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High-throughput analysis of dendrite and
axonal arbors reveals transcriptomic
correlates of neuroanatomy

Olga Gliko 1 , Matt Mallory1, Rachel Dalley1, Rohan Gala 1, James Gornet2,
Hongkui Zeng 1, Staci A. Sorensen 1 & Uygar Sümbül 1

Neuronal anatomy is central to the organization and function of brain cell
types. However, anatomical variability within apparently homogeneous
populations of cells can obscure such insights. Here, we report large-scale
automation of neuronal morphology reconstruction and analysis on a dataset
of 813 inhibitory neurons characterized using the Patch-seq method, which
enables measurement of multiple properties from individual neurons,
including local morphology and transcriptional signature. We demonstrate
that these automated reconstructions can be used in the same manner as
manual reconstructions to understand the relationship between some, but not
all, cellular properties used to define cell types. We uncover gene expression
correlates of laminar innervation on multiple transcriptomically defined neu-
ronal subclasses and types. In particular, our results reveal correlates of the
variability in Layer 1 (L1) axonal innervation in a transcriptomically defined
subpopulation of Martinotti cells in the adult mouse neocortex.

The shape of dendrites and axons, their distribution within the neu-
ropil, and patterns of their long-range projections can reveal funda-
mental principles of nervous system organization and function. In the
cortex, much of our understanding depends on the anatomical and
functional descriptions of cortical layers. Yet, the origin and role of
morphological and molecular diversity of individual neurons within
cortical layers beyond broad subclass identities is poorly understood,
in part due to low sample numbers. While molecular profiling techni-
ques have recently improved by orders of magnitude, anatomical
characterization remains time consuming due to continued reliance
on (semi-)manual reconstruction.

Improvements in the throughput of the Patch-seq technique1–8

have enabled measurement of electrophysiological features, tran-
scriptomic signatures, and local morphology in slice preparations for
thousands of neurons in recent studies5,6. In these repetitive experi-
ments where maintaining a high throughput is a primary goal9, the
brightfield microscope’s speed, ease of use, and ubiquity make it an
attractive choice to image local neuronal morphology. While this
choice helps to streamline the experimental steps, morphological
reconstruction remains a major bottleneck of overall throughput, in

part due to limited imaging resolution, even with state-of-the-art semi-
manual tools5.

A rich literature exists on automated segmentation in sparse
imaging scenarios. However, these methods typically focus on high-
contrast, high-resolution images obtained by optical sectioning
microscopy (i.e., confocal, two-photon, and light-sheet)10–18, and are
not immediately applicable to brightfield images because of the sig-
nificantly worse depth resolution and the complicated point spread
function of the brightfieldmicroscope.Moreover, segmentation of full
local morphology together with identification of the axon, dendrites,
and soma has remained elusive for methods tested on image stacks
obtained by the brightfield microscope19–22. Therefore, we first intro-
duce an end-to-end automated neuron reconstruction pipeline
(Fig. 1a) to improve scalability of brightfield 3D image-based recon-
structions in Patch-seq experiments by a few orders of magnitude. We
note that our primary goal is not to report on a more accurate
reconstruction method per se. Rather, we aim to demonstrate how
automated tracing, with its potential mistakes, can be leveraged to
rigorously address certain scientific questions by increasing the
throughput. To this end, we select a set of brightfield images and use
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the corresponding manually reconstructed neuron traces to assign
voxel-wise ground truth labels (axon, dendrite, soma, background).
Next, we design a custom deep learning model and train it on this
curated ground truth dataset to perform3D image segmentation using
volumetric patches of the raw image as input. We implement fully
automated post-processing steps, including basal vs. apical dendrite
separation for pyramidal cells, for the resulting segmentations to
obtain annotated traces for each neuron. We compare the accuracy of
these automated traces with a held out set of manual reconstructions,
based on geometrical precision, a suite ofmorphometric features, and
arbor density representations derived from the traces.

We utilize this pipeline to reconstruct a large set of neurons from
Patch-seq experiments, and use the transcriptomic profiles captured
from the same cells to systematically search for gene subsets that can
predict certain aspects of neuronal anatomy. The existence of a hier-
archical transcriptomic taxonomy23 enables studying subsets of neu-
rons at different levels of the transcriptomic hierarchy. At the finest
scale of the hierarchy (transcriptomic types or “t-types”5), we study
seven interneuron types and focus on a transcriptomically defined sub-
population of L1-projecting, Sst gene expressing neurons (Sst cells)
that correspond to Martinotti cells (See, for instance, ref. 24). While

previous studies have elucidated the role of Martinotti cells in gating
top-down input to pyramidal neurons via their L1-innervating
axons25,26, the wide variability in the extent of L1 innervation behind
it is not well understood. Our results suggest transcriptomic correlates
of the innervating axonal mass, which may control the amount of top-
down input to canonical cortical circuits. Our approach represents a
general program to systematically connect gene expression with
neuronal anatomy in a high-throughput and data-driven manner.

Results
An automated morphology reconstruction pipeline for bright-
field microscopy
As the first step to automate the reconstruction of in-slice brightfield
images of biocytin-filled neurons, we curate a set of manually traced
neurons. While this set should ideally be representative of the under-
lying image space, it should also be as small as possible to facilitate
downstream cross-validation studies via an abundance of cells not
used during training. We thus choose 51 manually traced neurons as
the training set to represent the underlying variability in the image
quality and neuronal identity (via the available t-type labels). We
develop a topology-preserving variant of the fastmarching algorithm13
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Fig. 1 | Neuron reconstruction pipeline for in-slice bright-field images of
biocytin-filled neurons. a Processing pipeline. Convolutional neural network
(CNN) segmentations of 3D image stacks are post-processed by custom machine
learning tools to produce digital representations of neuronal morphologies.
b Topology preserving fast marching algorithm generates the volumetric label
from raw image stack andmanual skeletonization. Image stack (minimum intensity
projection), volumetric label (maximum intensity projection). Dendrites (blue),
axons (red), soma (green) are separately labeled to train a supervised CNN model.
Scale bar, 100 μm. c Semantic segmentation provides accurate soma location and

boundary. Image (maximum intensity projection), axon, soma, dendrite (maximum
intensity projection). Scale bar, 10 μm. d Axon/dendrite relabeling. A neural net-
work model predicts node labels from multiple image brightness and trace tortu-
osity features based on local contexts of different size along the initial trace. (left,
example image of dendrite and axon segments (minimum intensity projection);
middle, corresponding feature plots; right, automated traces of test neuron with/
without relabeling vs. manual trace). Dendrites (blue), axon (red), soma (black).
Arrow indicates nodes mislabeled by segmentation and corrected during post-
processing. Scale bars, 50 μm. Source data are provided as a Source Data file.
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to generate volumetric labels from manual traces (Fig. 1b). We train a
convolutional neural network (U-Net)16,27–29 using image stacks and
labels as the training set and employing standard data augmentation
strategies to produce initial segmentations of neuronal morphologies
(Fig. 1b,c). While knowledge of axonal vs. dendritic branches informs
most existing insight, their automated identification poses a challenge
due to the limited field-of-view of artificial neural networks. We find
that image and trace context that is in the vicinity of the initial seg-
mentation is sufficient to correct many axon vs. dendrite labeling
mistakes in an efficient way because this effectively reduces the pro-
blem to a single dimension, i.e., features calculated along the 1D initial
trace (Fig. 1d). We further algorithmically post-process the segmenta-
tions to correct connectivity mistakes introduced by the neural net-
work and obtain the final reconstruction of axons and dendrites
(Fig. 1d, Fig. 2a, Figs. S1–S11, Methods). We observe that this approach
offersmarked improvements in tracingquality compared to aprevious
large-scale effort focusing on fluorescent, optical-sectioning
microscopy30,31 (Fig. S12). Moreover, Fig. S13 qualitatively shows that
its segmentation quality remains robust when tested, without any
tuning, with images from different species and brain structures32–34.
(Fine-tuning the existing model with a small training set representing
the tissueof interest should further improveperformance.) Theoverall
pipeline produces neuron reconstructions in the commonly-used swc
format35 from raw image stacks at a rate of ~6 cells/day with a single
GPU card (Methods). Our setup uses 16 cards to achieve two orders of
magnitude improvement in speed over semi-manual segmentation5

with one anatomist. We have so far processed the cells reported in
ref. 5, which mapped neurons to an existing taxonomy of tran-
scriptomic cell types23 and introduced a transcription-centric, multi-
modal analysis of inhibitory neurons. We have also processed a set of
~700 excitatory neurons which are analyzed in ref. 36. (While we
typically display only the apical and basal dendrite segmentations for
excitatory cells, the method can also trace and label the local axon
when it is captured in the slice (Fig. S14).) After quality control steps
(Methods), we focus on a set of 813 interneurons for further study in
this paper.

The proposed pipeline produces end-to-end automated recon-
structions in single-cell imaging scenarios. However, in practice, neu-
rons are patched near each other to increase the throughput of
physiological and transcriptomic characterization. The resulting
image, which typically centers on the neuron of interest, can therefore
contain neurites from other neurons. Neurites fromoff-target neurons
within the image stack cannot be properly characterized because they
rarely remain in the field of view. As part of algorithmic post-
processing and quality control, disconnected segments are removed
automatically when they remain relatively far from the cell of interest
(Methods). When multiple neurons are patched in close proximity,
quality control by a human is needed to check for and remove nearby
extraneous branches. To ensure the integrity of presented results with
minimal manual effort, the cell is not used if quality control suggests
the existence of nearby branches and amanual trace is not available. If
the manual trace already exists, we simulate manual branch removal
basedon amaskobtained from themanual trace (Methods).We report
quantification results separately for reconstructions obtained with/
without nearby branch removal.

Evaluation of reconstruction accuracy
Weevaluate the quality of automated traces by comparing them to the
manual traces which we regard as the ground truth. To compare a pair
of automated and manual traces, we perform a bi-directional nearest-
neighbor search to find correspondence nodes in both traces within a
certain distance13. A node in the automated trace that has (does not
have) a corresponding node in themanual trace is referred to as a true
(false) positive node, and a node in themanual trace that does not have
a corresponding node in the automated trace is referred to as a false

negative node. We calculate this metric separately for axonal and
dendritic nodes, as well as for all nodes regardless of the type, and
compute corresponding precision, recall, and f1-score (harmonic
mean of the precision and recall) values. These metrics indicate how
well the automated trace captures the layout of the axon/dendrites/
neurites in a reconstructed neuron. Figure 2b andTable S1 display that,
at a search radius of 10 μm, the mean f1-score is above 0.8 for both
axonal and dendritic morphologies. Therefore, we expect these auto-
matically generated traces to perform comparably to their manually
generated counterparts in analyses that do not require a resolution
better than 10 μm, as we demonstrate below. (Fig. S15 shows a basic
qualitative estimate of cross-human tracing discrepancy based on one
test cell and Table S2 quantifies this study.)

To further assess the similarity in the arbor layout and other
aspects of morphology that are not captured by the node correspon-
dence study, we use standard morphometric features. We find that
while many features summarizing the overall morphology can be
accurately predicted, features related to the topology of arbor shapes,
such as maximum branch order, are prone to mistakes (Fig. 2d and
Fig. S16).

While the quantitative analyses described above both suggest that
automated reconstruction succeeds in broadly capturing neuronal
morphology, including separation of axonal vs. dendritic branches,
they also demonstrate that important differences nevertheless remain
between automated andmanual traces. Therefore, to robustly analyze
anatomical innervationpatterns against potential topologicalmistakes
introduced by the automated routine, we develop a 2D arbor density
representation (ADR)12,37–40 of axons and dendrites registered to a
common laminar axis defined by cortical pia and white matter
boundaries.Here, the vertical axis represents thedistance frompia and
the horizontal axis represents the radial distance from the soma node
(Fig. 2c). Note that this 2D representation still requires 3D imaging
because many branches become undetectable in 2D projected images
due to noise (e.g., Fig. 1b). Moreover, standardizing the orientations of
the brain and the tissue slice is challenging in high-throughput
experiments so that the rotation around the laminar axis would be
hard to control in 3D representations.

At the level of transcriptomic types, the ADRs calculated from
automated reconstructions appear similar to those calculated from
manual segmentations based on the root-mean-squared difference
between them (Fig. 2d).

To better quantify this similarity, we compare the performance of
the ADR against that of morphometric features41 by training classifiers
to predict t-types and subclasses (Sst, Pvalb, Vip, Sncg, Lamp5)5. We
find that the ADR is not statistically significantly worse than the mor-
phometric features in terms of classification accuracy (Boschloo’s
exact test, asymptotically exact harmonic mean of p-values over mul-
tiple runs42: p = 0.81 for t-types, p = 0.26 for subclasses, Methods),
consistent with ref. 43 (Fig. 3a, b).

We also test robustness against imperfections due to fully auto-
mated tracing by comparing the classification accuracy obtained from
automated tracing versus manual tracing on the same set of cells. End-
to-end automation appears to perform similarly as manual tracing in
cell type prediction based on ADRs (Fig. 3c, d) and morphometric
features (Fig. S19). We finally compare cell type identification based on
automatically generated ADRs vs. manually generated morphometric
features. We find that they are not significantly different in t-type
classification (Boschloo’s test, harmonic mean p = 0.72), but the ~5%
advantage of manual morphometric features in subclass classification
is statistically significant (Boschloo’s test, harmonic mean p = 0.01).

Beyond the comparative aspect, these results demonstrate a
correspondence between gene expression and the anatomy of local
arbors as represented by the proposed registered 2D ADRs, which
agrees with previous findings with morphometric features for these
cells5. (subclass accuracy of ~79% vs. random at 20%, most abundant
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Fig. 2 | Assessing quality of automated reconstructions. a Automated and
manual traces of example test neurons (left, inhibitory neurons; right, excitatory
neurons—apical and basal dendrites are assigned for excitatory cells.) b Neuron
reconstruction accuracy. Precision, recall, and f1-score values are calculated by
comparing automated andmanual trace nodes within a given distance (2, 5, and 10
μm). Box plots (n = 340 cells) are shown for axonal, dendritic and neurite (com-
bined axonal and dendritic) nodes. The box extends from the first quartile (Q1) to
the third quartile (Q3) of the data, with a line at the median. The whiskers extend

from the box to the farthest data point lying within 1.5x the inter-quartile range
(IQR) from the box. Mean ± s.d. of the values over 340 cells are provided in
Table S3. Scatter plots are shown in Fig, S17. c Generation of 2D axonal and den-
dritic ADRs. Scale bar, 100 μm. d Pearson’s r values (left) and average root-mean-
squared error (right) between automatically vs. manually generated features (left
and Fig. S16) and ADRs for each t-type (right and Fig. S18). ADRs are normalized to
have unit norm. Source data are provided as a Source Data file.
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label at 47%; t-type accuracy of ~45% vs. random at ~2%, most abun-
dant label at ~8%.) When the transcriptomic type assignments are
incorrect, cells are rarely assigned to transcriptomically far-away
clusters based on the ADRormorphometric features, as demonstrated
by the dominance of the entries around the main diagonal in Fig. 3.
Note that the rows and columns of these confusion matrices are

organized based on the reference taxonomy to reflect transcriptomic
proximity (Figs. S20 and S21). Therefore, the relative inaccuracy at the
t-type level couldbe attributed to aspects ofmorphology not captured
by the ADR or morphometric features (e.g., synapse locations), or
other observationmodalities (e.g., physiological, epigenetic) being key
separators between closely related t-types.

ADR, all reconstructions
accuracy 44.8±5.8%, 79.3±3.2%
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ADR, manual reconstructions
accuracy 42.6±6.5%, 79.7±4.2%
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Fig. 3 | Comparison of cell type classification accuracy based on the ADR vs. a
set of classicalmorphometric features. Confusionmatrix for the classification of
42 t-types based on axonal and dendritic ADRs (a) and morphometric features (b),
using a combination of 246 automatically and 501 manually reconstructed
cells. Confusion matrix for the classification of 38 t-types based on ADRs, using

488 manually (c) and automatically (d) reconstructed cells. Accuracy values
reported in the headers refer to mean ± s.d. of the overall t-type and t-subclass
classifiers, respectively, across cross-validation folds. Rightmost columns
list the number of cells in each t-type (n). Source data are provided as a
Source Data file.
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Correlates of gene expression and laminar innervation
Having established that registered 2D ADRs are as successful as a
standardized, rich set of morphometric features in predicting tran-
scriptomic identity and that ADRs can be generated in a fully auto-
matedmanner from raw imageswith onlymild loss inperformance, we
aim to uncover more explicit connections between gene expression
and anatomy as captured by the ADR. Since layer-specific axon and
dendrite innervations are prominently and reliably captured by the
ADR, we study their transcriptomic correlates. We treat the search for
genes that are predictive of laminar innervation strength (neurite
length innervating a given layer) as a sparse regression problem44,45

(Methods), and focus on 7 t-types whose morphologies are well sam-
pled in our dataset with the help of automated reconstruction (3 Sst, 2
Pvalb, 2 Lamp5 types). That is, we aim to uncover minimal gene sets
whose expression can predict the amount of axonal and dendritic
innervation of individual laminae as well as the locations of the soma
and centroids of the axonal and dendritic trees along the laminar axis.
Throughout, we control the false discovery rate (FDR) by applying
multiple testing correction (Methods). Tables 1 and S3-S5 summarize
these results. We observe that no single anatomical feature is sig-
nificantly predictable from gene expression for all inhibitory t-types
and every studied t-type has at least one significantly predictable
anatomical feature. (Only the L4 dendritic innervation strength is sig-
nificantly correlated with gene expression for cells of type Sst Chodl.)

Perhaps more interestingly, we find that the sets of laminae
innervation-predicting genes within transcriptomically defined sub-
classes and t-types are highly reproducible (Table S5) and almost
mutually exclusive(Fig. 4g). These observations support a
connectivity-related organization of cortical cells46. (Multiple discrete
and continuous factors of variability may shape neuronal
phenotypes6,47 and their dissection may not be possible by studying a
subset of non-adjacent t-types.) They also put forth a related question:
can gene expression further predict innervation strength of a single
layer in a continuum?

Tuning laminar innervation within a cell type: a
comparative study
To elucidate this question, we choose a transcriptomically defined
subpopulation that is well-sampled in our dataset with the help of
automated reconstruction, produces a large effect size in the gene
regression study (Table 1), and has been a source of confusion due to its
anatomical variability: Sst Calb2 Pdlim5 neurons23 represent a tran-
scriptomically homogeneous subset of Martinotti cells, which are inhi-
bitory neurons with L1-innervating axons that gate top-down input to
pyramidal neurons25,26. However, the amount of axon reaching L1 varies
widely across cells5. Tables 1 and S5 show that a small set of genes,
including genes implicated in synapse formation, cell-cell recognition
and adhesion, and neurite outgrowth and arborization48–50, can never-
theless predict the L1-innervating skeletalmass of neurons belonging to
this homogeneous population (R2 = 0.40, p < 0.001, non-parametric
shuffle test). Since the somata of this population are distributed across
L2/3, L4, and L5 (Fig. 4b), one potential explanation for this result is that
gene expression is correlatedwith the overall depth location of the cells
rather than L1 innervation strength in particular (Fig. 4c). Therefore, we
repeat the sparse regression study after removing the piecewise linear
contribution of soma depth to L1 innervation (linear fit and subtraction
for only the L1 innervating subpopulation because the relationship is
trivially nonexistent for the non-innervating subpopulation, Methods).
We find that the expression levels of a small set of genes are still sta-
tistically significantly predictive of L1 innervation: R2 = 0.31, p < 0.001,
non-parametric shuffle test. (Repeating with a linear fit and subtraction
for the whole population does not change the qualitative result:
R2 = 0.30, p < 0.001.)

Next, we obtain a comparative perspective on the L1 innervation
result for the SstCalb2 Pdlim5 subset ofMartinotti cells by juxtaposing
this result with that for the cells of the Lamp5 Lsp1 type. Somata of
these cells are also distributed acrossmultiple cortical layers and their
axons have highly variable levels of L1 innervation. Sparse regression
again succeeds in finding a small set of genes whose expression level
can predict L1 innervation (R2 = 0.56, p = 0.01, non-parametric shuffle
test, Table 1). However, it fails to uncover a statistically significant gene
set after removing the piecewise linear contribution of soma depth:
R2 = 0.06,p=0.26, non-parametric shuffle test. (Repeatingwith a linear
fit and subtraction for the whole population does not change the
qualitative result: R2 = 0.08, p = 0.39.) That is, in contrast to the Sst
Calb2 Pdlim5 cells, soma depth almost completely explains the varia-
bility in L1 innervation for cells in the Lamp5 Lsp1 population
(Fig. 4e, f).

Lastly, we consider the possibility that the cells whose axons do
not reach L1 are simply irrelevant to this study and bias the statistics.
(Axons of 3 out of 52 cells in the SstCalb2 Pdlim5 population, and 7 out
of 22 cells in the Lamp5 Lsp1 population do not reach L1.) We repeat
the above comparison after removing the cells whose axons don’t
reach L1 altogether from this study. Sparse regression still uncovers a
statistically significant relationship between L1 innervation strength
and a set of genes for the Sst Calb2 Pdlim5 population after removing
the linear contributionof somadepth (R2 = 0.28,p<0.001). In contrast,
it again fails to find a statistically significant relationship for the Lamp5
Lsp1 population (R2 = 0.05, p = 0.39).

Table 1 | Statistical significance and effect size values for
predicting anatomical features from gene expression via
sparse linear regression for seven different cell types

Sst Calb2
Pdlim5

Sst
Hpse Cbln4

Sst Chodl Pvalb
Reln Itm2a

L1 axon 0 / 0.40 1.000 0.637 0.023 / 0.13

L2/3 axon 0.013 / 0.30 1.000 1.000 0 / 0.35

L4 axon 0.689 0.332 0.607 0 / 0.35

L5 axon 0.033 / 0.15 0.013 / 0.25 1.000 0.102

L1 dendrite 0.042 / 0.17 1.000 0.689 0.088

L2/3 dendrite 0.033 / 0.15 1.000 0.332 0.013 / 0.27

L4 dendrite 0.697 0 / 0.40 0.013
/ 0.40

0.058

L5 dendrite 0 / 0.19 0.102 0.393 0 / 0.25

soma depth 0 / 0.26 0.023 / 0.21 0.246 0 / 0.34

axon centroid 0.023 / 0.16 0.210 0.058 0 / 0.34

dendrite
centroid

0.150 0.023 / 0.26 0.096 0 / 0.39

Pvalb Tpbg Lamp5 Lsp1 Lamp5
Plch2 Dock5

L1 axon 0.033 / 0.21 0.013 / 0.56 0.042 / 0.40

L2/3 axon 0.023 / 0.27 0.042 / 0.52 0.323

L4 axon 0.216 1.000 0.351

L5 axon 0.058 0.135 0.081

L1 dendrite 0 / 0.42 0.283 0 / 0.40

L2/3 dendrite 0.042 / 0.21 1.000 1.000

L4 dendrite 0.074 0.393 1.000

L5 dendrite 0.013 / 0.26 1.000 1.000

soma depth 0.013 / 0.29 0.023 / 0.48 0.067

axon centroid 0.058 0.013 / 0.44 0.074

dendrite centroid 0.013 / 0.38 0.023 / 0.46 0.074

For each entry, the FDR-corrected p-value as calculated by a non-parametric one-sided shuffle
test is listed. If the value is considered statistically significant at p≤0.05, the R2 value is also
displayed (p / R2). p-values less than or equal to 0.05 and R2 values larger than or equal to 0.25
are shown in bold. A p value of 0 indicates that the calculated p value is less than 0.001, the
sensitivity of the shuffle test, and less than 0.013 after FDR correction. Source data are provided
as a Source Data file.
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To summarize, while axons of Lamp5 Lsp1 cells appear to shift
along the laminar axis according to their soma location within the
cortical depth, soma location does not seem to dictate the axonal L1
innervation of Sst Calb2 Pdlim5 neurons, whose strength can never-
theless be predicted by gene expression. For both of these t-types, the
automated reconstruction pipeline increased the sample size by more
than 60% (Sst Calb2 Pdlim5: 63%, Lamp5 Lsp1: 69%), empowering the
statistical analysis pursued here. Similarly, the sample counts for the
t-types studied in Table 1 increased between 48% and 138%. (The
increase over the whole dataset is 50%, from 543 to 813 cells.) Since
t-types correspond to leaf nodes of the cell type hierarchy, their
sample sizes are much smaller than the subclass-level counts. There-
fore, automated reconstruction can be beneficial both by capturing
more of the biological variability in single-cell morphologies of
populations at the finest level of transcriptomically defined taxo-
nomies and by enabling cross-validation schemes similar to the ones
pursued here.

Discussion
While the classification of neuronal cell types is increasingly based on
single cell and nucleus genomic technologies, characterization of
neuron morphology—a classical approach—captures an aspect of
neuronal identity that is stable over long time scales, is intimately
related to connectivity and function, and can now be connected with
genomic attributes through the use of simultaneous profiling techni-
ques such as Patch-seq.Nevertheless, lightmicroscopy-basedmethods
of neuronal reconstruction often inadequately reproduce the deter-
minant attributes of morphological signature, especially in high-
throughput settings. Here, we have presented an end-to-end auto-
mated neuronal morphology reconstruction pipeline for brightfield
microscopy, whose simple setup supports flexible, single or multi-
modal, characterization protocols. We have also proposed an arbor
density representation as a descriptor of cortical neuronal anatomy
that is robust against noise in high-throughput imaging scenarios as
well asmistakes of automated reconstruction. Its success suggests that
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Fig. 4 | L1 axonal innervation correlates with expression of subset of genes in
Martinotti cells. Example neurons of Sst Calb2 Pdlim5 and Lamp5 Lsp1 t-types (a).
(Horizontal dashed lines indicate cortical layer boundaries. Scale bar, 100 μm.) 1D
axonal arbor density for the 52 cells in the Sst Calb2 Pdlim5 t-type (b) and the 22
cells in the Lamp5 Lsp1 t-type (e). (Yellow horizontal dashed lines and red dots
indicate cortical layer boundaries and soma depth, respectively). Normalized L1-
axon skeletal mass vs. normalized soma depth (0:pia, 1:white matter boundary) for
the Sst Calb2 Pdlim5 cells (c) and the Lamp5 Lsp1 cells (f). Lines fitted to cells with

nonzero L1 innervation. Cells whose axons don’t reach L1 are shown in gray. Pear-
son’s r values are shown. d Gene expression vs. L1-axon skeletal mass for the genes
selected by the sparse regression analysis. (L1-axon mass decreases from left to
right.) g Similarity matrix for the sets of laminae-predicting genes within tran-
scriptomic types and subclasses. (See Table S5.) Each entry denotes the number of
genes in the intersection between the corresponding row and column. Source data
are provided as a Source Data file.
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detailed morphological reconstructions may ultimately not be neces-
sary if the only aim is inferring the cell type label.

Through the use of sparsity arguments and statistical testing, we
demonstrated that this pipeline can help reveal relationships between
gene expression and neuronal anatomy, where a large number of
anatomical reconstructions enables accurate inference in the presence
of a large gene set. As an application, we studied the correlation
between gene expression and laminar innervation on a Patch-seq
dataset of cortical neurons5 and showed that the gene correlates of
different innervation patterns have little overlap across tran-
scriptomically defined subpopulations. While the same program can
potentially also address the relationship between morphological and
electrophysiological properties of neurons, the accuracy of automated
reconstructions should be further improved for use in detailed com-
partmental models51.

Finally, we focused on axonal innervation of L1 by a tran-
scriptomically defined subpopulation of Somatostatin-expressing
Martinotti cells. We found that the innervation strength is relatively
weakly correlated with soma depth for this cell type, but not all types.
Moreover, a subset of genes canpredict the remaining variability in the
innervation strength after the effect of soma depth is removed, sug-
gesting a control mechanism beyond simple shifting of the morphol-
ogy within the cortical depth for this cell type. Considering that
neurons in this population are thought to gate top-down input to
cortical pyramidal neurons25,26, this result suggests tuning of innerva-
tion strength in a continuum within the discrete laminar organization
of the mouse cortex47,52–54, potentially to improve task performance of
the underlying neuronal network.

From a segmentation perspective, we believe our work represents
a significant step forward by producing hundreds of automatically
reconstructedmorphologies obtained from the brightfieldmicroscope
(Figs. S1–S11). As demonstrated in the main text, these cortical neuron
morphologies are statistically indistinguishable from their manually
generated counterparts in certain aspects (e.g., cell type identification),
but not in many others (e.g., arbor topology). Indeed, much further
improvement is needed to achieve complete and accurate tracing of
neurons. Nevertheless, advances in computer vision algorithms and
computing infrastructure that can support complicated models and
large datasets suggest that qualitative improvements may be within
reach in the next few years. While our training set occupies a nontrivial
amount of disk space (~0.5 Teravoxels for the inhibitory model and
~0.8 Teravoxels for the excitatory model), larger sets will improve
generalization, enable the use of larger image contexts and the effec-
tive tuning of more parameters (e.g., the use of the popular transfor-
mer architecture55,56.) The presented method can increase the speed of
manually verified trace generation. In addition, existing manually
traced neurons without transcriptomic characterization (e.g., ref. 41)
can still be useful in training the segmentation model. We note, how-
ever, that admitting a neuron to the training set is currently labor-
intensive: it requires ensuring all branches in the image, not only those
of the neuron of interest, are traced, and branches and somata are
properly inflated by the volumetric label generation routine. Finally,
while voxel-based loss functions, such as the one used in ourmodel, are
easier and faster to train, single voxel mistakes can change the con-
nectivity due to the filamentous appearance of the arbor under the
light microscope. Therefore, topology-aware objective functions57,58

can improve the topological accuracy of the segmentations, a relative
weakness of the proposed model. If perfect segmentation is required,
we expect a human expert to remain in the loop in the near future,
primarily to verify the accuracy of the branching points.

Methods
Dataset
The dataset profiling local morphology and transcriptome of
GABAergic mouse visual cortical neurons was generated as part of the

Patch-seq recordings described in ref. 5. This dataset includes
2,341 cells with transcriptomic profiling and high-resolution image
stacks, where the brain sections were imaged on an upright AxioIma-
ger Z2 microscope (Zeiss) equipped with an Axiocam506 mono-
chrome camera. Tiled image stacks of individual cells were acquired
with a 63× objective lens (Zeiss Plan-Apochromat 63× /1.4 NA or Zeiss
LD LCI Plan-Apochromat 63× /1.2 NA) at an interval of 0.28 μm or
0.44 μm along the Z axis. Individual cells were manually placed in the
appropriate cortical region and layer within the AllenMouse Common
Coordinate Framework (CCF)59,60 by matching the 20× image of the
slice with a “virtual” slice at an appropriate location and orientation
within the CCF. 1,259 cells were removed from the dataset either
because theyweremapped to nearby regions (insteadof visual cortex)
or because their images had incomplete axons. 543 of the remaining
1,082 bright-field image stacks of biocytin-filled neurons were recon-
structed both manually and automatically, and this set is used for
training and testing of the t-type classification algorithms and for
error/R2-value quantification. The remaining 539 cells were recon-
structed only automatically. To ensure the quality of scientific results
presented in Table 1 and Fig. 4, we excluded 118 images with multiple
neurons in the field of view and 151 images that failed at different
stages of the pipeline (missing pia/white matter annotations,
annotation-related failed upright transformation, reconstruction fail-
ing visual inspection) from those analyses. Finally, 16 cells in the
manually and automatically reconstructed population and 20 cells in
the automatically-only reconstructed population were not used for
analyses involving t-types because these cellsweredeemed tonot have
“highly consistent” t-type mappings in ref. 5.

Volumetric training data generation from skeletonized
morphologies
Segmentation of neuronalmorphologies from3D image stack requires
voxel-wise labelswhilemanual reconstructions specifiedby traces only
provide a set of vertices and edges corresponding to the layout of the
underlying morphology. We developed a topology-preserving fast-
marching algorithm to generate volumetric ground truth using raw
image stacks and manual traces by adapting a fast-marching-based
segmentation algorithm13,61 initialized with trace vertices to segment
image voxels. This segmentation should be consistent with the layout
of morphology traces, without introducing topological errors (e.g.,
splits, merges, holes). We ensured this by incorporating simple point
methods in digital topology62 into the segmentation algorithm. (i.e.,
the proposal generated by fast marching is disallowed if the proposed
voxel value flip changes the underlying topology.) We noticed that the
soma can be incompletely filled by the fast marching algorithm.
Therefore, we treated the soma region separately and used a sequence
of erosion and dilation operations followed bymanual thresholding to
achieve complete labeling. Each voxel was labeled as axon, dendrite,
soma, background.

Neural network architecture and training
We used a 3D U-Net convolutional neural network28 to performmulti-
class segmentation (i.e. each voxel is assigned a probability of
belonging to classes specified in the label set).We trained two separate
models using raw images and volumetric ground truth; one with 51
inhibitory neurons, and another with 75 excitatory neurons from
mouse cortex. The weights of the excitatory model were initialized
with those of the trained inhibitorymodel, except for the classification
layer. The U-Net architecture consists of a contracting path to capture
context and a symmetric expanding path that enables precise locali-
zation and has been shown to achieve state-of-the-art performance in
many segmentation tasks27,28. Building on previous work16, we devel-
oped an efficient Pytorch implementation that runs on graphical pro-
cessing units (GPUs). To address GPU memory constraints, during
each training epoch the training set was divided randomly into subsets
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of 3 stacks. Training proceeded sequentially using all subsets in an
epoch, and data loading time did not exceed 10% of the total training
time. We trained the model on batches of 3D patches (128 × 128 × 32
px3, XYZ), which were randomly sampled from the subset of 3 stacks
loaded into memory. All the models were trained using the Adam
optimizer63 with a learning rate of 0.1. Training with a GeForce GTX
1080 GPU for ~50 epochs took ~3 weeks. Since the neuron occupies a
small fraction of the image volume,wechosepatches that contained at
least one voxel belonging to the neuron. To add salient, negative
examples to the training set, we also included a number of patches
with bright backgrounds produced by staining artifacts and pial sur-
face. To enable the model to generalize from relatively small number
of training examples and improve the segmentation accuracy, we
augmented training data by 90∘ rotations and vertical/horizontal flips
in the image (XY) plane.

End-to-end neuron reconstruction pipeline
An end-to-end automated pipeline combined segmentation of raw
image stacks into soma, axon, and dendrite structures with post-
processing routines to produce a swc file. Segmentation with trained
models using a single high-end GPU takes ~5.8 min per Gvoxel, or
~186min for average 32Gvoxel image stack. Our pipeline had access to
16 GPU (NVIDIA Titan X) cards. Even though the model trained using
inhibitory neurons generalized well on all types of neurons, we found
that the model trained using excitatory neurons improved the axon/
dendrite assignment accuracy on excitatory neurons. Segmentation
was post-processed by thresholding the background, followed by
connected component analysis to remove short segments, skeletoni-
zation, and converting to a digital reconstruction in the swc format.

Axon/dendrite relabeling
Since the initial segmentation by the UNet-based neural network
assigns every foreground voxel one of {soma, axon, dendrite} based on
local context defined by the patch size, it is prone to occasional errors,
particularly in distinguishing between axon and dendrite. These errors
propagate to the labeling of nodes in the tree representation. In order
to improve this initial node labeling, we developed an error correction
approach which utilizes the initial segmentation to make a decision
based on a larger spatial context.

We trained a secondary neural network model to predict the
labels based on features calculated using the raw image stack and the
initial trace. First, for each connected component in the skeleton of
the initial segmentation, we identified the longest path from the
node closest to soma and calculated features on the node set
defining that path: (i) The first 6 features are 1D arrays of image
brightness values calculated for every node in the set at different
spatial scales using spherical kernels of varying radii (1, 2, 4, 8, 16, 32).
(ii) A second set of 6 features are 1D arrays of neurite tortuosity
values calculated for every node in the set as ratios of path and
Euclidean distances between each node and its n-th neighbor away
from the soma (n = 4, 8, 16, 32, 64, 128). (iii) Two additional features
are 1D arrays of node type of every node in the set and a single
number representing distance of the closest node to the soma. For
each 1D array, we used the first 2048 nodes and zero-padded shorter
arrays to have a uniform array size.

The neural network architecture consists of three arms, two arms
have two convolutional layerswith 4 and 8 7 × 3 filters followedby4 × 1
max pooling, a fully connected layer and a dropout layer each. These
arms process feature sets (i) and (ii) above by stacking the sets of 6 1D
arrays along a second dimension. The third arm processes feature set
(iii) and has two convolutional layers with 4 and 8 7 × 1 filters followed
by 4 × 1 max pooling, a fully connected layer and a dropout layer. The
outputs of these three arms are concatenated with the ‘distance to
soma feature’. Finally, the concatenated hidden feature map is pro-
cessedby two fully connected layers to producea single scalar softmax

output indicating the inferred label type. The network model was
trained using examples from the training dataset of the semantic
segmentation model, and is used to relabel the neuron traces during
postprocessing. Averaging predicted label type over the 9 longest
paths improved relabeling accuracy for connected components longer
than 2048 nodes.

Connecting disconnected segments
Due to a combination of staining artifacts and limitations of bright-
field imaging, the initial reconstruction is often characterized by
multiple disconnected subtrees. We introduced artificial breaks to
manual traces to train a random forest classifier to predict whether
nearby pairs of connected components should be merged. First, we
find all pairs of segment (subtree) end points that are locatedwithin a
certain distance. Next, for each pair of end points, we calculate the
Euclidean distance and four collinearity values which measure the
segments’ orientation relative to each other. Specifically, for each
end point, we calculate two vectors representing segment end
orientation at two different spatial scales (i.e., the orientation of the
branch terminating at that end point). The collinearity values are the
dot products of each of these vectors with the vector between end
points of the pair. Finally, for each end point in the pair we also
calculate the above features for the closest four other end points. As
a result, for every pair of end nodes we have a total of 45 features.
Only segments of the same type, axon or dendrite, are considered for
merging.

Additional postprocessing
We passed the reconstructions through a series of additional post-
processing for extraneous cell/artifact removal, down sampling, node
sorting and pruning. We used quality control by a human to check for
the presence of disconnected branches of extraneous cells that were
not removed during postprocessing. We excluded samples that did
not pass this quality control if they did not have a manual trace. For
samples with a manual trace, we used a neighborhood of the manual
trace to simulate manual removal of extraneous cells by masking with
that neighborhood. We excluded these samples from reconstruction
accuracy quantification and used them only for cell type classification.
For excitatory neurons (Fig. 2a, and ref. 36),we trained a randomforest
classifier to identify apical dendrite segments in excitatory auto-trace
reconstructions. The classifier was trained on geometric features that
distinguish apical dendrite segments from the basal dendrite (e.g.
upright distance from soma). This classifier achieved a mean accuracy
of 85% percent across 10-fold cross validation.

Morphometric feature calculation
Reconstructions were transformed to an upright position that
is perpendicular with respect to pia and white matter surfaces.
Morphometric features were calculated using the skeleton_keys
python package41. Following ref. 41, z-dimension features were not
included.

Arbor density generation of axons and dendrites
We represented axonal and dendritic morphologies as 2D density
maps registered to a common local coordinate axis using the pia/
white matter boundaries. First, we applied upright transform to the
reconstructed neuron followed by the correction of z-shrinkage and
the variable tilt angle of the acute slice41. Next, adapting our previous
work12,40 we conformally mapped pia and white matter boundaries to
flat surfaces, calculated a nonlinear transformation on the whole
tissue by a least-square fit to pia/white matter mappings, and applied
this transformation to the morphology trace. Finally, we used the
registered trace to generate a 2D density representation. The polar
axes representing the cortical depth and the lateral distance from the
soma (Fig. 2c) make this representation invariant to rotations around
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the laminar axis. We calculated these maps separately for axons and
dendrites. We downsampled thesemaps to 120 px × 4 px images with
a pixel size of 8 μm × 125 μm to be robust to minor changes in
morphology. We normalized the intensity by the lateral area corre-
sponding to each pixel so that each pixel value represents local arbor
density.

Assessing neuron reconstruction accuracy
To assess the quality of automated neuron reconstructions, we used
manual reconstructions as the ground truth. We quantified the cor-
respondence of trace nodes, as described in the main text, to eval-
uate the accuracy of the trace layout. We calculated precision, recall
and f1-scoremetrics at three distances (2, 5, and 10 μm), and reported
mean and standard deviation values for the test set of 340 neurons
(all samples that have manual traces excluding the ones used for
training models or required masking). In addition, we evaluated the
accuracy of neuron morphology representations, morphometric
features and ADRs, for the same set. After realizing that the image
coordinates used for manual vs. automated tracing were nonlinearly
warped with respect to each other for one cell (penultimate cell
in Fig. S10), we removed that cell from the single cell-level node
correspondence, ADR, and feature-based comparison studies.
(It was used in all cell typing studies.) We reported the Pearson’s
correlation coefficient r for each morphometric feature. We calcu-
lated the average root-mean-squared error per t-type between nor-
malized axon/dendrite ADRs derived from automated and manual
reconstructions.

Supervised classification
Supervised classification using morphometric features was performed
by training a random forest classifier implemented in the scikit-learn
Python package64 using 5-fold cross-validation. This was repeated 20
times. Supervised classification using ADRs was done by training a
feed-forward neural network classifier using our Pytorch imple-
mentation. The network architecture consists of a convolutional layer
with 7 × 3 × 1 filters, a 4 × 1 × 1 max pooling layer, a convolutional layer
with 7 × 3 × 1 filters, a 3 × 1 × 1 max pooling layer, a layer that con-
catenates the hidden features with the soma depth value, and a fully
connected layer with the number of units corresponding to the num-
ber of classes. Each convolutional layer uses the rectified linear func-
tion as the non-linear transformation.

Since the depth locations of neurons vary within the cortex, we
introduced a data augmentation scheme based on simulation of cell
type-dependent neuronal shift along the laminar axis. Namely, for each
t-type we calculated the range of soma depth variations, and applied a
randomshiftwithin that range to the input somadepth value, aswell as
the corresponding shift to the ADR intensity in the laminar direction.
This cell type-dependent random shift of the ADR and the soma depth
together with a modulation of the intensity values of the ADR
improved the accuracy of classification.

The networks were trained using the cross-entropy loss function
and the Adam optimizer with a learning rate of 0.001. Training using
10-fold cross-validation with GeForce GTX 1080 GPU for 50,000
epochs took ~24 h. A set of 246 automatically and 501 manually
reconstructed cells was used for training classifiers shown in Fig. 3a
and b, and a set of the same 488 automatically and manually recon-
structed cells were used for Fig. 3c, d and Fig. S19. Both sets included
only cells from t-types with at least 5 cells. Confusion matrices, mean
and standard deviation of accuracy across cross-validation folds were
reported.

We performed Boschloo’s exact test on 2 × 2 contingency tables
where columns/rows store total numbers of correct and incorrect
predictions for two given classifiers. When comparing ADR-based
to morphometric feature-based classifiers, we calculated the con-
tingency table for each of the 20 repetitions used in the feature-

based classifier study. We calculated the p-value of one-sided Bos-
chloo’s test to evaluate the null hypothesis of ADR-based accuracy
being less than feature-based accuracy. To aggregate the 20 p-values,
we used ref. 42 and the Python implementation at https://github.
com/benjaminpatrickevans/harmonicmeanpto report the p-value of
the asymptotically exact harmonic mean p-value test for t-type and
subclass predictions.

Cophenetic agreement. To take the hierarchical organization of
transcriptomically defined mouse cortical cell types23 into account
when evaluating the accuracies of the different classification tasks, we
defined resolution index per cell as the scaled height of the closest
common ancestor of assigned and predicted labels in the t-type hier-
archical tree65 (Figs. S20, S21). Accordingly, the resolution index for a
correctly classified t-type ("leaf node” label) is 1. In the worst case, the
closest ancestor for an assigned and predicted label can be the root
node of the taxonomy, which corresponds to a resolution index of 0.
We report the mean and s.e.m. values for this measure of cophenetic
agreement between true and predicted assignments for each cell type
in Figs. S20, S21.

Sparse feature selection analysis
Following ref. 66, a set of 1,252 genes were used for this analysis. This
set was obtained by excluding genes if they satisfy any of the following
criteria: (1) they are highly expressed in non-neuronal cells, (2) they
have previously reported sex or mitochondrial associations, and (3)
they are much more highly expressed in Patch-seq data vs. Fluores-
cence Activated Cell Sorting (FACS) data (or vice versa) and therefore
may be associated with the experimental platform5. Further, we
removed gene models and some other families of unannotated genes
thatmay be difficult to interpret. We also used the β score, a published
measure to evaluate the degree to which gene expression is exclusive
to t-types67, to exclude genes expressed broadly across t-types. Gene
expression values were CPM normalized, and then logeð�+ 1Þ trans-
formed for all the downstream analyses.

A set of 777 neurons was used for the feature selection analysis
where automated reconstructions comprise ~32% of this set (~44% of
the subset of 7 t-types studied in Fig. 4). Every neuron in the dataset
was characterized by the expression levels of the set of 1252 genes, and
their axonal and dendritic 1D arbor density representations were
organized into two 120 × 1 vectors. For each neuron, axon/dendrite
layer-specific skeletal masses normalized by total skeletal mass were
calculated to quantify layer-specific innervation for axonal and den-
dritic morphologies, and axon/dendrite centroids were calculated to
characterize laminar position of the morphology. To select a small
subset of genes that are responsible for the variability in individual
anatomical features within each transcriptomic type or subclass, we
solved the Lasso regression problem68 (LassoCV command in the
scikit-learn library64) for each anatomical feature using the cells in that
transcriptomic set. We analyzed only the sets corresponding to the
types and subclasses with at least 20 cells. Briefly, let Kt denote the
number of cells of typeor subclass t forwhichwehaveboth anatomical
features yt (a Kt × 1 vector) and gene expression values Xt (a Kt × N
matrix). We solve

minimize
1

2Kt
kyt � Xtwtk22 +αkwtk1 ð1Þ

by performing nested 5-fold cross-validation. For each cross-validation
fold, wepassed the training set into LassoCVwhichperformed another
splitting of the data to determine the hyperparameter α and the set of
selected genes. We selected the 10 genes with maximum absolute
weight values and calculated the coefficient of determination, R2, for
the test set. Finally, we selected the 10 most frequent genes across the
5 folds and calculated the mean test R2 value. To evaluate statistical

Article https://doi.org/10.1038/s41467-024-50728-9

Nature Communications |         (2024) 15:6337 10

https://github.com/benjaminpatrickevans/harmonicmeanp
https://github.com/benjaminpatrickevans/harmonicmeanp


significance, we shuffled the rows of the gene expression matrix Xt
1000 times and used the same procedure to calculate mean test R2

value for each shuffled run. We calculated the one-sided p-value as the
fraction of shuffled runswithR2 values greater thanor equal to the true
R2. Finally, we performed multiple testing correction of p-values using
Benjamini-Yekutieli method69 to control the false discovery rate
(multipletests command in the statsmodels library70). We report
resulting p-values and test R2 values for t-types in Table 1 and for
t-types and subclasses in Tables S3 and S4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Transcriptomic and morphological data supporting the findings of this
study is available online at https://portal.brain-map.org/explore/classes/
multimodal-characterization("Neurons in Mouse Primary Visual Cor-
tex”). Additional dataset of automatedmorphological reconstructions is
available at https://github.com/ogliko/patchseq-autorecon. Source data
are provided with this paper as a Source Data file. Source data are pro-
vided with this paper.

Code availability
Code pertaining to this study as well as the trained neural network
model for automated segmentation are available at https://github.com/
ogliko/patchseq-autorecon71 and https://github.com/rhngla/topo-
preserve-fastmarching. Morphometric features are calculated using
the skeleton_keys package at https://skeleton-keys.readthedocs.io.
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