinic in a passive 
surveillance study between October 2016 and February 2020. The gender and age of the study participants were 
collected as part of the routine data collected in the study. However, 1 case did not have a date of collection and 
was therefore excluded from the analysis. Handheld Global Positioning Systems (GPS) devices were used to 
collect the locations (latitude and longitude) of the households of the typhoid cases.

Two marks, namely the gender (male or female) and age in years of a typhoid case were included in our model. 
Age was categorised into 3 levels (0–5, 6–17 and 18+ years) given previous studies on the association between 
typhoid and several age groups5,8.

Population data
The STRA​TAA​ study also carried out household and individual-level population censuses in 2018. The popula-
tion census, which enumerated 102,242 individuals, was used as an offset in the model.

Spatial covariates
Covariate selection was informed by previous research on the associations between typhoid and environmental 
covariates4,5,17,22,23. For this study, we restricted our attention to those covariates that are available at a spatial 
resolution of 100 m2 for Ndirande. Hence, our spatial covariates are: distance to Ndirande health clinic in meters, 
elevation (in meters) and a Water, Sanitation and Hygiene (WASH) score.

The distance to the health clinic raster was derived by calculating the Euclidean distances from each location 
within Ndirande township to the health clinic. The elevation raster file was downloaded from the WorldPop 
website24. The raster was cropped to a 100 m2 Ndirande grid.

A water, sanitation, and hygiene (WASH) survey was carried out in 14,136 households in Ndirande township 
in 2018 as part of the STRA​TAA​ study. The WASH variables were self-reported in the questionnaire. A WASH 
score was derived using principal components analysis (PCA), and a linear geostatistical model was used to 
interpolate the WASH score over the grid. Further details on the spatial covariates, including how the WASH 
score was derived, are supplied in the supplementary material.

Modelling of reported typhoid fever cases using point‑pattern models
We develop an inhomogeneous spatial marked point process model that allows us to incorporate both spatial 
covariates and individual-level covariates as marks25. Let i denote the subscript for gender, with i = 1 cor-
responding to “male” and i = 2 to “female”. We then use j to denote the subscript that identifies a specific 
age group, j = 1 representing individuals between 0 and 5 years, j = 2 between 6 and 17 years, and j = 3 for 
those above 17 years. Our outcome variable corresponds to the locations of the reported diagnosed cases x that 
fall in A, representing the area encompassed by the boundaries of Ndirande township. It, therefore, follows 
that nij corresponds to the number of typhoid cases in a specific age-gender combination. By setting age and 
gender as marks, we model the cases reported within each age-gender subgroup as independent inhomoge-
neous Poisson processes. More specifically, we model the intensity of the subgroup for gender i and age j as 
�ij(x) = exp

(
αi + γj + d(x)′β + logmij(x)

)
. In the equation for the intensity, we use αi to account for the gen-

der effects and γj to account for differences across age groups. The vector d(x) denotes a linear combination of 
spatial covariates: distance, measured in meters, to Ndirande health clinic ( β1 ); elevation, in meters ( β2 ); and 
the WASH score ( β3 ). Finally, mij(x) is an offset corresponding to the population for an individual with gender 
i and age j at location x.

We denote the vector of unknown parameters with θ , which consists of intercepts quantifying the gender 
effects ( αi , for i = 1, 2 ) and age effects ( γj , for j = 1, 2, 3 ) and the regression coefficients β . The likelihood func-
tion for θ is then given by

where

We use a quadrature procedure to approximate the integral in (2) based on a 100m by 100m regular grid of the 
study area denoted as A26. To obtain confidence intervals for the parameters θ , we use parametric bootstrap27 
based on the following iterative steps. 

1.	 Simulate N= 10,000 samples from the fitted point process model with mean: 

(1)L(θ) =

2∑

i=1

3∑

j=1

Lij(θ)

(2)Lij(θ) =

nij∑

k=1

log �ij(xk)−

∫

A
�ij(x)dx
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2.	 Fit the model to the N bootstrap realisations simulated in step (1).
3.	 Store parameter estimates from each of the fitted models.
4.	 Use the percentile method to get a 95% confidence interval from the estimates stored in step (3).

We fitted both a spatial model (2) and spatio-temporal model (equation 3 in the supplementary information) 
to our data. We tested for temporal trends in the data by comparing the purely spatial model and model with 
temporal covariates using a likelihood ratio test under the null hypothesis that the spatial model should be used 
to fit the data.

We computed predicted incidence rates for each combination of marks (age and gender) while 
adjusting for the spatial covariates and population as defined in the intensity equation above (
�ij(x) = exp

(
αi + γj + d(x)′β + logmij(x)

))
 . In addition to plotting the age and gender predicted incidence 

rates on the 100m by 100m regular grid, we also estimated the area-wide incidence for Ndirande, defined as

The integrals in Eq. 4 were approximated using a regular grid with a spatial resolution of 100m by 100m.

Model validation
To validate the compatibility of the spatial point pattern model presented in the previous section with the data, 
we develop a simulation procedure based on the K-function, which is expressed as28

where: D = 1

|W |

∑
h
1/�̂(xh) ; r is the distance at which the function is evaluated; �̂(x) is the estimated intensity 

from the model at location x; I{||xk − xh||} is an indicator function that takes the value 1 if the absolute distance 
between any two locations xk and xh is less or equal to r, and 0 otherwise.

We then validate our model using the following bootstrap procedure. 

1.	 By plugging in the maximum likelihood estimate for θ , simulate a data set based on the inhomogenous 
marked point process defined in the previous section.

2.	 Compute the inhomogeneous K-function defined in (5) for the simulated data set in the previous step.
3.	 Repeat steps (1) and (2) 10,000 times.
4.	 For a set of predefined distances r compute the 95% confidence intervals using the 10,000 functions obtained 

from the previous steps.

On completion of the last step, we then conclude that the data do not show evidence against the fitted model if the 
K-function computed on the original data falls within the 95% envelope for each of the age-gender combinations.

Ethics consideration
The Oxford Tropical Research Ethics Committee (reference number 39-15) and the Malawian National Health 
Sciences Research Committee (reference number 15/5/1599) gave the approval to conduct the STRA​TAA​ study 
(trial number ISRCTN 12131979) in Malawi6. At the household level, the head of the household provided writ-
ten informed consent for household surveys on behalf of the entire household. In the other components of the 
STRA​TAA​ study, an informed consent form was signed by study participants aged at least 18 years. On the other 
hand, informed consent forms were signed by parents or guardians of children less than 18 years old. Assent was, 
additionally, sought from children aged between 11 and 17 years. We confirm that the methods performed in 
this study were conducted in accordance with appropriate regulations and guidelines. Furthermore, we confirm 
that the study complies with the Declaration of Helsinki.

Results
A total of 161 typhoid cases were recorded at Ndirande Health clinic between October 2016 and February 2020. 
Out of these, only 1 case did not have complete information on age, gender and the date of sample collection. 
The analysis presented is thus based on the 160 typhoid cases with no missing data. A total of 43% (n = 69) of 
the study participants were aged between 6 and 17 years. The median age of the study participants was 11 years 
(interquartile range, IQR: 6–21 years). Further, 52% (n = 83) of the sample were females. Figure 1 shows the 
distribution of typhoid cases by gender in Ndirande. Table 1 further summarises the characteristics of the sample.

Figure 2 illustrates the typhoid cases recorded per season from October 2016 to February 2020. This plot does 
not show any discernible temporal pattern.

Our study results show that a 50 meters increase in the distance away from the health clinic decreased the 
estimated incidence rate of typhoid by 1% (100 * {1 - exponent of coefficient (coef): − 0.01}, 95% confidence 
interval (CI): − 0.03, 0.01). Further, a 50 meters increase in the elevation decreased the estimated incidence rate 
of typhoid by 9% (coef: − 0.10, 95% CI: − 0.42, 0.12). With further regard to the spatial covariates, a one-unit 
increase in the WASH score was associated with a decrease in the incidence rate of typhoid of 54% (coef: − 0.78, 

(3)�ij(x) = exp
(
αi + γj + d(x)′β + logmij(x)

)

(4)

∫
A �ij(x)dx∫
A mij(x)dx

.

(5)K̂(r) =
1

D|W |

∑

h

∑

k �=h

I{||xk − xh|| ≤ r}

�̂(xk)�̂(xh)
.
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95% CI: − 1.34, − 0.45). We find that only the WASH score shows a significant effect at the 5% conventional 
confidence level. However, all the point estimates of the regression component align with the expected direction, 
as informed by our understanding of typhoid fever epidemiology.

Predicted relative intensities were computed and plotted for each combination of marks (age and gender) 
while adjusting for the spatial covariates and population. Figure 3 shows the average predicted reported incidence 
for males and females of any age at any point in time in the study per 100,000 population. As can be seen in Fig. 3, 
the areas with the highest typhoid risk were the central and southeast areas of Ndirande. The highest predicted 
reported incidence overall was in females (400 typhoid cases per 100,000 population) and males (365 typhoid 
cases per 100,000 population) aged between 0 and 5 years. This finding concurs with the model coefficients 
reported in Table 2. When comparing the adjusted predicted reported incidences within each gender, the 0–5 
age group had the highest predicted relative intensity for both males and females per 100,000 population per 
month, as shown in Table 3.

We fitted an inhomogeneous K-function to validate our spatial point pattern model. The model validation 
plots for the final model are attached in the supplementary material. Overall, the figures show that the K-func-
tions from the observed data mostly fell within the simulated envelope for most of the distances. This suggests 
that our model was a good fit for the data.

Figure 1.   Locations of 160 typhoid cases and Ndirande health clinic from October 2016 to February 2020. The 
shaded area represents the study region.

Table 1.   Distribution of the study participants.

Variable Total (n) Percentage (%)

Age (median, IQR) 11 years (6–21 years)

Age (years)

 0-5 32 20

 6-17 69 43

 18+ 49 37

Gender

 Male 77 48

 Female 83 52
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Discussion
In this study, we have shown how spatial point pattern methods can be used to analyze reported cases of typhoid 
fever in health facilities. Our approach based on a multiple-marked inhomogeneous Poisson process model 
allowed us to estimate typhoid incidence at the household level while adjusting for both spatial and individual-
level risk factors.

Several modelling challenges were encountered in the analysis. First, the small number of reported cases 
over time and space makes understanding the relationships between risk factors and the overall incidence pat-
terns more difficult to model. In this context, the interpretation of the regression relationships should not only 
be guided by statistical summaries, such as p-values, but prior knowledge about the disease context should 
also be used to inform the selection of covariates. For this reason, we decided to retain variables that were not 
statistically significant, namely distance to a health facility, and elevation, to generate the spatial predictions for 
typhoid fever incidence. Our general guiding principle is that a variable should be retained in the final model, 
regardless of its statistical significance, (1) if there is an established body of evidence on the importance of the 
variable to model the health outcome of interest, and (2) if the point estimate is in accordance with the expected 
direction of the relationship based on that prior knowledge. In the case of the three variables considered, it has 
been established in previous research that these three variables are important risk factors for typhoid4,5,22,23 and 
both of the aforementioned criteria are met.

Based on the effects of these risk factors, the southeast zone of Ndirande was found to show the highest 
typhoid incidence rate. This area of Ndirande is characterized by a high population density which could 
contribute to poor sanitary facilities as indicated by the poor WASH facilities. Our incidence map provides a 
more granular distribution of typhoid compared to previous work18. The finding on typhoid incidence decreasing 

Figure 2.   Observed typhoid cases per season from October 2016 to February 2020.

Table 2.   Maximum likelihood estimates and 95% confidence intervals (CI) for the parameters of the model 
specified in (3).

Variable Estimate 95% CI

Age (years)

 0–5 − 3.119 (− 5.147, − 0.193)

 6–17 − 3.162 (− 5.189, − 0.230)

 18+ − 3.906 (− 5.929, − 0.973)

Gender

 Male − 5.140 (− 8.177, − 0.746)

 Female − 5.047 (− 8.087, − 0.652)

Spatial covariates

 Distance to health facility × 50 meters − 0.010 (− 0.027, 0.008)

 Elevation × 50 meters − 0.098 (− 0.420, 0.123)

 WASH score − 0.782 (-1.338, -0.449)
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with good WASH facilities is in line with the findings from another study carried out in Blantyre district in 
Malawi5. The result of an increase in the elevation being associated with a decrease in the incidence of typhoid 
is also consistent with results from previous studies4,23. The maximum distance observed between the health 
center and the study area was recorded as 3.1 km. Our results further showed that an increase in the distance 
to the Ndirande health clinic was associated with a decrease in the reported incidence of typhoid. This suggests 
that people living far away may be more reluctant to go to the clinic unless they are seriously ill22. It is important 
to note, however, a potential limitation of these findings. The GPS coordinates used in this study were collected 
at the household level, and thus may not reflect the true locations of the exposure to typhoid.

In addition to the spatial (environmental) risk factors, the age of an individual is found to play an important 
role in the variation of typhoid risk. Our study findings indicate a higher occurrence of typhoid among children 
after adjusting for the spatial covariates. This result is consistent with previous studies that also reported a 
higher typhoid incidence among children compared to adults2,14,18,29. The estimated typhoid intensities for the 3 
age groups in this study are, however, lower than the adjusted typhoid incidences recently reported in Blantyre 
in Malawi because we did not adjust the incidence in our study by a number of factors such as blood culture 

Figure 3.   Predicted incidence of typhoid by gender and age per 100,000 population. The rows represent the 
gender of a typhoid case, whilst the columns represent the age group of the case.

Table 3.   Predicted incidence and 95% confidence intervals (CI) per 100,000 population for Ndirande; for the 
definition of the predictive target see Eq. 4.

Group Number Incidence rate 95% CI

Male 0–5 14 222 (219, 224)

Male 6–17 36 216 ( 215, 216)

Male 18+ 27 104 (103, 105)

Female 0–5 18 240 (238, 242)

Female 6–17 33 237 (236, 237)

Female 18+ 32 114 (113, 115)
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sensitivity and healthcare-seeking probability12,30. In contrast to previous studies, we did not find any statistically 
significant difference in the estimated incidence between females and males31,32.

Another important limitation of this study is the under-reporting arising from passive surveillance data col-
lected from individuals who visit a health facility1,33,34. To account for the under-reporting, our model can be 
extended in future work using a thinned inhomogeneous Poisson process model, whereby the intensity of the 
Poisson process is scaled by the probability of visiting the health centre28. However, one of the challenges of this 
approach is that some covariates may affect both typhoid fever risk and the probability of visiting a clinic, making 
the estimation of regression relationships more problematic. This issue has also been reported in ecology, where 
similar methods have been used in citizen science data35. Future research should focus on a better understanding 
of the factors and mechanisms that drive the likelihood of attending health facilities, to better parameterise the 
probability of going to the hospital and overcome the identifiability issues in the estimation.

The proposed modelling approach in this study may be applied to the analysis of reported cases from passive 
surveillance data for other diseases. One of the strengths of the illustrated modelling approach is its flexibility in 
being adapted to any other environmentally driven diseases through the selection of suitable covariates. Through 
the application of this approach, we have further demonstrated that, for example, typhoid occurrence is higher 
among children and in areas with households with poor WASH facilities. Optimal typhoid control initiatives 
could focus on this age group and on improving WASH facilities in households.

Data availability
The data that support the findings of this study are available from the chief investigator, Professor Andrew Pollard, 
but restrictions apply to the availability of these data, which were used under license for the current study, and so 
are not publicly available. Data are, however, available from the corresponding author upon reasonable request 
and with permission of the chief investigator (andrew.pollard@paediatrics.ox.ac.uk). The code used to run the 
models in this study can be accessed on Github.
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