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Abstract

Molecular simulations are commonly used to understand the mechanism of membrane permeation 

of small molecules, particularly for biomedical and pharmaceutical applications. However, despite 

significant advances in computing power and algorithms, calculating an accurate permeation free 

energy profile remains elusive for many drug molecules because it can require identifying the 

rate-limiting degrees of freedom (i.e., appropriate reaction coordinates). To resolve this issue, 

researchers have developed machine learning approaches to identify slow system dynamics. 

In this work, we apply time-lagged independent component analysis (tICA), an unsupervised 

dimensionality reduction algorithm, to molecular dynamics simulations with well-tempered 

metadynamics to find the slowest collective degrees of freedom of the permeation process of 

trimethoprim through a multicomponent membrane. We show that tICA-metadynamics yields 

translational and orientational collective variables (CVs) that increase convergence efficiency ~1.5 

times. However, crossing the periodic boundary is shown to introduce artifacts in the translational 

CV that can be corrected by taking absolute values of molecular features. Additionally, we find 

that the convergence of the tICA CVs is reached with approximately five membrane crossings and 

that data reweighting is required to avoid deviations in the translational CV.
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Graphical Abstract

INTRODUCTION

Lipid membranes function as the physical barrier that controls the exchange of matter, 

energy, and information between cells and organelles in biological systems. Membrane 

permeation of small molecules is often an activated process that takes place on time 

scales inaccessible by standard molecular simulations. The dynamics of large biomolecular 

systems is governed by a complex high-dimensional free energy landscape characterized 

by a hierarchy of energy barriers.1–3 Transitions between metastable states become rare 

when they are separated by large energy barriers while thermal fluctuations are the only 

driving force for barrier crossing.4 These kinetic bottlenecks restrict the time scale that can 

be explored (which is generally in the range of microseconds or shorter) by conventional 

molecular dynamics (MD) simulations, thereby introducing substantial statistical errors in 

the measurement of structural, thermodynamic, and kinetic properties. To circumvent this 

sampling issue, many of the existing computational methods used to evaluate membrane 

permeation rely on enhanced free energy sampling techniques.5–9 Impressively, membrane 

permeation has been directly observed for a few small molecules in canonical MD 

simulations on the nano- and microsecond time scales. For instance, Kramer̈ et al.10 

performed unbiased MD simulations to evaluate the permeability coefficients of oxygen, 

water, and ethanol using counting methods and maximum likelihood estimation for the 

inhomogeneous solubility-diffusion (ISD) model.6,11,12 They found that counting methods13 

yield nearly model-free estimates for all of the three permeants, whereas the ISD model 

causes large uncertainties for water due to insufficient sampling and overestimates for 

ethanol due to collective effects in the membrane.10,14 For larger molecules with slower 

permeation, however, enhanced sampling can be essential to increase the occurrence of 

the slowest dynamic motions that enable permeation. This can be done by biasing the 

potential energy surface or altering the probability density of sampled conformations.15,16 

For example, an external bias potential can be added to the Hamiltonian (as in umbrella 

sampling and metadynamics (MetaD)), or the system can be coupled to higher temperatures 

(as in replica exchange MD) to effectively reduce energy barriers and thus sample 

transition regions, or the transition ensemble can be selectively sampled with path sampling 
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approaches, such as transition interface sampling or its combination with replica exchange 

with or without memory effects.14,17

The success of enhanced free energy sampling methods involving Hamiltonian bias requires 

the selection of a proper set of collective variables (CVs). CVs are user-defined functions of 

atomic (Cartesian) coordinates that provide a low-dimensional projection of conformational 

phase space while, in principle, retaining “important” information. Dimensionality reduction 

is an essential consequence of our inability to work in or visualize high-dimensional spaces. 

Only in a reduced number of dimensions (typically 2–4) can we define effective bias 

potentials to alter dynamics, visualize complex free energy landscapes, efficiently sample 

conformational phase space that crosses high energy barriers, and simplify simulation data 

for noise omission and better inference (i.e., escape the curse of dimensionality).18 Ideally, 

CVs are translationally and rotationally invariant, include all relevant slow molecular 

motions, and distinguish local minima (metastable states) and activation barriers (transition 

states).19–22 If properly obtained, CVs provide lower variance estimators of the properties 

of interest when the system diffuses on the free energy surface (or potential of mean force, 

PMF) spanned by these CVs. However, it is highly nontrivial to intuit good CVs for complex 

systems (large biomolecules in particular), and accelerating dynamically irrelevant CVs may 

give rise to inaccurate profiles and decreased efficiency compared to unbiased MD.21 In 

recent years, the availability of large data sets (obtained directly from unbiased and biased 

simulations) in conjunction with advances in computing hardware and algorithms has led to 

the automated design of CVs inspired by machine learning, data science, and information 

theory. A comprehensive review of machine learning approaches for CV discovery is 

presented in refs 4,18,21,23, and 24. Herein, we aim to test the limitations of one such 

approach.

Data-driven CVs are typically coincident with collective degrees of freedom that either have 

a high variance or evolve slowly. High-variance CVs can be identified by the principal 

component analysis (PCA), an unsupervised linear transformation that finds a subspace that 

maximally preserves the configurational variance contained within a molecular simulation 

trajectory.21 Since the orthogonal eigenvectors, or the principal components (PCs), represent 

large-amplitude collective motions in terms of variance, they are often called essential 

dynamics25–30 and used as collective variables for enhanced sampling. However, a major 

problem inherent in PCA is that it is not generally guaranteed that large-amplitude motions 

are associated with slow motions that enable transitions between metastable states. For 

example, Naritomi and Fuchigami31 found that a closure motion of the lysine–arginine–

ornithine binding protein described by the largest-amplitude mode determined by PCA does 

not represent the slowest mode, a twist motion that takes place on a time scale of tens of 

nanoseconds.

Generally, identifying slow motions rather than large-amplitude motions is essential to 

address the sampling problem. Time-lagged independent component analysis (tICA), 

initially introduced as a signal decomposition algorithm,32 is an unsupervised linear 

transformation that finds a subspace that maximally preserves the kinetic content (i.e., 

minimizes the loss of kinetic information) by maximizing the autocorrelation function.21,33–

35 The resulting eigenvectors, or independent components (ICs), represent the slowest-

Oh et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relaxing degrees of freedom in time series data and approximate the eigenfunctions of 

the underlying Markovian dynamics. In other words, tICA provides the optimal linear 

approximation to the variational approach to conformational dynamics, a systematic 

approach for modeling the slow parts of Markov processes by approximating the dominant 

eigenfunctions of the MD propagator (or transfer operator).36–39 Concisely, tICA is a special 

case of the linear variational approach which uses mean-free input descriptors as a basis set 

and empirical estimates of their covariance matrices in an eigenvalue problem.33,36 More 

details on tICA can be found in the Methods section.

Once slowly decorrelating modes are discovered, they can be biased in CV-based enhanced 

sampling techniques to accelerate the occurrence of rare events. In tICA-MetaD, tICA is 

performed on MD simulation trajectories to identify the ICs which are then directly used 

as CVs in MetaD to obtain highly diffusive behavior in CV space and fast convergence 

of PMF calculations. For instance, Sultan and Pande40 applied linear and nonlinear tICA-

MetaD on unbiased MD simulations of alanine dipeptide and bovine pancreatic trypsin 

inhibitor to explicitly sample their slowest modes. In principle, the combined method 

can drive slow transitions even when no such transitions take place in the original 

unbiased simulations. However, this only happens when the slow motions captured in 

the original simulations are the same as those that enable the sought-after transition(s). 

This can be a major limitation of their method since it requires unbiased sampling of 

the relevant slow transitions (e.g., via very long aggregate MD sampling or enough MD 

runs starting from high and low free energy states), which is often challenging or even 

unfeasible depending on the system.40 A clear example of this would be the permeation 

of a highly polar molecule for which unbiased sampling never entered the hydrophobic 

membrane midplane. To resolve this problem, McCarty and Parrinello41 proposed to start 

with a biased simulation with suboptimal CVs, reweight the trajectory to recover unbiased 

distributions (i.e., Boltzmann statistics) of the system, and perform tICA to derive slow 

CVs for MetaD. This CV optimization method has been applied to different systems 

ranging from conformational transitions of alanine dipeptide, alanine tetrapeptide,41 and 

L99A T4 lysozyme42 to homogeneous crystallization of sodium and aluminum.43 However, 

their method also faces several challenges. First, data reweighting is not a trivial task; for 

example, their reweighting scheme may not work properly on the trajectory generated by 

transition-tempered metadynamics (TTMetaD).8,44 Second, reweighting does not necessarily 

converge accurately and rapidly to the underlying free energy depending on the reweighting 

technique, the enhanced sampling technique, and the stage of the simulation.45

Recovering the slow modes of an unbiased system from a biased trajectory is nontrivial 

and thus often approximate. Extensive efforts have been made to mitigate this challenge. 

For example, Mehdi et al.46 employed the State Predictive Information Bottleneck (SPIB) 

approach to investigate the permeation of a small benzoic acid (BA) molecule across a 

symmetric phospholipid bilayer, specifically aiming to identify reaction coordinates (RCs) 

for enhanced sampling algorithms. Bonati et al.47 developed the deep-tICA method by 

introducing a nonlinear variant of VAC to the approach initially proposed by McCarty 

and Parrinello41 and utilizing on-the-fly probability-enhanced sampling (OPES) to construct 

the bias potential. Chen and Chipot48 conducted an in-depth investigation into the use 

of classical autoencoders (AEs), time-lagged AEs (TAEs), modified TAEs, VAMPnets, 
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and state-free reversible VAMPnets (SRVs) for deep learning-based CV discovery in 

molecular processes. Donati and Keller49 introduced a methodology that applies the 

Girsanov reweighting scheme to metadynamics simulations, allowing for the recovery of 

accurate dynamic properties of a molecular system from an enhanced sampling simulation. 

Another noteworthy approach is the Girsanov Reweighting Enhanced Sampling Technique 

(GREST) proposed by Shmilovich and Ferguson,50 which is an adaptive sampling scheme 

that alternates rounds of data-driven slow CV discovery and enhanced sampling along these 

coordinates.

Previously, we studied the molecular mechanism of membrane permeation of trimethoprim, 

an antibacterial agent primarily used in the treatment of urinary tract infections,51 using 

an alternative implementation of tICA-MetaD.52 First, we performed a short TTMetaD 

simulation with nonoptimal CVs to generate an initial trajectory that involved at least one 

transition of interest (permeation). Second, we identified the slowest decay modes using 

tICA without data reweighting. Lastly, we carried out a new TTMetaD simulation using 

a permeation CV consistent with the original bias and the slow CV obtained from tICA. 

We then examined the accuracy and convergence of PMF calculations. Interestingly, the 

use of tICA CVs was shown to accelerate the convergence of PMF calculations while also 

revealing a subtle effect of cholesterol on the permeation of the small drug molecule through 

the heterogeneous model membrane. Perhaps more importantly, this work brought to light 

several outstanding questions regarding the optimal use of tICA-MetaD. For example, it 

remains unclear what effect trajectory reweighting has on tICA CVs, whether this approach 

is applicable to other forms of tempering, and how many rare events are needed in the 

original trajectories in order to obtain consistent (converged) tICA CVs. Moreover, the 

influence of the periodic boundary conditions (PBCs) on tICA-like analyses of permeation 

has, to the best of our knowledge, been largely overlooked.

In this work, we apply several variations of tICA-MetaD to membrane permeation to 

address these outstanding questions. We opt for a pair of molecular features, specifically the 

z-positions of trimethoprim relative to the lipid bilayer (or signed perpendicular distances), 

and design a straightforward yet suboptimal initial CV. This approach aims to initiate rare-

event crossings to obtain trajectory data that can be fed into tICA-MetaD protocols in order 

to identify optimal CVs. The use of a simple and largely transferable initial CV (such as 

the z-position relative to the membrane) is particularly relevant when the selection of good 

CVs is not known a priori. We find that tICA-MetaD distinctly identifies the translational 

and orientational modes as slow CVs, and the use of the machine-learned tICA CVs leads to 

~1.5 times faster convergence of our PMF calculations. However, the tICA-MetaD scheme 

that we employed cannot be applied to TTMetaD trajectories. Also, PBCs can be detrimental 

to tICA for membrane permeation trajectories. The orientational CV is not significantly 

affected by the PBCs, while taking absolute values of molecular features corrects the error 

in the translational CV. Additionally, convergence of the tICA CVs is attained even when 

only five membrane crossings are included in the trajectory regardless of data reweighting, 

and the first eigenvector may deviate significantly from the translational CV when data 

reweighting is omitted. Collectively, we hope that these findings will help inform future 

implementation best practices for tICA-MetaD applied to membrane permeation.
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METHODS

All-Atom Molecular Dynamics Simulation.

We performed all-atom molecular dynamics simulations using GROMACS 2019.453 patched 

with PLUMED 2.5.354 for well-tempered metadynamics (WTMetaD) and TTMetaD. For 

optimal comparison, the heterogeneous bilayer system used in our previous work selected 

for this study, including 36 phosphatidylcholine (POPC) and 4 cholesterol molecules 

nPOPC/nCHOL = 9:1 . The bilayer was placed on the xy-plane (i.e., with the surface normal 

along the z-axis) and solvated by 2200 water molecules in a unit cell with dimensions 

of approximately 3.6 × 3.6 × 9.5 nm3. The PBC was then applied in every direction. 

CHARMM3655 and the CHARMM general force field (CGenFF)56 were employed to 

model the lipid molecules and trimethoprim, respectively. The water molecules were 

modeled with the TIP3P57 potential. We prepared the initial structure of the lipid bilayer 

using the CHARMM-GUI membrane builder58 and equilibrated it for 150 ns in water. 

After equilibration, we placed the drug molecule randomly into the aqueous region using 

PACKMOL.59 To generate an isobaric–isothermal (NPT) ensemble of the system at 323.15 

K and under 1 bar, the lipid and the water plus the drug molecule were separately coupled 

to two heat baths using velocity rescaling with a stochastic term,60 while the system 

was coupled semi-isotropically to a Berendsen barostat61 such that the simulation box 

was rescaled every 5 ps. The cutoff distance for the short-range neighbor list was set 

to 12 Å, and the neighbor list was updated every 40 steps. Fast smooth Particle-Mesh 

Ewald (SPME)62 was used to treat long-range electrostatic interactions. All covalent bonds 

including hydrogen atoms were constrained by linear constraint solver (LINCS),63 and the 

integration time step was set to be 2 fs. The initial velocities were randomly sampled from a 

Maxwell–Boltzmann distribution at 323 K which is well above the transition temperature of 

the lipids. We generated the images from the simulations and analyzed the MD trajectories 

using Visual Molecular Dynamics (VMD) version 1.9.3.64 Details of each simulation are 

given in Table 1.

To investigate the effect of the PBC on tICA CVs, we applied lower and upper walls that 

limit the phase space accessible to the system during the simulation. In PLUMED 2.5.3, 

these walls are implemented in the form of restraining potentials η s  given by

η s = ∑
i

κi
si − ai + oi

ri

e

(1)

where κi, si, ai, oi, and ri denote a force constant, a CV, the position of the wall, an offset, and 

a rescaling factor, respectively, and e is the exponent that determines the power law. In our 

simulations, set oi = 0, ri = 1, and e = 2 to realize harmonic restraints and added both upper 

and lower walls on z1 and z2 (i.e., suboptimal CVs) at 3.6 and −3.6 nm with κi = 1500 kJ/mol.
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Well-Tempered Metadynamics.

WTMetaD19,65,66 is an enhanced sampling technique that discourages the system from 

revisiting configurations that have previously been sampled in the CV space by periodically 

adding to the Hamiltonian of the system small repulsive Gaussians whose amplitude 

decreases exponentially as the simulation progresses. The sampling of rare events is 

accelerated due to the ergodic and diffusive motion of the system along the selected CVs. 

The instantaneous bias potential V s, t  at point s in CV space and at time t is determined by 

the sum of Gaussian hills deposited over the past trajectory of the system

V s, t = ∑
t′ = nτG

t′ < t
w t′ ∏

i = 1

NCV
exp − si t − si t′ 2

2σi
2

(2)

where σi is the width of the Gaussian hill for si, the i th CV; NCV is the number of CVs; τG is 

the stride of Gaussian deposition; and w is the adaptive height of the Gaussian hill given by

w t′ = w0exp − V s, t′
kBΔT

(3)

where w0 is the initial height of the Gaussian hill, kB is the Boltzmann constant, and ΔT
is a parameter that tunes how quickly the Gaussian height is reduced. Ideally, ΔT  should 

be proportional to the free energy barrier to be crossed, which is generally not known in 

advance. If the parameter is too small, then the system fails to escape local minima; if the 

parameter is too large, unphysical instability can be introduced causing significant errors 

in the PMF. The adjustment of the Gaussian deposition allows smooth convergence and 

tunable error of the bias potential so that the unbiased free energy F s  of the system can be 

estimated as the limit

lim
t ∞

V (s, t) = − 1 − 1
γ F(s)

(4)

where γ is a bias factor at temperature T  given by

γ = T + ΔT
T

An advantage of WTMetaD is that after a transient time, the simulation enters a quasi-

stationary limit in which the expectation value of any observable O R  can be estimated as 

a running average according to
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⟨O(R)⟩ = lim
τ ∞

0

τ
O R t eβ V s, t − c t dt

0

τ
eβ V (s, t) − c(t) dt

(6)

where R(t) is atomic position at time t, β is the reciprocal of the product of kB and T , and c(t)
is a time-dependent bias offset defined as

c(t) = − 1
β log∫ e−β F(s) + V (s, t) ds

∫ e−βF(s)ds

(7)

The function c(t) asymptotically tends toward the reversible work done on the system by the 

external bias.

In our WTMetaD simulations, the Gaussian bias was deposited every 500 steps with a 

height of 0.05 kJ/mol and a width of 0.2 nm. The height of the Gaussian hill was tempered 

with a bias factor of 15. Multiple replicas were prepared, initialized randomly, and run for 

3–5 μs, and the resulting PMFs were obtained by averaging over replicas. To generate 1D 

PMFs, we further symmetrized the free energy profiles with respect to the center of the 

horizontal axis. The minimum free energy paths (MFEPs) on 2D PMFs were calculated with 

a zero-temperature string method67,68 which represent the most probable transition paths 

in the ensemble of the permeation processes. The 1D PMF was directly obtained by using 

the average MFEP from independent replicas. Error bars were computed using the standard 

errors across replicas.

CV Selection.

In the tICA-MetaD process, an initial suboptimal CV (e.g., the signed perpendicular 

distance of the molecule’s center of mass (COM) from the membrane) is first used to 

induce rare events (i.e., membrane crossings), and subsequently, optimal CVs are derived as 

linear combinations of sets of features. Typical features might include multiple interatomic 

distances or dihedral angles. The primary aim of tICA is to linearly combine these features 

into a few CVs that efficiently sample the system’s slow dynamics when biased. Generally, 

many features could be tested, and those with significant weights are retained. We, however, 

used two features in order to compare with previous work that used the two distances 

between the z-position of the COM of each ring of trimethoprim and that of the lipid 

membrane COM.69,70 These features are denoted by z1 for the trimethoxybenzyl (TMB) 

group and z2 for the diaminopyrimidine (DAP) group (Figure 1c). Although the previous 

work demonstrated that biasing z1 and z2 reduced the total simulation time required for 

convergence and captured orientational changes, it is not guaranteed that the two CVs are 

associated with slow transitions or optimal compared with many other degrees of freedom 

that mediate the permeation process. In addition, we chose a naïve linear combination of 

z1 and z2 as initial suboptimal CV to bias just one CV (mimicking the anticipated common 
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use of the molecular COM distance) and to test tICA’s ability to identify a superior linear 

combination from a naïve linear combination. Ultimately biasing the tICA-derived optimal 

CVs should outperform biasing either the initial suboptimal CV or the molecular features (z1

and z2) directly.

Time-Lagged Independent Component Analysis.

Once the covariance matrices central to tICA were computed, these features were then 

linearly combined to generate two CVs that optimally describe the slow modes of the 

system by solving a generalized eigenvalue problem. The robustness of the tICA CVs was 

examined over a range of lag times from 1 to 9 ns. Finally, tICA CVs were biased as new 

CVs in WTMetaD simulations to investigate any significant improvement in the sampling 

efficiency. To understand the effect of biasing on tICA CVs, we applied the method to both 

biased and unbiased subtrajectories, which involve different numbers of drug permeation 

events. We obtained unbiased trajectories from biased ones through a reweighting scheme, 

as described in the next section.

Here, we provide a brief introduction to the method, as the theoretical background of 

tICA can be found in many other works. tICA is an unsupervised dimensionality reduction 

algorithm designed to find a maximally slow subspace U via a linear transformation of 

molecular features χ by maximizing the autocorrelation function of their projections. In 

other words, it finds the degrees of freedom where the correlation decays slowly and 

provides an optimal linear solution to the variational approach to conformational dynamics 

that approximates the slow components of reversible Markov processes. Mathematically, 

tICA determines the slowest independent collective degrees of freedom ui onto which the 

projections si t = ui . χ(t) have the largest autocorrelation function

si(t)si(t + τ)
si(t)2

(8)

for a chosen lag time τ. Equivalently, tICA maximizes the ratio J(U)

J(U) = UTC(τ)U
UTC(0)U

(9)

with respect to U = u1, ⋯, ud . This is equivalent to finding the solution of the generalized 

eigenvalue problem

C(τ)U = C(0)UΛ

(10)
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where τ is the lag time, C is the covariance matrix (i.e., C(τ) = χ(t)χT(t + τ)
t
 where the data 

χ is mean-free), U is the eigenvector matrix that contains linearly independent components 

(ICs), and Λ is a diagonal eigenvalue matrix that contains autocorrelations. The dominant 

ICs are used to reduce the dimensionality of the phase space and capture the slowest modes 

of the molecular system. A direct estimation of C(τ) from finite trajectories generally yields 

an asymmetric matrix and complex-valued eigenvectors and eigenvalues that are inconsistent 

with reversible molecular dynamics. To circumvent this problem, a symmetric estimator 

is often used to approximate the covariance matrices by averaging over all pairs xt, xt + τ

and the reverse xt + τ, xt , which is equivalent to averaging time-forward and time-reversed 

trajectories, where x is a set of mean-free molecular coordinates.34

tICA suffers from one significant pitfall: the choice of a proper value of τ that determines 

which kinetic processes are considered to construct the new subspace. Ideally, τ must be 

sufficiently long that the dynamics described by ICs satisfy the Markovian property of 

being memoryless but also sufficiently short that the significant dynamics are not neglected. 

Currently, there is no recipe to choose an appropriate value of the parameter.18 Therefore, 

ICs are ideally robust within a range of τ smaller than their time scales, but it is practically 

inevitable that they change to some extent as the parameter value changes.71 In this work, 

we examine the components of the eigenvectors as a function of τ, as done previously by 

Parrinello and colleagues.41,72

Reweighting Algorithm.

Information about the unbiased state of the system can be recovered directly from a 

metadynamics simulation by means of a reweighting procedure.45 We approximated the 

unbiased slow modes of the system from our WTMetaD trajectories using the reweighting 

scheme proposed by McCarty and Parrinello.41 Here, we summarize the key steps involved 

in the reweighting procedure. For the column vector χ(t) of the molecular features at time t, 
the two covariance matrices in eq 10 are calculated as follows

C(0) = ∑
t

w(t)χ(t)χT(t)

(11)

C(τ) = ∑
t

w(t)χ(t)χT(t + τ)

(12)

where the statistical weight w(t) of the configuration at time t is given by

w(t) = eβ V (s, t) − c(t)

t eβ V (s, t) − c(t)

(13)

Oh et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the case where walls are employed, the potentials are not included in the calculation of 

the statistical weights. Furthermore, the time scale in biased simulations needs to be properly 

rescaled as follows

dt = eβ V (s, t) − c(t) dt

(14)

so that τ is given by the sum of the rescaled time steps

τ = ∑
t = t0

τ′
eβ V (s, t) − c(t) Δt

(15)

If N molecular features are chosen to define the basis functions, then M eigenvectors that 

correspond to the slowest relaxation times (i.e., largest eigenvalues) are selected to be biased 

as optimal CVs with WTMetaD

si(R) = ∑
k = 1

M ≤ N
uikχk(R)

(16)

where ui is the ith eigenvector in U (or the set of expansion coefficients) in eq 10.

Contact Analysis.

Contact analysis was performed for the DAP and TMB moieties interacting with different 

components of the system, including water, cholesterol, POPC, and the choline-phosphate 

(PO4) group or ester region of POPC (Figure S11). A contact was defined as any atom 

present within a cutoff radius of 3.5 Å of the reference group. The analysis was performed 

using the MDAnalysis Python package.73 The same groups were used to calculate the 

average interaction energy using gmx energy.

RESULTS AND DISCUSSION

Application of tICA-MetaD to Membrane Permeation Simulations.

We employed the tICA-MetaD scheme (Figure S16) proposed by McCarty and Parrinello41 

to identify unbiased slow CVs for the passive diffusion of trimethoprim across a model 

heterogeneous lipid membrane composed of POPC and cholesterol. The procedure starts 

from the design of any arbitrary suboptimal CV s0 that enhances the occurrence of rare 

events. Typically, the molecule’s COM distance from the membrane would be selected. In 

this work, we selected instead a naïve linear combination of two molecular features, z1 and 

z2 (Figure 1c), that were previously demonstrated to improve the convergence of permeation 

calculations (see the CV Selection section8). We defined s0 as the sum of z1 and z2 with equal 

weights, namely, s0 = 0.7071z1 + 0.7071z2. Mathematically, this is simply the unit vector of 
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(1,1) in the descriptor space of z1 and z2. Physically, s0 carries the same information as zCM

(i.e., the z-position of the COM of the drug molecule relative to that of the lipid bilayer) 

but is rescaled; when we plot s0 as a function of zCM using one of the WTMetaD trajectories 

biasing s0 (see the following paragraph), we observe a linear relationship between the two 

variables, namely, s0 = 1.4153zCM with R2 = 0.9997 (Figure 1a). Interestingly, s0 is also the 

first PC that retains 99.84% of the total variance when PCA is applied to the z1, z2  points 

obtained from a 5-μs-long unbiased trajectory of the system (Figure 1b). The selection of 

s0 as our suboptimal initial CV is ideal for the following three reasons: (1) it enables direct 

comparison with previous permeation simulations in which z1 and z2 were biased, (2) it 

allows us to bias a single CV mimicking the anticipated scenario wherein a user selects a 

single molecular COM, and (3) following the protocol of McCarty and Parrinello41 it is a 

direct test of the method’s efficacy at defining an optimal linear combination based on a 

suboptimal linear combination.

Next, we performed WTMetaD simulations that bias s0 and thus induce multiple permeation 

events. In this step, we generated 10 different biased trajectories for reliable statistical 

analysis, and each trajectory was 3 μs long. Figure 2a shows how suboptimal CV s0 evolves 

with time in one of the biased trajectories. The dashed lines indicate the average positions 

of the phosphorus atoms of POPC. It is clear that s0 induces transitions between the local 

minima. The average rate of complete permeation (i.e., mean recrossing frequency) was 

calculated to be 3.3 ± 1.3 μs−1. (To determine the average rate, we divided the total number 

of membrane crossings by the total length of the simulation after omitting the transient 

time.) Figure 2d shows the difference γ(t) between the instantaneous bias potential V (s, t)
(Figure 2b) and the bias offset c(t) (Figure 2c) as a function of time, which determines the 

statistical weight of each time frame in the reweighting procedure. The gray region in Figure 

2c indicates the transient time to be eliminated for tICA.

The average 1D PMF for the permeation process is presented in Figure 3. Two local minima 

are found at s0 = ± 2.3 nm, which are separated from the aqueous regions (corresponding to 

the regions where s0 is in the range of [−5, −4] or [4, 5] nm) by small energy barriers located 

at s0 = ± 3.3 nm. Relative to the bulk region, the depth of the minima is ~1.0 kJ/mol, and 

the height of the barriers is approximately 4.0 kJ/mol. The system reaches the local minima 

when the TMB group resides in the hydrophobic region of lipid tails, while the DAP group 

interacts with the polar headgroups (Figure 3a,c). A large, broad energy barrier of 32.4 

kJ/mol, which connects the two local minima, is observed at s0 = 0 nm. The energy barrier 

arises when trimethoprim moves and flips inside the hydrophobic core of the lipid bilayer. s0

can describe the translational motion but not the orientational change of the drug molecule. 

For example, we observed from unbiased simulations less populated conformations in which 

the DAP group dwells in the hydrophobic region while the TMB group is exposed to the 

polar region of the lipid bilayer, but the corresponding values of s0 to those conformations 

are not distinguishable. From this observation, we anticipate that the optimal slow CVs 

should account for both translational and orientational modes of the permeant.

To identify the unbiased slow modes, we reweighted the biased trajectories and performed 

tICA on them as proposed by McCarty and Parrinello.41 The results from tICA on the first 
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reweighted trajectory are summarized in Figure 4. The red and yellow curves indicate the 

first and second components ci
(1) of the first eigenvector (or IC) in Figure 4a; likewise, the 

green and chartreuse curves represent the first and second components ci
(2) of the second 

eigenvector in Figure 4b. The components of the eigenvectors are fairly stable with respect 

to τ. The slow CVs are expressed as a linear combination of the chosen molecular features: 

e.g., s1 = 0.9994z1 − 0.0358z2 and s2 = 0.7193z2 − 0.6947z1 at τ = 4 ns. (Note that the effect of 

the PBCs on tICA CVs is not negligible for membrane permeation trajectories, and thus 

tICA should be performed carefully as we discuss in the next section. For this analysis, 

we selected one of the trajectories whose tICA CVs were least affected by the PBCs.) 

Intriguingly, the first and second CVs represent the translational and orientational modes, 

respectively, as the ICs can be approximated as s1 ≈ z1 and s2 ≈ z2 − z1. The first CV carries 

the same information as those of s0 and zCM because its value simply represents the vertical 

position of the COM of the TMB group. The second CV, which is the weighted difference 

between z1 and z2, is strongly correlated with the orientation angle θ of trimethoprim with 

respect to the surface normal of the membrane (i.e., the z-axis). This is clearly shown 

in Figure S1 where the inner product of the directional vector ŝ2 of trimethoprim and 

the surface normal n̂ of the membrane shows a linear relationship with the value of 

s2: cos θ = − 2.028s2 with R2 = 0.9989. Hence, ŝ2 is oriented toward the membrane if s2 < 0
when s1 > 0 (near the upper leaflet) or if s2 > 0 when s1 < 0 (near the lower leaflet). The 

width of the curve simply reflects conformational fluctuations (particularly, elongation and 

contraction in the direction of ŝ2) of the drug molecule since the value of s2 will change 

significantly when ŝ2 ∥ n̂ (i.e., cos θ = ± 1) and minimally when ŝ2 ⊥ n̂ (i.e., cos θ = 0) since 

both z1 and z2 are vertical positions with respect to the membrane COM.

Figure 4c displays the eigenvalues λi corresponding to the first (red) and second (green) 

eigenvectors as a function of τ. A clear separation of the two time scales is detected. The 

eigenvalues quantify the largest autocorrelation functions of the projections of the molecular 

feature vector onto the slowest independent collective degrees of freedom at a given τ
(Figure S2). Physically, they are directly related to relaxation times ti

* associated with the 

slow modes by

ti
* = − τ

ln λi

(17)

The dominant eigenvalue λ1 (and thus the slowest relaxation mode) is associated with the 

translational kinetics, and the associated relaxation time is t1
* = 7.78 ns at τ = 4 ns. The 

other eigenvalue λ2 (and thus the second slowest relaxation mode) is associated with the 

orientational kinetics, and the associated relaxation time is t2
* = 2.28 ns at τ = 4 ns. Figure 

4d shows the ratio of the kinetic variance KVi retained by each IC at a given τ after 

dimensionality reduction, which is given by

KVi = λi
2

λ1
2 + λ2

2
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(18)

in this study. The kinetic variance is mostly retained by s1; for example, KV1 = 0.92 and 

KV2 = 0.08 at τ = 4 ns.

2D PMF along tICA CVs.

The 2D PMF spanned by our new CVs, s1 = 0.9964z1 − 0.0851z2 and s2 = 0.7197z2 − 0.6942z1

and the MFEP, calculated with the zero-temperature string method,67,68 more clearly 

captures the permeation process (Figure 5a). The two metastable states exist at at 

A = ( − 1.5, − 0.3) and B = (1.5, 0.3), and the transition state is located at (0, 0). Importantly, 

the PMF shows the preferential orientation of trimethoprim in the membrane; ŝ2 points away 

from the membrane center (i.e., the DAP group in the polar region and the TMB group in 

the hydrophobic region of the lipid bilayer) when the system is in the metastable states—see 

Figure 3a,c. The MFEP is a curve γ connecting critical points on an energy landscape V  that 

satisfies (∇V )⊥(γ) = 0 and represents the most probable transition path in a large ensemble 

of the permeation processes.74 The MFEP starts with the DAP group oriented toward the 

lipid headgroups, while trimethoprim is in the aqueous region and above the lipid membrane 

(A in Figure 5a), which is slightly favored over the opposite orientation (by ~2.0 kJ/mol). 

From there, a barrier is encountered while TMB flips down into the hydrophobic region of 

phospholipids, reversing the orientation of trimethoprim (B in Figure 5a). The drug then 

crosses a larger barrier, passing through the lipid tails and flipping again to orient DAP once 

again to the polar glycerol, phosphate, and headgroup region (C in Figure 5a). The drug 

molecule then escapes from the lipid bilayer to the aqueous region with TMB flipping into 

the aqueous region (D in Figure 5a). The 1D PMF along the MFEP (Figure 5b) is definitely 

different from the 1D PMF from our suboptimal CV (Figure 3d). The heights of the small 

and large energy barriers are ~17.9 and ~47.1 kJ/mol, respectively, and the depth of the 

metastable states is ~3.2 kJ/mol. The green points in Figure 5c indicate the conformational 

space sampled in the 5-μs-long unbiased simulation. Note that only the metastable states and 

aqueous regions are sampled. Our visual inspection reveals one or two flipping events per 

1 μs on average at the region of lipid headgroups in the unbiased simulation. We analyzed 

the orientation of trimethoprim when it approaches the membrane surface from the aqueous 

region (Figure S12a) and when it is buried in the membrane at the metastable states (marked 

with B and C in Figure 5a) (Figure S12b). This shows the probability distribution of the 

orientation angle θ of trimethoprim with respect to the surface normal of the nearest leaflet. 

We defined the orientation of the molecule as the vector connecting from the COM of 

the TMB group to the COM of the DAP group, or simply ŝ2. This confirms that the drug 

molecule reverses its orientation at the polar headgroup region such that the TMB flips into 

the hydrophobic tail region.

To confirm our observation that the TMB group penetrates the lipid tails more readily, a 

series of analyses were also performed. First, tracking the z-coordinate of the COM of 

each group in the unbiased simulation (Figure 6a) shows that when trimethoprim begins 

to enter the tail region −2 nm < ZCOM < 2 nm), TMB goes deeper than DAP. Concurrently, 

the failed attempts to penetrate more frequently show DAP deeper, consistent with its 
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preferential interaction with the lipid headgroups. We observed the same behavior in the 

biased simulations; TMB dives deeper each time trimethoprim attempts to penetrate, and 

successful crossings are marked by a rapid flip (Figure 6b).

This information led to an investigation of which lipids the DAP and TMB groups interact 

with. Contact analysis was performed to explore different regions of the unbiased simulation 

system, focusing on the membrane interactions. While both DAP and TMB have a similar 

number of contacts with the hydrophilic groups (i.e., choline and phosphate groups), TMB 

surpasses DAP in contact with the deeper ester groups (Figure S13a–c). This group is 

not only deeper in the membrane but also includes the first carbons of the hydrophobic 

tails. The methoxy groups of TMB, due to their carbons having a slightly negative 

charge (q ∼ − 0.1 e), facilitate burial in this region, where the carbons have a similar 

but positive charge (q ∼ 0.2 e). The oxygen atoms are also less negative (q ∼ − 0.39 e) 

than the nitrogen atoms of the DAP group (q ∼ − 0.75 e), thus having less electrostatic 

repulsion with ester oxygens. This trend (related to the carbons) is also observed in the 

contacts of each component with cholesterol, resulting in more contacts of TMB with 

POPC/cholesterol overall (Figure S15a,b). Finally, the contacts of TMB and DAP with the 

water molecules support the flip mechanism of trimethoprim when entering the membrane: 

when trimethoprim is in water, TMB has more total interactions with water molecules than 

DAP (equivalent when normalized per atom, Figure S14d). When the molecule penetrates 

more deeply into the membrane (consistent with Figure 6a), it flips, directing the TMB 

portion into the more buried, hydrophobic tails, dropping water contacts to 0 in Figure S13d. 

Similar observations are apparent in the number of contacts per atom (Figure S14).

The average interaction energies of DAP and TMB with each system component were also 

calculated to verify the described preferential interactions (Table S1). Based again on the 

unbiased simulation, TMB shows a larger average interaction energy than DAP with each 

component, simply because it is a larger molecule. But the relative increase is substantially 

larger for the ester group and cholesterol, and significantly reduced for the phosphate and 

choline groups.

Interestingly, our triple-flip mechanism is not consistent with the triple-flip model previously 

proposed by Sun et al.8 based on their TTMetaD simulations of trimethoprim permeating 

a homogeneous lipid bilayer composed only of POPC. In this model, the TMB group 

preferentially stays in the polar region of lipid headgroups, while the DAP group flips 

into the hydrophobic region of lipid tails due to its hydrophobicity. The mechanistic 

difference may be attributed to the effect of membrane cholesterol. However, there is 

no convincing evidence of the relative hydrophobicity of the two moieties. For example, 

Masoud et al.75 estimated the dipole moment of 2,4-diaminopyridimine to be ~2.25–2.48 D 

based on their quantum-mechanical calculations, whereas the experimental dipole moment 

of 1,2,3-trimethoxybenzene was reported to be 2.25 D.76 In addition, the TMB group 

possesses a benzene ring with only three hydrogen bond acceptors, whereas the DAP 

group contains a pyrimidine ring with two hydrogen bond donors and four hydrogen bond 

acceptors. Consequently, it is more energetically favorable for DAP to interact with the 

polar headgroups, while TMB flips to water or the hydrophobic region of the lipid bilayer. 

Collectively, TMB delves deeper when trimethoprim attempts to penetrate the lipid bilayer, 
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forming more contacts with the ester groups and POPC/cholesterol than DAP. Additionally, 

TMB has less electrostatic repulsion with the ester oxygens and, in water, interacts more 

with water molecules than DAP. The average interaction energy of TMB significantly 

increases with the ester group and cholesterol but reduces with the polar headgroups. TMB’s 

benzene ring forms fewer hydrogen bonds than DAP’s pyrimidine ring. As a result, DAP 

prefers interacting with the polar headgroups, whereas TMB tends to flip toward water or the 

hydrophobic region of the lipid bilayer.

In the study of Mehdi et al.,46 the authors considered two pivotal order parameters 

(OPs) pertaining to BA permeation, namely, the membrane-BA z-distance d1Z  and the 

angle formed between BA and the z-axis θZ . Analysis of the SPIB RCs identifies key 

steps involved in the entry and exit mechanisms of BA that remarkably bear a striking 

resemblance to the triple-flip model observed in the permeation process of trimethoprim.

The mean recrossing frequency (or the average rate of membrane crossings) is an important 

metric to determine the sampling efficiency of the chosen CVs in membrane permeation 

simulations. Comparing recrossing frequencies serves as a reliable means to assess whether 

a crucial variable (slow mode) has been overlooked. It is widely known that if a slow 

mode is forgotten, the sampling process may suffer from hysteresis, leading to a lack of 

convergence in FES calculations.22,66,77 Figure S3 displays how z1 changes over time when 

(a) s0 and (b) s1 and s2 are biased in biased trajectories. We found that the mean recrossing 

frequency of s0, 3.3 ± 1.3 μs−1, increases to 5.0 ± 2.2 μs−1 (~1.5 times increase) when s1 and 

s2 are used as CVs. This is only a modest increase in efficiency, likely due to the translational 

position captured by both s0 and s1 being the dominant slow mode.

Lastly, we found that the same tICA-MetaD procedure cannot be directly applied to the 

TTMetaD trajectories. TTMetaD was developed to prevent undesirable situations that may 

arise from the inappropriate choice of the bias factor, which controls the speed at which 

the Gaussian height decreases. TTMetaD aggressively tempers the height of Gaussian hills 

only after basins, whose locations are roughly defined prior to simulations, are relatively 

full. We generated one 1-μs-long TTMetaD trajectory with the same parameters as in our 

previous study52 and plotted how rescaled z1, V (s, t), c(t), and γ(t) evolve with time in Figure 

S4. We observed that the difference between V (s, t) and c(t) is extremely large in TTMetaD 

compared to WTMetaD; γ(t) fluctuates mostly between 10 and −50 kJ/mol in Figure 2d 

and around −160 kJ/mol in the lower right panel of Figure S4. Therefore, the time step 

becomes extremely small when rescaled according to eq 14, and consequently, tICA cannot 

be performed for a reasonable range of τ. One potential approach to resolve this issue could 

be to shift the bias potential, which is defined up to a constant. However, this theoretical 

possibility requires further investigation.

Effect of the Periodic Boundary Conditions on the Slow CVs.

A significant problem appears when the time series analysis is done directly on the 

data points obtained from membrane permeation simulations because the PBCs make the 

behavior of the permeant “unphysical” when it crosses the boundaries (particularly in the 

z-dimension for our systems). The tICA algorithm would recognize the boundary conditions 
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as the unrealistic transfer (or “teleportation”) of the molecule from one end of the simulation 

box to the other without traversing the physical space between them. We performed tICA 

on 10 different reweighted trajectories to compute the slow CVs at 10 different lag times 

ranging from 1 to 10 ns (see Figures 7a and S5). We observed that the first eigenvectors 

are scattered on the domain defined by c1
2 + c2

2 = 1 and −π ≤ θ ≤ π/2 where θ is the angle 

between the positive c1-axis and the vector. The data points lie on the circumference of a 

unit circle, as the eigenvectors are normalized. Interestingly, the second eigenvectors are 

slightly scattered around (−0.7, 0.7) and show a high level of precision compared to the 

first eigenvectors since the orientational change of trimethoprim is less affected by the PBCs 

than its translational motion. To identify the center of each eigenvector in the data, we used 

the Partitioning Around Medoids (PAM) clustering algorithm, which is similar to k-means 

clustering but requires the centroid of each cluster to be one of the input data points. We 

found that the centers of the first and second eigenvectors are (0.639, −0.769) and (−0.707, 

0.707), respectively. Thus, when the PBCs are applied, the translational mode is not well 

captured by tICA as the drug molecule can reach the other side of the membrane rapidly 

without crossing the membrane.

We examined two different approaches to address the PBC issue. In the first approach, 

we applied harmonic potentials to construct lower and upper walls in the water region 

below and above the bilayer and thus trap trimethoprim inside the space between the two 

boundaries in the z-direction. The free energy surface along z1 and z2 in the presence of the 

walls is shown in Figure S6, and we did not see any significant difference from the one 

obtained in the absence of the walls in previous works.8,52 We applied tICA to 5 different 

reweighted trajectories to calculate the slow CVs at 10 different lag times ranging from 1 to 

10 ns (see Figures 7b and S7). As in the case of the PBCs, the first eigenvectors are scattered 

on the circumference of a unit circle within −π ≤ θ ≤ π/2 but are characterized by a higher 

degree of dispersion. This is likely because the behavior of the drug molecule is unnatural 

due to its collisions with the walls in the aqueous region. However, the second eigenvectors 

capture the orientational mode more precisely compared to the case in which the walls 

are absent since boundary crossings are physically prevented by the walls. Our k-medoids 

analysis reveals that the centroids are (0.179, −0.984) and (−0.712, 0.702) for the first and 

second eigenvectors, respectively. The centroid of the first eigenvectors still captures the 

translational motion of the drug molecule to a considerable extent with the coefficient of z2

much larger in magnitude than that of z1, but their level of dispersion does not make it ideal 

to be selected as the translational CV. In addition, the mean recrossing frequency is 3.2 ± 

0.3 μs−1 when z1 and z2 are biased as CVs in the presence of the harmonic walls, which is 

comparable to that of s0.

In the second approach, we took absolute values of the molecular features z1 and z2

in the time series data to make them continuous even when trimethoprim crosses the 

periodic boundaries in z-direction. The molecular features are any real numbers in the 

range −dz/2, dz/2  where dz is the length of the simulation box in the z-direction. The 

molecular features are signed perpendicular distances and thus invariariant under translation 

but suffer from discontinuity at the periodic boundaries. Their absolute values lose the 

information about which leaflet of the membrane is closer to trimethoprim but only retain 
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the information about how far the drug molecule is away from the membrane as they 

can take any real numbers in the range 0, dz/2 . The tICA results are summarized in 

Figures 7c and S8. Surprisingly, the eigenvectors are highly stable with respect to lag 

times and consistent over different trajectories. Furthermore, the levels of dispersion for 

both the first and second eigenvectors are significantly reduced. The medoids are (0.989, 

−0.148) and (−0.638, 0.770) for the first and second eigenvectors, respectively. Therefore, 

the second approach achieves the highest level of precision for both the first and second 

eigenvectors and the highest level of accuracy for the first eigenvector, but does not predict 

well the orientational mode of the drug molecule. However, the sampling efficiency was not 

improved when we used the absolute values either as direct CVs or in the definitions of 

s1 and s2. The former is expected since z1  and z2  separately do not distinguish the upper 

and lower regions of the lipid bilayer (upper when z1, z2 > 0, and lower when z1, z2 < 0); 

taking the absolute values removes the locational information and thus biasing them cannot 

induce trimethoprim to cross the membrane. When we biased s1
′ = 0.989 z1 − 0.148 z2  and 

s2
′ = 0.770 z2 − 0.6388 z1 , the mean recrossing frequency over three replicas was only 1.3 

± 0.5 μs−1 (Figure S9). Thus, taking the absolute values extracts the coefficients of the 

translational CV in a more reliable manner, but it poorly describes the orientational motion 

of the drug molecule. Also, using the absolute values in the definitions of CVs does not 

necessarily improve the sampling performance of WTMetaD due to a loss of the locational 

information on the drug molecule.

Effect of Data Reweighting.

Data reweighting recovers information about the unbiased dynamics of the system by 

using the conformations collected from biased simulations and their statistical weights. 

However, fast and accurate convergence to the underlying unbiased free energy is not always 

guaranteed depending on the reweighting procedure, the enhanced sampling technique, and 

the stage of the simulation.45 In our previous work,52 we obtained tICA CVs directly from 

short biased trajectories that involve at least one permeation event without data reweighting. 

Initially, a TTMetaD simulation lasting 70 ns was performed, using z1 and z2 as CVs to 

generate an initial trajectory involving at least one membrane crossing. Subsequently, the 

z-positions of five heavy atoms in the drug molecule, namely, Z1 to Z5, were calculated 

relative to the COM of the lipid bilayer. tICA was then applied to this trajectory to identify 

the most dominant eigenvector corresponding to the slowest mode. Another TTMetaD 

simulation was conducted, incorporating the tICA CV and the z-position of the COM of the 

drug molecule (denoted as Z). Comparisons between the results obtained from simulations 

utilizing tICA-based CVs and traditional CVs z1 and z2  revealed that the tICA CVs 

achieved faster convergence and yielded more accurate outcomes. Essentially, the use of 

tICA CVs enhances the efficiency of potential of mean force (PMF) calculations, while 

concurrently providing additional insights into the permeation mechanism. Specifically, the 

tICA CV unveiled a subtle influence of cholesterol on the resistance of the lipid headgroup 

region to permeation, which was not observed when employing the canonical CVs. It is, 

therefore, necessary to understand the effect of data reweighting on tICA CVs and determine 

the minimum number of rare events required for tICA CVs to converge. This information 
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can be used to further optimize the tICAMetaD procedure for future membrane permeation 

simulations.

We first extracted from our WTMetaD trajectories the subtrajectories (or segments of 

trajectories of specified duration) that contain only one to seven membrane crossings, and 

grouped them into seven sets of 10 subtrajectories according to the number of membrane 

crossings included (see Figure S10 for an example of each set). We then performed tICA on 

each subtrajectory with and without data reweighting. We chose z1  and z2  as the molecular 

features for tICA because the eigenvectors show the highest degree of convergence when 

the absolute values are used (Figure 7c). Figure 8 summarizes the tICA results with data 

reweighting. Here, we adopted the same color scheme as in Figure 4 and displayed in order 

the 100 eigenvector pairs we obtained for each set (because the analysis was performed 

at 10 different lag times on 10 subtrajectories) to evaluate their converging behavior. We 

also included the results from the 10 fully biased trajectories (Figure 8h) for the purpose 

of comparison. We observed that tICA does not capture the slow modes properly when 

subtrajectories contain only one permeation event because τ is relatively large for the length 

of the subtrajectories. We found that at least five permeation events are needed for the 

tICA CVs to achieve a high level of convergence (Figure 8e). The medoids are (0.996, 

−0.087) and (−0.635, 0.772) for the first and second eigenvectors, respectively, in Figure 

8e, and (0.989, −0.148) and (−0.638, 0.770) for the full trajectories in Figure 8h. The large 

fluctuations of the second component of the first eigenvector (yellow curves) arise mostly 

from the effect of vector normalization. For example, considering vectors only in the first 

quadrant, when the first component changes from 1 to 0.99, the second component changes 

from 0 to 0.14; when the first component changes from 0.70 to 0.69, the second component 

changes from only 0.71 to 0.72.

Next, we omitted data reweighting and applied tICA directly to each subtrajectory and 

full biased trajectories (Figure 9). The eigenvectors are well converged when at least five 

membrane crossings are involved. The medoids are (0.968, −0.250) and (−0.678, 0.735) 

for the first and second eigenvectors, respectively, in Figure 9e, and (0.965, −0.260) and 

(−0.676, 0.737) for the full trajectories in Figure 9h. However, the eigenvectors are quite 

different from those obtained from the reweighted trajectories. The first eigenvectors deviate 

more from the coefficients of the translational CV s1 ≈ z1 , whereas the second eigenvectors 

get slightly closer to the coefficients of the orientational CV s2 ≈ 0.7z2 − 0.7z1  upon removal 

of data reweighting. We also observed that the orientational mode is not significantly 

affected by data reweighting even when the absolute values of the molecular features are 

not taken and the PBCs are still present, as clearly seen in Figure S5 (dark and light 

lines for the first and second components of the second eigenvector, respectively); the 

second eigenvectors are highly consistent and converge to s2 even without reweighting. 

These observations can be attributed to the fact that the original bias was applied to 

the suboptimal CV s0 simply to increase the translational kinetics and, thus, the rate of 

membrane crossing of trimethoprim. In addition, since the orientational kinetics is much 

faster than the translational kinetics, we may assume that the two modes are not strongly 

coupled to each other. Consequently, without data reweighting the Boltzmann statistics of 
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the translational mode cannot be recovered, whereas the orientational CV can be obtained 

with an acceptable degree of accuracy and convergence.

CONCLUSIONS

In this work, we applied the tICA-MetaD procedure proposed by McCarty and Parrinello41 

to trimethoprim membrane permeation to better understand the effectiveness, limitations, 

and best practices of this methodology for membrane permeation simulations. Specifically, 

we sought to identify the slowest collective degrees of freedom and see if they improved 

simulation efficiency while also investigating the effects of the PBCs, the number of 

rare events in the original biased simulations, and data reweighting on the accuracy and 

convergence of tICA CVs. We found that the same tICA-MetaD scheme cannot be directly 

applied to TTMetaD trajectories due to extremely small reweighting factors and rescaled 

time steps. We observed that tICA-MetaD captures the translational and orientational modes 

separately, and the use of the tICA CVs accelerates the convergence of WTMetaD PMF 

calculations compared to the suboptimal CV initially selected. However, the PBCs may be 

detrimental to tICA in membrane permeation trajectories, particularly for the identification 

of the translational CV. Adding harmonic restraints to prevent PBC crossing does not solve 

the problem because it causes unnatural, rapid diffusive behavior of the drug molecule in 

the aqueous region, whereas taking absolute values of the molecular features during tICA 

analysis can reliably recover the translational CV. In contrast, the orientational CV is not 

significantly affected by the PBCs and the walls but is also not well captured when the 

absolute values are taken. Thus, taking absolute values is only useful for extracting the 

translational CV, and a method that captures both modes without PBC artifacts would be an 

important contribution to the field. Interestingly, we found that only five permeation events 

are sufficient for the tICA CVs to achieve convergence regardless of data reweighting, but 

the first eigenvector is quite different from the translational CV when data reweighting is 

omitted. Based on our results, we suggest that (1) the tICA-MetaD procedure can be applied 

to a short initial WTMetaD trajectory (after the transient time) that involves at least five 

membrane crossings and (2) absolute values of the molecular features should be used along 

with data reweighting for correction of the translational CV.

Future work should investigate how to select a minimal set of molecular features for optimal 

CVs, how to incorporate deep learning algorithms to add flexibility in feature selection 

and evade the linearity problem of tICA, and how the results may change when different 

reweighting algorithms are used for WTMetaD and TTMetaD.
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ABBREVIATIONS

COM center of mass

CGenFF CHARMM general force field

CV collective variable

DAP diaminopyrimidine

IC independent component

ISD inhomogeneous solubilitydiffusion

KV kinetic variance

LINCS linear constraint solver

MetaD metadynamics

MFEP minimum free energy path

MD molecular dynamics

PBC periodic boundary condition

PO4 phosphate

POPC phosphatidylcholine

PMF potential of mean force

PC principal component

PCA principal component analysis

SPME smooth particlemesh Ewald

tICA time-lagged independent component analysis

TTMetaD transition-tempered metadynamics

TMB trimethoxybenzyl

VMD visual molecular dynamics

WTMetaD well-tempered metadynamics
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Figure 1. 
(a) Linear relationship between the suboptimal CV s0 and the z-position zCM of the COM of 

trimethoprim with respect to that of the lipid bilayer. (b) Scatter plot displaying all of the 

z1, z2  pairs accessed in 5 μs unbiased MD simulation. The red and yellow colors indicate the 

region above the bilayer, and the dark and light blue colors represent the region below the 

bilayer. The gap between the two regions signifies the interior of the membrane. The dashed 

gray line shows the first PC, s0. (c) Molecular structure of trimethoprim and definitions of 

molecular features z1 and z2.
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Figure 2. 
Time evolution of (1) the suboptimal CV s0, (2) the instantaneous potential V (s, t), (3) the 

bias offset c(t), and (d) the difference γ(t) between V (s, t) and c(t) in one of the WTMetaD 

simulations that we performed. The dashed black lines in (a) indicate the average position of 

the phosphorus atoms of the lipid bilayer. The gray region in (c) indicates the transient time 

to be removed for tICA.

Oh et al. Page 27

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a–c) Typical snapshots of the system in the local minima and at the transition state with 

the corresponding values of s0. (d) Average 1D PMF along the suboptimal CV s0 for the 

permeation process of trimethoprim through the lipid bilayer. The free energy in bulk water 

was set to zero, and the error bars indicate the standard deviations for the arbitrarily selected 

points.
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Figure 4. 
tICA results from one of the WTMetaD trajectories we obtained. (a) First (red) and second 

(yellow) components (c1
1 , c2

1 ) of the first eigenvector v1, (b) first (green) and second 

(chartreuse) components (c1
2 , c2

2 ) of the second eigenvector v2, (c) first (red, i = 1) and 

second (green, i = 2) eigenvalues, and (d) the ratio of the kinetic variances KVi retained by 

the first (red, i = 1) and second (green, i = 2) eigenvectors as a function of the lag time τ.
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Figure 5. 
(a) Average 2D PMF along the tICA CVs s1 and s2. The dashed black line indicates the 

MFEP found from the zero-temperature string method. (b) 1D PMF along MFEP ξ. The free 

energy in bulk water was set to zero. (c) Scatter plot showing all of the s1, s2  pairs sampled 

by the long-timescale standard MD simulation. B and C represent the metastable states.
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Figure 6. 
Time evolution of the z-coordinates of the COMs of DAP (red) and TMB (black) in (a) 

unbiased and (b) biased simulations.
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Figure 7. 
First (red) and second (green) eigenvectors c1, c2  obtained from tICA-MetaD with (a) the 

PBCs, (b) the upper and lower walls, and (c) the absolute values of the molecular features. 

The yellow squares represent the medoids. (d) First (red) and second (green) eigenvalues as 

a function of τ obtained from tICA on one of the full biased trajectories.
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Figure 8. 
Results from tICA on reweighted subtrajectories involving (a) one, (b) two, (c) three, (d) 

four, (e) five, (f) six, and (g) seven membrane crossings and (h) on the full biased trajectories 

after reweighting. The same color scheme was used as in Figure 4a,b to represent the 

components of the first and second eigenvectors.
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Figure 9. 
Results from tICA on subtrajectories involving (a) one, (b) two, (c) three, (d) four, (e) five, 

(f) six, and (g) seven membrane crossings and (h) on the full biased trajectories without data 

reweighting. The same color scheme was used as in Figure 8 to represent the components of 

the first and second eigenvectors.
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Table 1.

Summary of Simulations Showing the Type of Simulation, the Number of Replicas (Nrep), and the Length (t) 

of Each Replica and the CVs Biaseda

simulations N rep t (μs) CVs

standard MD 1 5

MD + WTMetaD 10 3 s0

10 3 s1, s2

3 3 s1
′
, s2

′

MD + TTMetaD 1 1 rescaled z1, z2

MD + WTMetaD with walls 5 5 z1, z2

az1 and z2 are molecular descriptors, s0 is the suboptimal CV, s1 and s2 are the optimal CVs, and s1
′
 and s2

′
 denote the CVs obtained with z1  and 

z2 .
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