
SOFTWARE TOOL ARTICLE

 Sapporo: A workflow execution service that encourages

the reuse of workflows in various languages in bioinformatics

[version 2; peer review: 2 approved, 2 approved with

reservations]

Hirotaka Suetake 1, Tomoya Tanjo2, Manabu Ishii3, Bruno P. Kinoshita4,5,
Takeshi Fujino6, Tsuyoshi Hachiya3, Yuichi Kodama 2, Takatomo Fujisawa2,
Osamu Ogasawara 2, Atsushi Shimizu2, Masanori Arita2, Tsukasa Fukusato7,
Takeo Igarashi1, Tazro Ohta8-10

1Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo,
Tokyo, Japan
2Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, Japan
3Genome Analytics Japan Inc, Shinjuku, Tokyo, Japan
4Barcelona Supercomputing Center (BSC), Barcelona, Spain
5Curii Corporation, Sommerville, MA, USA
6Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo,
Bunkyo, Tokyo, Japan
7Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo,
Tokyo, Japan
8Institute for Advanced Academic Research, Chiba University, Chiba, Japan
9Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and
Systems, Mishima, Shizuoka, Japan
10Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan

First published: 04 Aug 2022, 11:889
https://doi.org/10.12688/f1000research.122924.1
Latest published: 24 Jun 2024, 11:889
https://doi.org/10.12688/f1000research.122924.2

v2

Abstract
The increased demand for efficient computation in data analysis
encourages researchers in biomedical science to use workflow
systems. Workflow systems, or so-called workflow languages, are
used for the description and execution of a set of data analysis steps.
Workflow systems increase the productivity of researchers, specifically
in fields that use high-throughput DNA sequencing applications,
where scalable computation is required. As systems have improved
the portability of data analysis workflows, research communities are
able to share workflows to reduce the cost of building ordinary
analysis procedures. However, having multiple workflow systems in a

Open Peer Review

Approval Status

1 2 3 4

version 2

(revision)
24 Jun 2024

view view view

version 1
04 Aug 2022 view view

Justin M. Wozniak , Argonne National

Laboratory, Lemont, USA

1.

Page 1 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://f1000research.com/articles/11-889/v2
https://f1000research.com/articles/11-889/v2
https://orcid.org/0000-0003-2765-0049
https://orcid.org/0000-0001-7691-9812
https://orcid.org/0000-0001-6001-3397
https://doi.org/10.12688/f1000research.122924.1
https://doi.org/10.12688/f1000research.122924.2
https://f1000research.com/articles/11-889/v2
https://f1000research.com/articles/11-889/v2#referee-response-294852
https://f1000research.com/articles/11-889/v2#referee-response-305473
https://f1000research.com/articles/11-889/v2#referee-response-305477
https://f1000research.com/articles/11-889/v1
https://f1000research.com/articles/11-889/v2#referee-response-185842
https://f1000research.com/articles/11-889/v2#referee-response-185836
https://orcid.org/0000-0002-2441-2048
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.122924.2&domain=pdf&date_stamp=2024-06-24

research field has resulted in the distribution of efforts across
different workflow system communities. As each workflow system has
its unique characteristics, it is not feasible to learn every single system
in order to use publicly shared workflows. Thus, we developed
Sapporo, an application to provide a unified layer of workflow
execution upon the differences of various workflow systems. Sapporo
has two components: an application programming interface (API) that
receives the request of a workflow run and a browser-based client for
the API. The API follows the Workflow Execution Service API standard
proposed by the Global Alliance for Genomics and Health. The current
implementation supports the execution of workflows in four
languages: Common Workflow Language, Workflow Description
Language, Snakemake, and Nextflow. With its extensible and scalable
design, Sapporo can support the research community in utilizing
valuable resources for data analysis.

Keywords
workflow, workflow language, workflow execution service, open
science

This article is included in the Japan Institutional

Gateway gateway.

This article is included in the Bioinformatics

gateway.

Iacopo Colonnelli , Universita degli Studi

di Torino, Turin, Italy

2.

Denis Yuen , Ontario Institute for Cancer

Research, Toronto, Canada

3.

Stephen R. Piccolo, Brigham Young

University, Provo, USA

4.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 2 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://f1000research.com/gateways/japan-institutional-gateway
https://f1000research.com/gateways/japan-institutional-gateway
https://f1000research.com/gateways/japan-institutional-gateway
https://f1000research.com/gateways/bioinformaticsgw
https://f1000research.com/gateways/bioinformaticsgw
https://orcid.org/0000-0001-9290-2017
https://orcid.org/0000-0002-6130-1021

Corresponding author: Tazro Ohta (tazro.ohta@chiba-u.jp)
Author roles: Suetake H: Conceptualization, Funding Acquisition, Investigation, Methodology, Software, Writing – Original Draft
Preparation; Tanjo T: Software; Ishii M: Data Curation, Software; P. Kinoshita B: Software, Writing – Review & Editing; Fujino T: Data
Curation; Hachiya T: Data Curation, Writing – Review & Editing; Kodama Y: Conceptualization; Fujisawa T: Conceptualization, Resources;
Ogasawara O: Conceptualization, Resources; Shimizu A: Conceptualization; Arita M: Conceptualization, Funding Acquisition; Fukusato
T: Supervision, Writing – Review & Editing; Igarashi T: Funding Acquisition, Supervision, Writing – Review & Editing; Ohta T:
Conceptualization, Investigation, Methodology, Project Administration, Software, Supervision, Writing – Original Draft Preparation
Competing interests: No competing interests were disclosed.
Grant information: This study was supported by JSPS KAKENHI (Grant Number 20J22439; assigned to H.S.), the Life Science Database
Integration Project, and the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency (JST). DDBJ is
supported by the Research Organization of Information and Systems (ROIS) under the Ministry of Education, Culture, Sports, Science,
and Technology (MEXT) of Japan. This study was also supported by the CREST program of the Japan Science and Technology Agency
(Grant Number JPMJCR17A1, assigned to T.I.).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2024 Suetake H et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Suetake H, Tanjo T, Ishii M et al. Sapporo: A workflow execution service that encourages the reuse of
workflows in various languages in bioinformatics [version 2; peer review: 2 approved, 2 approved with reservations]
F1000Research 2024, 11:889 https://doi.org/10.12688/f1000research.122924.2
First published: 04 Aug 2022, 11:889 https://doi.org/10.12688/f1000research.122924.1

Page 3 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

mailto:tazro.ohta@chiba-u.jp
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.122924.2
https://doi.org/10.12688/f1000research.122924.1

Background
Modern experimental instruments that convert biological samples into digital data have lower costs and higher
throughput than conventional ones.1 Those instruments have made it possible to conduct large-scale data-driven biology,
not only in large projects but also in smaller studies. A DNA sequencer is one such technology in biology, which has
shown a drastic improvement in throughput since the late 2000s.1 DNA sequencing technology highlighted the data
science aspect of biology, sparking the demand for computation in biology.2

Raw data, the fragments of nucleotide sequences for a DNA sequencer, often called “reads,” are not biologically
interpretable in their unprocessed form. Researchers need to process the data using computational methods to obtain
biological insights from the samples. The data processing includes, for example, estimation of sequence error rates, read
alignment to a reference genome sequence, extraction of genomic features from aligned data, and annotation with the
information obtained from public databases. Researchers develop and share the command-line tools for each step in an
analysis. They use the raw data as the initial input data of the first tool and pass its output on as input for the next tool. This
chain of processes, connecting a sequence of tools according to their inputs and outputs, is called a workflow.3

Workflow structure can be complicated as various sequencing applications require multiple steps of data processing.
Combining many tools to construct a complex workflow that performs as intended is not straightforward. It is also not
practical to fully understand the internal processes of all the tools. Thus, ensuring that every individual part of a workflow
is working correctly depends heavily on the skills of the workflow developer. Even if a workflow runs successfully once,
maintaining it is another issue. The tools in a workflow are often developed as open-source software and are frequently
updated to improve performance and fix bugs. It is time-consuming to assess the impact of updates associated with
individual tools. The tools in a workflow often work in an unintended manner for many reasons, such as changes in
hardware, operating system (OS), software dependencies, or input data. Difficulties in building and maintaining
workflows cause portability issues with workflows.4 Because of this, researchers have to spend a great deal of time
building workflows similar to those that others have already created.

To address these issues, researchers have developed many workflow systems in bioinformatics.5 Each workflow system
has unique characteristics, but generally, they all have a language syntax and a workflow engine. Workflow languages
define a syntax to describe the inputs and arguments passed to tools and the handling of outputs. Workflow engines often
take two arguments to execute a workflow: a workflow definition file that specifies the processes and a job file for input
parameters. In many cases, techniques, such as package managers and container virtualization, make it easier to build,
maintain, and share complex workflows by pinning down the versions of workflow tools.6

Open-source workflow systems help the research community work efficiently by reusing published workflows.7

However, having multiple systems has resulted in resources distributed across various workflow system communities.
For example, the Galaxy community is known for being one of the largest for data analysis in biology.8 The community
maintains a number of workflows and learning materials that users can run on public Galaxy instances. However, as the
Galaxy workflows are only runnable on the Galaxy platform, users will face difficulties in running these workflows on
other platforms. As another example, Nextflow, one of the most popular command-line-based workflow systems, has a
mature community called nf-core to share standard workflows.9,10 The community has excellent resources, but these are
usable only by Nextflow users. It is not reasonable to have a “one-size-fits-all” workflow system in science because
various approaches have pros and cons.3 Learning the different concepts and features of each workflow system has a high
cost associated with it. Thus, it is not practical to consider becoming familiar with a large number of workflow systems in
order to be able to utilize the workflows shared by their community users.

REVISED Amendments from Version 1

In response to reviewer comments, themanuscriptwasupdated to emphasize the challenges in creatinguniversal workflow
systems due to differences in syntax and engine features, highlighting the need for standardized workflow specifications
and support for various engines. The user’s procedure for performing analysis with Sapporo was clarified, with a detailed
viewadded as Figure 8. Thediscussionnowaddresses theworkflowdepiction in Figure 7, clarifying the relationship between
the user interface and workflow usability. Additionally, the manuscript explains how Sapporo addresses inefficiencies and
fragmentation by wrapping multiple systems and using Docker containers for workflow engines, adhering to the GA4GH
WES standard for interoperability. Documentation now includes the location of the Docker composemanifest for Sapporo-
service and Sapporo-web, and the Methods section details the run.sh function of Sapporo-service, highlighting its
modularity, extensibility, and role in managing workflow executions and environment-specific requirements.

Any further responses from the reviewers can be found at the end of the article

Page 4 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

Workflow systems have different language syntaxes and engines, each designed for specific purposes. For instance,
Nextflow aims to boost developer productivity and scalability, while Snakemake focuses on flexibility and simplicity,
using Python as its base. In contrast, the CommonWorkflow Language (CWL) project aims to promote interoperability
by creating a standardized syntax that variousworkflow engines can understand. However, workflowswritten in different
languages cannot be easily converted into each other automatically. The most popular workflow systems used in
bioinformatics, such as CWL, WDL, Nextflow, and Snakemake, take a workflow definition and input parameters to
produce output result files, while there are differences between these workflow systems in command-line options,
workflow description syntax, methods for specifying inputs, and how expected output files are defined.

Creating a universal language converter isn’t practical because some languages lack the necessary syntax parsers, or
contain features that are not commonly found in other workflow engines (e.g. JavaScript evaluation as in CWL, loops in
workflows or cyclic workflows instead of DAG-based systems). To bridge the gap between different workflow systems,
we need a standardized way to specify workflows, input parameters, and expected outputs. Additionally, a system that
supports various engines and selects the appropriate one for a given workflow is essential for smooth interoperability.

In this paper, we introduce Sapporo, a platform for running multiple workflow systems in the same computing
environment. Sapporo wraps the differences in the workflow systems and provides an application programming interface
(API) for executing them in a unified way. Sapporo also provides a graphical user interface (GUI) that works as its API
client. By enabling users to run multiple workflow systems on the same computing environment, Sapporo gives users the
ability to reuse workflows without having to learn a new workflow system.

Methods
System overview
Sapporo consists of two components: Sapporo-service and Sapporo-web (Figure 1). Sapporo-service is an API that
receives requests for workflow execution from clients, then executes them in a specified manner. Sapporo-service has an
API scheme that satisfies the Global Alliance for Genomics and Health (GA4GH) Workflow Execution Service (WES)
standard.11 Sapporo-web is a workflow management client. It is a client of Sapporo-service and other GA4GH WES
compatible API servers. The GUI is a browser-based application that does not require user installation.

We designed the Sapporo system based on the concept of microservices architecture.12 Unlike conventional computation
server applications, we expect multiple Sapporo-service instances to be run on servers as independent endpoints on
demand. To manage the runs on the different API servers, we separate the implementation of the server and its client,
allowing clients to connect tomultiple servers (Figure 2). One of the unique features of the Sapporo system is that it has no
authenticationmechanism on the application layer. Instead of having users’ information on the server-side, the user’sweb
browser stores the information, such as workflow execution history. The online documentation “Sapporo: Getting
Started”, available inExtended data, shows the step-by-step procedures to deploy a Sapporo instance on a local computer
to test the system.13,34

Figure 1. Overview of the Sapporo system. The component at the bottom is Sapporo-service, a Global Alliance for
Genomics and Health (GA4GH) Workflow Execution Service (WES) standard compatible application programming
interface (API) to manage the workflow execution. The box at the top is Sapporo-web, the graphical user interface
(GUI) client for WES implementations. Sapporo-service has the open specification of the API endpoints, which users
can access programmatically.

Page 5 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

The source code, test code, and documentation for Sapporo-service and Sapporo-web are available from GitHub and
archived in Zenodo.35,36

Workflow execution service
The WES has two layers: the API and the execute function (Figure 3). The API structure and the response are compliant
with the GA4GH WES standard.14 The API specification defines the methods to manipulate workflow runs, such as
execution, stop, and checking the outputs. In addition, Sapporo-service has its own unique features (Table 1). The key
feature that makes Sapporo notable is the workflow engine selection. While the other workflow management systems
accept one or a few workflow languages, Sapporo-service can accept any workflow language as long as it has a
corresponding workflow engine.

The system is designed to separate the execution layer from the handling of API requests, thereby enhancing modularity
and extensibility. The execution layer operates through a well-structured shell script named “run.sh.”Upon receiving an

Figure 3. The Sapporo-service components. Sapporo-service’s application programming interface (API) layer
implemented in Pythonworks as an API server to receive the request of aworkflow run. The system can be deployed
easily by using Docker composemanifest provided in the GitHub repository (See Software availability). Once the API
receives the request, it creates a directory to store all the related information and execute run.sh. The run.sh script
receives the arguments from the API request and runs the workflow with the specified workflow engine.

Figure 2. The distribution model of the Sapporo system. Researchers often have multiple computing environ-
ments for their data analysis. We designed the Sapporo system to work with a distributed computation model. For
example, users can deploy the application programming interface (API) on their local computer, remote computing
server, and public cloud instances. As long as the API is running, the user can send a request to execute a workflow
from a local client computer.

Page 6 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

API request, the system forks “run.sh,”which then generates command lines for the workflow system and executes them.
This separation enables the addition of new workflow systems without changes to the API server’s code. As a result,
adding new workflows becomes straightforward, with the number of systems growing from just one at the beginning of

Table 1. The list of Sapporo-service’s features.

Feature Description

Engine selector Select engine from available implementations

Remote URL as attachment Fetch remote file and attach to the run

Output downloader Direct download of workflow results

Registered-only mode Restrict workflows by allowed-list

Workflow parser Return parsed workflow information

Table 2. The list of workflow engines available in Sapporo.

Engine Supported language(s)

cwltool15 CWL

Nextflow9 Nextflow

Toil16 CWL

Cromwell17 WDL, CWL

Snakemake18 Snakemake

ep319 CWL

StreamFlow20 CWL

Figure 4. The contents in the per-run directory. Various types of information, such as run requests, execution
results, and runtime information, are stored as a bundle of provenance for the workflow run.

Page 7 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

the project to seven in the current version (Table 2). The flexibility of the “run.sh” also allows for specific adjustments for
each workflow system, supporting pre- and post-execution processes, such as authentication, staging input files, and
uploading results. Additionally, it is enabled to manage environment-specific requirements, including executing jobs on
grid engines and handling file I/Owith S3-like object storage. Once the system receives aworkflow run request, it issues a
universally unique identifier (UUID) and creates a directory named with the UUID, where the system stores all the
necessary files. The workflow definition files, intermediate and final outputs, and the other metadata are stored in that
directory. This per-run directory can act as a bundle of provenance for the workflow run (Figure 4).

The system has no backend database as it stores all the information in the file system. This architecture allows the system
administrators to manage the data as they do for normal server operations. We also provide a Docker image of the
application, which can completely separate the system into the application (container image) and data (file system) for
better portability and scalability.21

Another feature not implemented in a standardWES server is a registered-onlymode. By enabling it at the server start-up,
users can execute only the workflows in the allowed list specified by the administrator. This function helps the
administrators launch a public WES instance while preventing suspicious programs from running on the server. Instead
of implementing user authentication on the application, we expect the administrators to do the required authentication to
the server on the network layer, such as virtual private network (VPN).

Workflow management console
We designed Sapporo-web as a browser-based GUI client for GA4GHWES endpoints. Sapporo-web can also be easily
deployed by using the Docker compose manifest provided in the GitHub repository (See Software availability). The
system is a JavaScript application that runs on a web page, which users do not need to install on their computers. It stores
user data in the browser’s local storage, so users do not need to sign up to start running workflows. No information other
than the access log is preserved on the server-side. The Sapporo-web system is compliant with the GA4GH WES
specification. We used Elixir WES, another WES implementation, to confirm Sapporo’s GA4GH WES specification
compliance.22

To execute a workflow with Sapporo-web, users take the following five steps (Figure 5). Users can use a WES endpoint
either running remotely or locally. Following the user’s connection request, Sapporo-web requests the service-info API of
the WES to read the endpoint metadata and display the information (Figure 6). Users can select a workflow to run by
entering a published workflow URL, uploading a workflow definition file, or selecting from the workflows registered on
theWES server. Sapporo-web also can accept the GA4GHTool Registry Service (TRS) protocol as a source of published
workflows. Sapporo-web retrieves the content of the requested workflow definition file to generate a web form for
entering input parameters (Figure 7). The type of web form depends on the workflow language. For example, loading a

Figure 5. User actions to execute a workflow on Sapporo-web. Sapporo-web provides a step-by-step user
interface to help users set up a workflow run. First, users need to specify where to execute a workflow (Workflow
Execution Service (WES) instance). Next, users select what to run (workflow) and then how it should be run (input
parameters). TheUI allowsusers to downloada set of input parameters, whichusers canupload to re-run aworkflow
with the same parameters.

Page 8 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

workflow described in CommonWorkflow Language (CWL) generates a typed input form per parameter because CWL
specifies input parameters with a structured text form.23 In contrast, loading a workflow described in languages other than
CWL generates a text editor to change the parameters in the corresponding format. After the edit, users can click
“execute” to request the workflow to run on the server where the WES endpoint is running.

While the workflow is running, users can check the execution log via Sapporo-web. The standard output and the standard
error of the workflow run retrieved from the WES endpoint show up in the log history section. The running status
becomes “complete” when the execution finishes on the server. Workflow outputs stored in the WES server are
downloadable via a link in the Sapporo-web user interface. If the workflow run failed with an error, the status “executor
error” would be shown. Users can visualize the error log in Sapporo-web.

Results
We developed Sapporo as aWES implementation that allows developers to add newworkflow systems. Developers only
need to implement the command line procedure in the run.sh script, which is a simple bash script. The project was hosted
on GitHub from its inception, with the intention to have other developers contribute with newworkflow systems. A good
example of this in practice can be seen in the pull request (https://github.com/sapporo-wes/sapporo-service/pull/29) that
added a new workflow system called StreamFlow.20

Figure 6. Sapporo-webdisplays themetadata of the specifiedWorkflowExecution Service (WES) endpoint. The
Global Alliance for Genomics and Health (GA4GH) WES specification defines the scheme of the response of service-
info. It has the basic information of theWES endpoint, such as supportedworkflow language andworkflow engines.
Sapporo-web reads the WES metadata and provides the interface to start composing a workflow run.

Page 9 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://github.com/sapporo-wes/sapporo-service/pull/29

To evaluate the practical applicability and robustness of Sapporo, we executed the public workflows that researchers
frequently use. Specifically, we chose the Mitochondrial Short Variant Discovery workflow from the GATK best
practices (written in WDL), the RNA-seq workflow from the nf-core repository (written in Nextflow), and a Germine
Short Variant Discovery workflow for processing whole-genome sequencing data from the Japanese Genotype-
phonotype Archive (written in CWL).24 Users access Sapporo’s endpoint specifying the input parameters following
the WES specification. The required parameters are workflow_url, workflow_type, workflow_type_version, and work-
flow_params. The workflow_url argument specifies the location of the workflow definition file (e.g. CWL file) to be
executed, typically hosted on a remote server, enabling the API to access and utilize the workflow’s instructions. The
workflow_params argument points to a JSON file containing input parameters essential for the workflow execution,
facilitating customization and adaptation of the workflow’s behavior. The optional arguments workflow_type and
workflow_type_version arguments indicate the type and version of the workflow language being employed, ensuring
compatibility and proper interpretation of the workflow instructions by engines supported inside Sapporo. Additionally,
the workflow_engine_name argument specifies the execution engine to be used, while the default engine for the given

Figure 7. The generatedweb form to inputparameters. Sapporo-web automatically generates a typed input form
for a given workflow. It is possible when the given workflow language has a structured job configuration file, for
example, a YAML format file for a Common Workflow Language (CWL) workflow. The form has the type validation
function for users’ input, such as a file, integer, or array of strings.

Page 10 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

workflow language is assigned when it is not specified. Lastly, another optional argument workflow_engine_parameters
argument allows for the specification of additional parameters tailored to the execution engine, providing fine-grained
control over the execution environment and behavior of the workflow engine. We published the detailed description of
the test procedures for these workflows on GitHub,25 and the results of the test runs on Zenodo.26–28

Using a simple CWL workflow as an example, we describe the procedures we performed in the evaluation (Figure 8).
It is noteworthy that despite changes in workflow languages, the steps remain the same, differing only in the supplied
workflow definition file or the runtime parameters specified within the designated files. Firstly, the Sapporo-service is
initiated within a computational environment. There are two methods for initiating the service: one involves executing a
Python program natively, and the other utilizes our Docker image. If Docker or a Docker-compatible Linux container
system is available, using the Docker image is simpler. Once the Service is initiated, by default, the API is available via
port 1122. The workflow can be executed by sending a POST request to the/runs endpoint of this API. The POST request
must include the location of the definition file for the workflow to be executed and the runtime parameters as a part of the
URL parameters. Requests to the Sapporo-service can be made by using command-line programs such as curl, scripts
written in any programming language, or via our developed web UI, Sapporo-web. Here, we explain the method using
curl. Assuming that the Sapporo-service is running on port 1122 of the localhost, the curl command for the request would
be as follows:

curl -X POST -F "workflow_url=https://raw.githubusercontent.com/pitagora-network/pitagora-cwl/master/workflows/
download-fastq/download-fastq.cwl" -F "workflow_type=CWL" -F "workflow_type_version=v1.0" -F "workflow_en-
gine_name=cwltool" -F "workflow_params=<workflow_params.json" -F "workflow_engine_parameters=<workflo-
w_engine_parameters.json" http://localhost:1122/runs

In this request, a CWL workflow named download-fastq, publicly available on GitHub, is specified. The type of
workflow is CWL, with version v1.0, and the workflow engine designated for executing this workflow is cwltool. While
there are workflow languages like CWL that can be executed by multiple engines, there are also languages like Nextflow
that can only be executed by the nextflow program. Therefore, users must choose the appropriate engine here; otherwise,
errors will occur. Information onwhich engines support which languages can be retrieved via API requests. Parameters to
be supplied to the download-fastq workflow for execution via workflow_params, and parameters to be supplied to the
workflow engine cwltool via workflow_engine_parameters are specified. Both are described within JSON files and
attached to the request as files. Upon receiving this request, the API server issues a UUID to identify this workflow run
and returns it as part of the API response. Using this UUID, users can check the status of the run or download results after
execution. ThisAPI, compliant withGA4GHWES, is straightforward, allowing for the execution ofworkflowswritten in

Figure 8. The detailed view of users procedure to run a workflow on Sapporo.

Page 11 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://raw.githubusercontent.com/pitagora-network/pitagora-cwl/master/workflows/download-fastq/download-fastq.cwl
https://raw.githubusercontent.com/pitagora-network/pitagora-cwl/master/workflows/download-fastq/download-fastq.cwl
http://localhost:1122/runs

various workflow languages within the same computational environment without needing to rewrite the client based on
differences in workflow languages.

Discussion
In the big-data era in biology, the demand for efficient data processing will never stop increasing.29 There are countless
painful tasks in data processing, and researchers have developed methods to solve each of them, resulting in many
different workflow systems.30 We appreciate that many options are available as open-source so that researchers can
choose one for their specific needs. The situation strongly encourages open science: each workflow system community is
there so that individuals can help each other by sharing resources.31 However, as each community grows, the gap between
the communities also becomes larger. We developed Sapporo to bridge these gaps by providing a new layer to better
utilize resources across communities. As the workflow systems are for the increased productivity of data scientists,
improving resource interoperability must not interfere with researchers doing their science. An upper layer, the layer of
workflow execution, can be a better solution than proposing a new language convertible to other existing languages. The
concept of abstraction of workflow execution, as well as the idea of “bringing the algorithms to the data,” is also proposed
by the GA4GH cloud work stream, which resulted in the development of the GA4GH Cloud standards. As of May 2022,
the GA4GHWES specification supports only CWL andWDL for their workflow format. There is no official list ofWES
implementations; however, no other service that allows the addition of workflow systems is available as far as we
investigated.

To support workflow developers and researchers conducting data analysis, multiple different workflow management
systems have been developed. These systems enhance productivity and reproducibility in data analysis, enabling more
effective science. However, the proliferation of multiple systems has revealed inefficiencies, leading to fragmentation
within developer and user communities. While it’s crucial to effectively leverage the assets of each system and
community, it is not practical to provide the methods for syntax conversion between workflow systems and extending
execution engines. Therefore, Sapporo aims to absorb differences between systems by wrapping multiple systems.
Specifically, we provide an API that rewrites workflow definitions and runtime parameters into the command lines of
each system based on the type of workflow definition received, enabling the execution of different workflows using the
same client. The Web API adheres to the internationally defined GA4GHWES standard, ensuring interoperability with
other GA4GH WES implementations. By developing and releasing Sapporo Web as an example of a GA4GH WES
client, we demonstrate the readiness of our developed API for research use.

Although Sapporo is a flexible system covering many use cases, we recognize that the current implementation has a few
technical limitations. The main objective of Sapporo is to absorb the variance of the execution methods per workflow
system.We achieved building a unifiedway to request aworkflow run by providing theAPI and its client. However, there
is still a challenge in the user experience with regard to the parameter editing function. This is caused by differences in the
workflow system concepts. For example, someworkflow systems, such as Nextflow or Snakemake, use Domain Specific
Language (DSL)model in their syntax for better productivity, so users canwrite aworkflow as theywouldwrite a script in
their preferred programming language.9,18 However, this flexibility in describing the procedures oftenmakes the required
input parameters unparsable by other applications. It means that users need to learn how to edit the parameters for each
workflow system they are using. Though often this is not too difficult, the workflow system communities need to lower
the learning costs to use a workflow. For example, finding a more generic representation of workflow inputs between
workflow language systems could alleviate the situation.

Sapporo is a unique WES implementation that accepts multiple workflow languages. Researchers can use the system to
utilize community workflows without regardingwhat language they are written in. One downside of this flexibility is that
errors reported by Sapporo from different workflow engines may not look familiar to users. Many well-maintained
workflow registries are available, such as nf-core andWorkflowHub, but the quality of the workflows published in these
registries relies on each community’s efforts.10,32,33 A system that validates and verifies the quality of workflows is also
required for the sustainability of the resources published in the workflow registries.

Data processing methods vary greatly depending on the type of input data and the computational platform. In
bioinformatics, the laboratory equipment and computers available drive changes. New computing applications for
efficient data science, and new problems of resource portabilitymay appear if variables such as input data, equipment, and
computing resources keep changing in the future. Through its concept of abstraction, Sapporo can be a key player in
assisting different communities in sharing and reusing workflows and other computing resources.

Data availability
All of these projects are licensed under the Apache License 2.0.

Page 12 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

Underlying data
Zenodo: sapporo-wes/test-workflow: 1.0.1. https://doi.org/10.5281/zenodo.6618935.25

This project contains the following underlying data:

• sapporo-wes/test-workflow-1.0.1.zip (description of the test procedures and results of the workflows described
in section Use cases).

The results of the test runs are contained in the following projects:

• Zenodo: Sapporo execution results - broadinstitute/gatk/MitochondriaPipeline: 1.0.0. https://doi.org/10.5281/
zenodo.6535083.26

• Zenodo: Sapporo execution results - nf-core/rnaseq: 1.0.0. https://doi.org/10.5281/zenodo.6534202.27

• Zenodo: Sapporo execution results - JGA analysis - per-sample: 1.0.0. https://doi.org/10.5281/zenodo.
6612737.28

Extended data
Zenodo: sapporo-wes/sapporo: 1.0.0. https://doi.org/10.5281/zenodo.6462774.34

This project contains the following extended data:

• Sapporo: Getting Started.md (step-by-step procedures for deploying a Sapporo instance on a local computer and
testing the system).

Software availability
Sapporo-service’s source code, test code, and documentation:

• Source code available from: https://github.com/sapporo-wes/sapporo-service/tree/1.2.4

• Archived source code at time of publication: https://doi.org/10.5281/zenodo.6609570.35

• License: Apache License 2.0

Sapporo-web’s source code, test code, and documentation:

• Source code available from: https://github.com/sapporo-wes/sapporo-web/tree/1.1.2

• Archived source code at time of publication: https://doi.org/10.5281/zenodo.6462809.36

• License: Apache License 2.0

Acknowledgements
We acknowledge and thank the following scientific communities and their collaborative events where several of the authors
engaged in irreplaceable discussions and development throughout the project: the Pitagora Meetup, Workflow Meetup
Japan,NBDC/DBCLSBioHackathonSeries, Elixir’sBioHackathonEuropeSeries,GA4GHCloudWorkStream,Common
Workflow Language Community, Nextflow Community, Galaxy Community, and Open Bioinformatics Foundation
Bioinformatics Open Source Conference Collaboration Fest. We would like to acknowledge Dr. Alexander Kanitz for
his support of the collaboration withWES-ELIXIR.We also would like to thank Dr. Ivan Topolsky for his assistance with
the implementation of Sapporo-service. We also acknowledge Prof. Kazuki Yoshizoe for his valuable comments on the
project. We also would like to thank Ascade Inc. for their support with the software development. Computations were
partially performed on the NIG supercomputer at the ROIS National Institute of Genetics.

Page 13 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://doi.org/10.5281/zenodo.6618935
https://doi.org/10.5281/zenodo.6535083
https://doi.org/10.5281/zenodo.6535083
https://doi.org/10.5281/zenodo.6534202
https://doi.org/10.5281/zenodo.6612737
https://doi.org/10.5281/zenodo.6612737
https://doi.org/10.5281/zenodo.6462774
https://github.com/sapporo-wes/sapporo-service/tree/1.2.4
https://doi.org/10.5281/zenodo.6609570
https://github.com/sapporo-wes/sapporo-web/tree/1.1.2
https://doi.org/10.5281/zenodo.6462809

References

1. GoodwinS,McPherson JD,McCombieRW, et al.:Comingof age: Ten
years of next-generation sequencing technologies. Nat. Rev.
Genet. 2016; 17(6): 333–351.
PubMed Abstract|Publisher Full Text

2. Stein LD: The case for cloud computing in genome informatics.
Genome Biol. 2010; 11(5): 207–207.
Publisher Full Text

3. Perkel JM: Workflow systems turn raw data into scientific
knowledge. Nature. 2019; 573(7772): 149–150.
PubMed Abstract|Publisher Full Text

4. da Leprevost FdV, Barbosa VC, Barbosa EL, et al.:Onbestpractices in
the development of bioinformatics software. Front. Genet. 2014; 5:
199.
Publisher Full Text

5. Wratten L, Wilm A, Göke J: Reproducible, scalable, and shareable
analysis pipelineswith bioinformatics workflowmanagers.Nat.
Methods. 2021; 18(10): 1161–1168.
PubMed Abstract|Publisher Full Text

6. Leprevost FdV, Grüning BA, Aflitos SA, et al. : Biocontainers: An
open-source and community-driven framework for software
standardization. Bioinformatics. 2017; 33(16): 2580–2582.
PubMed Abstract|Publisher Full Text

7. Khan FZ, Soiland-Reyes S, Sinnott RO, et al.: Sharing interoperable
workflow provenance: A review of best practices and their
practical application in cwlprov. GigaScience. 2019; 8(11): giz095.
Publisher Full Text

8. Batut B, Hiltemann S, Bagnacani A, et al. : Community-driven data
analysis training for biology. Cell Systems. 2018; 6(6): 752–758.e1.
PubMed Abstract|Publisher Full Text

9. Di Tommaso P, Chatzou M, Floden EW, et al. : Nextflow enables
reproducible computational workflows. Nat. Biotechnol. 2017; 35
(4): 316–319.
Publisher Full Text

10. Ewels PA, Peltzer A, Fillinger S, et al. : The nf-core framework for
community-curated bioinformatics pipelines. Nat. Biotechnol.
2020; 38(3): 276–278.
Publisher Full Text

11. Rehm HL, Page AJH, Smith L, et al. : GA4GH: International policies
and standards for data sharing across genomic research and
healthcare. Cell Genomics. 2021; 1(2): 100029.
PubMed Abstract|Publisher Full Text

12. Cerny T, Donahoo MJ, Trnka M: Contextual understanding of
microservice architecture: Current and future directions. ACM
SIGAPP Applied Computing Review. 2018; 17(4): 29–45.
Publisher Full Text

13. Suetake H, Ohta T: Sapporo: Getting started. 2021.
Reference Source

14. The Global Alliance for Genomics and Health Cloud Work Stream:
Workflow Execution Service (WES) API. 2017.
Reference Source

15. Common Workflow Language: common-workflow-language/
cwltool. 2015.
Reference Source

16. Vivian J, Rao AA, Nothaft FA, et al.: Toil enables reproducible, open
source, big biomedical data analyses. Nat. Biotechnol. 2017; 35(4):
314–316.
PubMed Abstract|Publisher Full Text

17. Voss K, VanDer AuweraG, Gentry J: Full-stackgenomics pipelining
with GATK4 + WDL + Cromwell. 2017.
Reference Source

18. Köster J, Rahmann S: Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics. 2012; 28(19): 2520–2522.
Publisher Full Text

19. Tanjo T: tom-tan/ep3. 2019.
Reference Source

20. Colonnelli I, Cantalupo B, Merelli I, et al. : Streamflow: Cross-
breeding cloudwithhpc. IEEE Trans. Emerg. Top. Comput. 2020; 9(4):
1723–1737.

21. Merkel D: Docker: Lightweight linux containers for consistent
development and deployment. Linux Journal. 2014; 2014(239): 2.

22. Harrow J, Drysdale R, Smith A, et al. : ELIXIR: Providing a
sustainable infrastructure for life science data at European
scale. Bioinformatics. 2021; 37(16): 2506–2511.
PubMed Abstract|Publisher Full Text

23. Crusoe MR, Abeln S, Iosup A, et al. : Methods included:
Standardizing computational reuse and portability with the
common workflow language. arXiv. 2021.

24. Kodama Y, Mashima J, Kosuge T, et al. : The ddbj japanese
genotype-phenotype archive for genetic and phenotypic
human data. Nucleic Acids Res. 2015; 43(D1): D18–D22.
PubMed Abstract|Publisher Full Text

25. Suetake H, Ohta T: sapporo-wes/test-workflow: 1.0.1. 2022.
Publisher Full Text

26. Suetake H: Sapporo execution results - broadinstitute/gatk/
MitochondriaPipeline. 2022.
Publisher Full Text

27. Suetake H: Sapporo execution results - nf-core/rnaseq. 2022.
Publisher Full Text

28. SuetakeH: Sapporoexecution results - JGAanalysis - per- sample.
2022.
Publisher Full Text

29. Prins P, De Ligt J, Tarasov A, et al. : Toward effective software
solutions for big biology. Nat. Biotechnol. 2015; 33(7): 686–687.
Publisher Full Text

30. Amstutz P, Mikheev M, Crusoe MR, et al. : Existing workflow
systems. 2021.
Reference Source

31. WilkinsonMD, DumontierM, Aalbersberg IJJ, et al.: The fair guiding
principles for scientific datamanagement and stewardship. Sci.
Data. 2016; 3(1): 1–9.

32. Goble C, Soiland-Reyes S, Bacall F, et al.: Implementing FAIRdigital
objects in the EOSC-life workflow collaboratory. 2021.

33. O’Connor BD, Yuen D, Chung V, et al. : The dockstore: enabling
modular, community-focused sharing of docker-based
genomics tools and workflows. F1000Res. 2017; 6.
Publisher Full Text

34. Suetake H, Ohta T: sapporo-wes/sapporo: 1.0.0. Zenodo. 2022.
Publisher Full Text

35. Suetake H, Ohta T, Tanjo T, et al. : sapporo-wes/sapporo-service:
1.2.4. Zenodo. 2022.
Publisher Full Text

36. SuetakeH,Ohta T: sapporo-wes/sapporo-web: 1.1.2. Zenodo. 2022.
Publisher Full Text

Page 14 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

http://www.ncbi.nlm.nih.gov/pubmed/27184599
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1186/gb-2010-11-5-207
http://www.ncbi.nlm.nih.gov/pubmed/31477884
https://doi.org/10.1038/d41586-019-02619-z
https://doi.org/10.1038/d41586-019-02619-z
https://doi.org/10.1038/d41586-019-02619-z
https://doi.org/10.3389/fgene.2014.00199
http://www.ncbi.nlm.nih.gov/pubmed/34556866
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
http://www.ncbi.nlm.nih.gov/pubmed/28379341
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1093/gigascience/giz095
http://www.ncbi.nlm.nih.gov/pubmed/29953864
https://doi.org/10.1016/j.cels.2018.05.012
https://doi.org/10.1016/j.cels.2018.05.012
https://doi.org/10.1016/j.cels.2018.05.012
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/s41587-020-0439-x
http://www.ncbi.nlm.nih.gov/pubmed/35072136
https://doi.org/10.1016/j.xgen.2021.100029
https://doi.org/10.1016/j.xgen.2021.100029
https://doi.org/10.1016/j.xgen.2021.100029
https://doi.org/10.1145/3183628.3183631
https://sapporo-wes.github.io/sapporo/GettingStarted
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/common-workflow-language/cwltool
http://www.ncbi.nlm.nih.gov/pubmed/28398314
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://f1000research.com/slides/6-1381
https://doi.org/10.1093/bioinformatics/bts480
https://github.com/tom-tan/ep3
http://www.ncbi.nlm.nih.gov/pubmed/34175941
https://doi.org/10.1093/bioinformatics/btab481
https://doi.org/10.1093/bioinformatics/btab481
https://doi.org/10.1093/bioinformatics/btab481
http://www.ncbi.nlm.nih.gov/pubmed/25477381
https://doi.org/10.1093/nar/gku1120
https://doi.org/10.1093/nar/gku1120
https://doi.org/10.1093/nar/gku1120
https://doi.org/10.5281/zenodo.6618935
https://doi.org/10.5281/zenodo.6535083
https://doi.org/10.5281/zenodo.6534202
https://doi.org/10.5281/zenodo.6612737
https://doi.org/10.1038/nbt.3240
https://s.apache.org/existing-workflow-systems
https://doi.org/10.12688/f1000research.10137.1
https://doi.org/10.5281/zenodo.6462774
https://doi.org/10.5281/zenodo.6609570
https://doi.org/10.5281/zenodo.6462809

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 30 October 2024

https://doi.org/10.5256/f1000research.167905.r294852

© 2024 Colonnelli I. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Iacopo Colonnelli
Universita degli Studi di Torino, Turin, Piedmont, Italy

The author successfully addresses most of the concerns affecting the first version of this work. For
the remaining ones, they provided exhaustive and convincing justifications in the comments. The
article is now mature enough to be indexed.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Workflows, High Performance Computing, Parallel Computing, Distributed
Computing

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 27 July 2024

https://doi.org/10.5256/f1000research.167905.r305477

© 2024 Piccolo S. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Stephen R. Piccolo
Department of Biology, Brigham Young University, Provo, UT, USA

This paper describes the Sapporo system, which is designed to be a Web-based wrapper around
existing workflow engines. It allows users to specify workflows to be executed on various different
engines on the back end. It is compatible with the GA4GH WES standard. The paper clearly
describes motivations behind the software's existence, how a researcher might use it, and

Page 15 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://doi.org/10.5256/f1000research.167905.r294852
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9290-2017
https://doi.org/10.5256/f1000research.167905.r305477
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

limitations of the software. The software is open source, and examples of its use are provided.
Personally, I am unsure whether I would use the software because it adds a layer of complexity. I
would probably just use the underlying workflow engine if I already had a workflow file. Then
again, if I typically used one particular workflow engine and found a better workflow in a different
ecosystem, I might use Sapporo to facilitate execution. On the other hand, a challenge is that I
would likely need to specify workflow_engine_parameters values that are specific that new
workflow engine. That would take some time to figure out, so maybe I would just use the
underlying workflow engine after all. Having said this, I think it is good that the software exists so
that it is an option for researchers to use.

I have one more question/comment. CWL workflows can execute tasks within Docker. (I forget
which other workflow systems support this.) However, the Sapporo system also uses Docker. It is
tricky to run Docker from within Docker. So I am unsure how that situation is handled.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, genomics, workflow management systems, education

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Reviewer Report 26 July 2024

https://doi.org/10.5256/f1000research.167905.r305473

Page 16 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://doi.org/10.5256/f1000research.167905.r305473

© 2024 Yuen D. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Denis Yuen
Ontario Institute for Cancer Research, Toronto, Ontario, Canada

This article largely covers the technical design decisions behind Sapporo, a suite of tools for
facilitating workflow execution, while focusing on sapporo-service and sapporo-web.

Overall, the authors should be commended for their efforts in aiding reproducible science by
making it simpler to run workflows using multiple workflow languages. Their efforts also sand-off
the rough edges of the GA4GH workflow execution service (WES) standard making it easier for the
community as a whole to develop tools to run workflows in a simpler uniform manner. Efforts to
write standards and aid reproducible science can often be unsung but are deeply valuable to
science as a whole.

Under the header of data and software availability, both GitHub repositories are well laid out and I
was able to easily use docker-compose to spin up both components for some simple sanity
checks. I also commend the authors for following best practices including well developed
documentation for developers, continuous integration, DOIs on Zenodo, and last but not least
regular software releases conforming to semantic versioning.

As for the manuscript, I recommend that the 2024 revision of the manuscript be accepted with
only a couple minor suggestions for clarification.

There is one reference to 2022 in the discussion, “As of May 2022, the GA4GH WES specification
supports only CWL and WDL for their workflow format.” Since this revision is in 2024 and In light of
the 1.1.0 release of the standard on Sept 14, 2023 it may be useful to update. For example, in
table 2, it is clear Sapporo supports more than these two languages yet is built on top of WES in
figure 2. Has the WES standard been expanded to more languages or did Sapporo need to make
extensions to the standard?

Also in table 2, it should be noted that Toil has WDL support although this may/may not be
supported by Sapporo.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets

Page 17 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-6130-1021

and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: For full disclosure, I am a contributor to a different standard in the GA4GH
cloud workstream and to Dockstore. Both are efforts aimed at improving reproducible science.
That said, I have not been a collaborator or a co-author with any of the authors and have no
financial or non-financial competing interests.

Reviewer Expertise: scientific workflows, cloud computing

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 05 October 2023

https://doi.org/10.5256/f1000research.134975.r185836

© 2023 Colonnelli I. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Iacopo Colonnelli
Universita degli Studi di Torino, Turin, Piedmont, Italy

In this article, the authors describe Sapporo, a WES-compatible web-based interface to multiple
workflow management systems (WMSs). Sapporo aims to act as a common interface to different
underlying WMSs, abstracting product-specific details and complexities to the end users. This way,
Sapporo fosters WMSs interoperability and lowers the technical barriers between domain experts
and workflow execution.

The description of Sapporo is kept at a high level of abstraction, without many technical details
about the implementation. However, it is detailed enough to let the reader capture all the crucial
aspects of the software architecture, the frontend and backend structure, and the main limitations
of the current version. A link to a Docker Compose manifest for quick evaluation would be a plus.

For implementers, the description is too high-level to understand how to replicate the software
development. Additional material published on GitHub and Zenodo contains further details for the
developers. However, having at least a high-level description of the `run.sh` script, which
constitutes the core of the Sapporo backend, would improve the article's understandability.

Page 18 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://doi.org/10.5256/f1000research.134975.r185836
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9290-2017

The main flaw of the article in its current form is that the description of the experimental
evaluation and the obtained results is left to external references. The authors describe three
different experiments using three different workflow languages and datasets. Adding a detailed
description of one of them directly in the article, together with the steps needed to reproduce it,
would allow the reader to better understand the features Sapporo provided.

Also, there is no quantitative measure of achieved results in the article. Some quantitative
measures of the Sapporo complexity (e.g., the percentage of product-specific lines of code that
users are still forced to write to specify workflow parameters or the average lines of code needed
to add support for a new WMS) would enable a more scientifically sound evaluation of the
product.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Workflows, High Performance Computing, Parallel Computing, Distributed
Computing

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 13 Jun 2024
Tazro Ohta

We deeply thank you for taking the time to review our manuscript.

1. A link to a Docker Compose manifest for quick evaluation would be a plus.

Page 19 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

Thank you for the great suggestion. We added a line to indicate the location of the docker
compose manifest for each of Sapporo-service and Sapporo-web.

2. For implementers, the description is too high-level to understand how to replicate the
software development. Additional material published on GitHub and Zenodo contains
further details for the developers. However, having at least a high-level description of the
`run.sh` script, which constitutes the core of the Sapporo backend, would improve the
article's understandability.

We agree with your assessment. We modified the paragraphs in the subsection "Workflow
execution service" in the Methods section to describe the run.sh function of Sapporo-
service:

> The system is designed to separate the execution layer from the handling of API requests,
thereby enhancing modularity and extensibility. The execution layer operates through a well-
structured shell script named "run.sh." Upon receiving an API request, the system forks "run.sh,"
which then generates command lines for the workflow system and executes them. This separation
enables the addition of new workflow systems without changes to the API server's code. As a
result, adding new workflows becomes straightforward, with the number of systems growing
from just one at the beginning of the project to seven in the current version (Table 2). The
flexibility of the "run.sh" also allows for specific adjustments for each workflow system,
supporting pre- and post-execution processes, such as authentication, staging input files, and
uploading results. Additionally, it is enabled to manage environment-specific requirements,
including executing jobs on grid engines and handling file I/O with S3-like object storage. Once
the system receives a workflow run request, it issues a universally unique identifier (UUID) and
creates a directory named with the UUID, where the system stores all the necessary files. The
workflow definition files, intermediate and final outputs, and the other metadata are stored in
that directory. This per-run directory can act as a bundle of provenance for the workflow run
(Figure 4).

3. The main flaw of the article in its current form is that the description of the
experimental evaluation and the obtained results is left to external references. The
authors describe three different experiments using three different workflow languages
and datasets. Adding a detailed description of one of them directly in the article, together
with the steps needed to reproduce it, would allow the reader to better understand the
features Sapporo provided.

In response to the comment by another reviewer (Dr. Justin M. Wozniak), we added the
details of how users can specify the workflow condition in the Result section and the new
figure Figure 8. We believe the addition can guide users to understand how they can run a
workflow using our implementation.

4. Also, there is no quantitative measure of achieved results in the article. Some
quantitative measures of the Sapporo complexity (e.g., the percentage of product-specific
lines of code that users are still forced to write to specify workflow parameters or the
average lines of code needed to add support for a new WMS) would enable a more

Page 20 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

scientifically sound evaluation of the product.

We agree with the reviewer's feedback. Indeed, quantitatively evaluating how much the
adoption of our system reduces the barrier to using different workflow management
systems is challenging, which made this article posted as a software tool article. Methods
such as user surveys could be considered for evaluation, but attempting to familiarize
participants with multiple workflow systems without the assistance of our system or having
learners of one language use a system in another language would not be practical.
Demonstrating quantitatively that "using workflow systems is inherently more productive
than executing workflows built with shell scripts on job queuing systems via the command
line" poses a challenge for the entire developer community involved in developing workflow
systems. Considering the challenges in the evaluation, with this paper we believe that
providing the option of not only multiple different workflow management systems but also
a system that can be used across them is our main contribution to the community.

Competing Interests: NA

Reviewer Report 26 July 2023

https://doi.org/10.5256/f1000research.134975.r185842

© 2023 Wozniak J. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Justin M. Wozniak
Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA

This article presents a new abstraction layer (Sapporo) over existing workflow systems to support
portability and interoperability. The paper is oriented around a bioinformatics workload. The
paper is primarily focused on how Sapporo operates as a web service and runs underlying
workflows using the other existing systems.

The paper provides a pretty good high-level state-of-the-art in the workflow ecosystem and the
bioinformatics use case.

The paper spends most of its space describing the abstraction over workflow systems and figures
that illustrate the corresponding architecture. It does not contain a deep dive into any challenges
regarding workflow system interoperability.

From a bioinformatics perspective, the description of support for the application workload is very
high-level. There is no deep dive into what is really required to make this workload work. There are
results posted for the run that are linked on the Internet, but they are not summarized in the text.

The architecture figures are very spacious and do not provide much technical insight.

Page 21 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

https://doi.org/10.5256/f1000research.134975.r185842
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2441-2048

There is an illustration of the web form used to run Sapporo, but it seems oversimplified and does
not convey what the user would be faced with in a real-world problem.

I downloaded the Sapporo source zip via the links in the paper. The source tree was not very
revealing and I am not set up to run a new web service. The README pointed me to web-based
docs that seemed quite good and included detailed installation notes.

Overall, this is a good high-level introduction to Sapporo, but does not offer detailed technical
insights into the problem space or the Sapporo solution. More details are necessary about these
topics to provide insight to the community and allow for a better evaluation of the Sapporo
contribution.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
No

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: workflows, hpc, distributed computing

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 13 Jun 2024
Tazro Ohta

We deeply thank you for taking the time to review our manuscript.

1. The paper spends most of its space describing the abstraction over workflow systems
and figures that illustrate the corresponding architecture. It does not contain a deep dive

Page 22 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

into any challenges regarding workflow system interoperability.

We agree with your assessment. We added the text below in the Background section to
emphasize the challenge in making the existing workflow systems:

> Workflow systems have different language syntaxes and engines, each designed for specific
purposes. For instance, Nextflow aims to boost developer productivity and scalability, while
Snakemake focuses on flexibility and simplicity, using Python as its base. In contrast, the
Common Workflow Language (CWL) project aims to promote interoperability by creating a
standardized syntax that various workflow engines can understand. However, workflows written
in different languages cannot be easily converted into each other automatically. The most
popular workflow systems used in bioinformatics, such as CWL, WDL, Nextflow, and Snakemake,
take a workflow definition and input parameters to produce output result files, while there are
differences between these workflow systems in command-line options, workflow description
syntax, methods for specifying inputs, and how expected output files are defined.
> Creating a universal language converter isn't practical because some languages lack the
necessary syntax parsers, or contain features that are not commonly found in other workflow
engines (e.g. JavaScript evaluation as in CWL, loops in workflows or cyclic workflows instead of
DAG-based systems). To bridge the gap between different workflow systems, we need a
standardized way to specify workflows, input parameters, and expected outputs. Additionally, a
system that supports various engines and selects the appropriate one for a given workflow is
essential for smooth interoperability.

2. From a bioinformatics perspective, the description of support for the application
workload is very high-level. There is no deep dive into what is really required to make this
workload work. There are results posted for the run that are linked on the Internet, but
they are not summarized in the text.

We agree again with your assessment. To clarify the user's procedure for performing the
analysis, we modified the paragraph in the Result section as follows:

> To evaluate the practical applicability and robustness of Sapporo, we executed public workflows
frequently used by researchers. Specifically, we chose the Mitochondrial Short Variant Discovery
workflow from the GATK best practices (written in WDL), the RNA-seq workflow from the nf-core
repository (written in Nextflow), and a Germine Short Variant Discovery workflow for processing
whole-genome sequencing data from the Japanese Genotype-phonotype Archive (written in CWL).
Users access Sapporo's endpoint specifying the input parameters following the WES specification.
The required parameters are workflow_url, workflow_type, workflow_type_version, and
workflow_params. The workflow_url argument specifies the location of the workflow definition file
(e.g. CWL file) to be executed, typically hosted on a remote server, enabling the API to access and
utilize the workflow's instructions. The workflow_params argument points to a JSON file
containing input parameters essential for the workflow execution, facilitating customization and
adaptation of the workflow's behavior. The arguments workflow_type and workflow_type_version
arguments indicate the type and version of the workflow language being employed, ensuring
compatibility and proper interpretation of the workflow instructions by engines supported inside
Sapporo. Additionally, the workflow_engine_name argument specifies the execution engine to be
used, while the default engine for the given workflow language is assigned when it is not

Page 23 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

specified. Lastly, another optional argument workflow_engine_parameters argument allows for
the specification of additional parameters tailored to the execution engine, providing fine-
grained control over the execution environment and behavior of the workflow engine. We
published the detailed description of the test procedures for these workflows on GitHub, and the
results of the test runs on Zenodo.

We also added a detailed view of user's procedure to run a workflow with Sapporo as Figure
8.

3. The architecture figures are very spacious and do not provide much technical insight.

The architecture figures presented in the paper aim to illustrate the concept of our
approach, which is not a monolithic software but rather divided into multiple layers. The
figure aims to focus on the concept itself, because the technologies employed for
implementation may change in the future. While we implemented the Sapporo-service
providing the Web API in Python Flask and the Web UI accessing the API in Vue.js to
enhance our development efficiency, we do not claim technical superiority over them here.
As the software stacks evolve, we acknowledge the possibility of changing technology
choices in the future. The idea of decomposing components into functionalities, as
exemplified by microservices architecture, is common in today's software engineering, and
we do not consider it novel. However, in the field of bioinformatics where existing workflow
systems tend to be monolithic, easily extensible and layered systems are not as prevalent.
Thus, we argue in the paper that such a design is beneficial for solving the problem we
raise. Nonetheless, from the series of comments received from the reviewer, we recognized
that the main message of the paper might not have been as clear as we intended. We
believe the paragraphs added in Background and Discussion according to your comments
may help readers to understand the aim of our projects.

4. There is an illustration of the web form used to run Sapporo, but it seems oversimplified
and does not convey what the user would be faced with in a real-world problem.

We understand the reviewer's concern about the oversimplified depiction of the workflow in
Figure 7, resulting in a very basic UI representation that may differ from what users may
encounter when using Sapporo-web in real-world scenarios. The intention behind this
illustration was to demonstrate the automatic rendering of the UI based on the input in the
workflow definition file. We do not assume or claim here that highly complex workflows
with complicated input parameter sets can be executed seamlessly through the generated
Web UI. We added the following sentences in the Discussion section to claim the
relationship between the user interface and the improvement of workflow usability:

> As the complexity of the workflow increases, so does the difficulty of executing it. Sapporo's
primary goal is to reduce the time and learning costs associated with deployment,
parameterization, and execution due to changes in workflow languages or systems, not to reduce
the inherent complexity of given workflows. The use of complex workflows requires complex input
parameter specifications due to the intricacies of their internal processes, and using them without
understanding them would not reflect scientific integrity in data analysis. Of course, some costs

Page 24 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

can be mitigated through UI enhancements, such as optimizing sets of multiple input parameters
or streamlining iterations for numerous input files. However, it's not practical for Sapporo-web's
default UI to cover all these scenarios, as web UIs are not one-size-fits-all. There is potential to
solve this problem by semi-automatically generating a UI for each workflow, a concept we're
exploring in another project. However, even in this scenario, the advantage of splitting our UI into
standardized APIs remains apparent.

5. Overall, this is a good high-level introduction to Sapporo, but does not offer detailed
technical insights into the problem space or the Sapporo solution. More details are
necessary about these topics to provide insight to the community and allow for a better
evaluation of the Sapporo contribution.

In response to your comment; we believe that your previous points stressed this same
point, and the content added there addresses this same issue. As outlined in our response
to your first comment, we have added descriptions in the updated manuscript about the
issues Sapporo aims to address. Additionally, we have incorporated the following passage
into the Discussion section:

> To support workflow developers and researchers conducting data analysis, multiple different
workflow management systems have been developed. These systems enhance productivity and
reproducibility in data analysis, enabling more effective science. However, the proliferation of
multiple systems has revealed inefficiencies, leading to fragmentation within developer and user
communities. While it is crucial to effectively leverage the assets of each system and community, it
is not practical to provide the methods for syntax conversion between workflow systems and
extending execution engines. Therefore, Sapporo aims to absorb differences between systems by
wrapping multiple systems. Specifically, we provide an API that rewrites workflow definitions and
runtime parameters into the command lines of each system based on the type of workflow
definition received, enabling the execution of different workflows using the same client. Inside
the API server, we use Docker containers to ensure the usability of different workflow engines. The
use of containers also ensures future additions of workflow engines while maintaining the
portability of the API server. The Web API adheres to the internationally defined GA4GH WES
standard, ensuring interoperability with other GA4GH WES implementations. By developing and
releasing Sapporo Web as an example of a GA4GH WES client, we demonstrate the readiness of
our developed API for research use.

Competing Interests: NA

Page 25 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 26 of 26

F1000Research 2024, 11:889 Last updated: 30 OCT 2024

mailto:research@f1000.com

