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FaceMotionPreserve: a generative 
approach for facial de‑identification 
and medical information 
preservation
Bingquan Zhu 1, Chen Zhang 1, Yanan Sui 1* & Luming Li 1,2

Telemedicine and video-based diagnosis have raised significant concerns regarding the protection of 
facial privacy. Effective de-identification methods require the preservation of diagnostic information 
related to normal and pathological facial movements, which play a crucial role in the diagnosis 
of various movement, neurological, and psychiatric disorders. In this work, we have developed 
FaceMotionPreserve , a deep generative model-based approach that transforms patients’ facial 
identities while preserving facial dynamics with a novel face dynamic similarity module to enhance 
facial landmark consistency. We collected test videos from patients with Parkinson’s disease recruited 
via telemedicine for evaluation of model performance and clinical applicability. The performance 
of FaceMotionPreserve was quantitatively evaluated based on neurologist diagnostic consistency, 
critical facial behavior fidelity, and correlation of general facial dynamics. In addition, we further 
validated the robustness and advancements of our model in preserving medical information with 
clinical examination videos from a different cohort of patients. FaceMotionPreserve is applicable 
to real-time integration, safeguarding facial privacy while retaining crucial medical information 
associated with facial movements to address concerns in telemedicine, and facilitating safer and more 
collaborative medical data sharing.

Protecting the privacy of patients is a critical and ethical obligation in both healthcare practice and research1. 
Any unauthorized or malicious collection, storage, disclosure, and use of medical information would violate 
their human rights and dignity. Concerns about inadequate protection of personal privacy could discourage 
patients from seeking healthcare services and building trust with providers, especially in the case of certain 
clinical conditions that could lead to discrimination or stigma. Among all privacy issues, the protection of facial 
information is one of the biggest concerns, as the face contains the most recognizable biometric identifiers2, 
strongly related to health information profiles and other personal data. Telemedicine, the emerging practice of 
online medical services instead of in-office visits3, exacerbates facial privacy concerns as it often involves video 
conferencing or recording with patient over the internet. Placing high significance on facial privacy protection 
in telemedicine is important and valuable for patient benefits, promoting the willingness and access to medical 
services. With the increasing demand and adoption of telemedicine, adequate protection of facial privacy poses 
new societal and technical challenges in the era of rapid development and expanded use of face recognition and 
synthesis technologies.

Artificial intelligence (AI) is transforming telemedicine in health status tracking, disease screening, remote 
monitoring, diagnostic assistance, treatment planning and management and care services4, helping streamline 
the process, improve data and service quality5, and promoting the cost-effectiveness and accessibility6,7. However, 
AI techniques may also extract sensitive personal information beyond identity including age, gender, emotion, 
etc8. Controversies and regulations on face privacy, as well as AI tools for face de-identification, are issues of 
great concerns worldwide. In video-based diagnosis and telemedicine scenarios, faces also convey diagnostic 
information. Patients with certain neurological conditions exhibit specific facial movement disorders, such 
as the asymmetrical face of stroke patients. Moreover, facial movements show important social information, 
playing essential roles in human interactions9. Medical examination of facial movements is required for many 
disorders, including the masked faces (hypomimia) for Parkinson’s disease (PD)10. Therefore, facial privacy 
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protection in telemedicine practice proposes additional demands in preserving subtle facial dynamics besides 
de-identification of patients’ faces.

Unfortunately, facial attributes and dynamics are closely entangled with identity. Conventional 
de-identification methods, including blurring, masking and pixelization11, remove informative contents from 
entire or part of the face, making clinical facial investigation almost impossible. However, their performance of 
de-identification might still be challenged with current deep learning techniques in de-blurring, super resolution, 
image inpainting and self-supervised learning12,13. Deep learning based face manipulation methods provide tools 
for face de-identification in multiple ways. Some modified faces to cheat the identity recognition algorithms 
but were unable to affect human recognition performance14. Some others focused on changing facial features 
and attributes, paying little attention in tracking movement changes15,16. To concurrently change facial identity 
and keep facial attributes, a series of face swapping technologies leveraging deep learning have been developed 
to make deepfakes.

In deepfake videos, the original face of a person is replaced with the source face from someone else for 
identity alteration, while the original facial expressions are roughly retained. This technology has been deployed 
in film industry and is getting popular in public entertainment through social media, short-video platforms, and 
deepfake APPs17. Although the misuse of deepfakes has caused new threats of disinformation and fraud, raising 
concerns and criticisms on its negative impact, we argue that the technology itself can be used as a powerful 
tool to benefit patients in telemedicine. When applied directly to any patient video with face, deepfake is able 
to remove facial identity and related sensitive information whilst keeping facial movements. It is a more natural 
and perceptually acceptable approach to protect patients’ facial privacy.

Deepfakes can be created in three major ways. Models with autoencoders as the key components17–20 train 
a shared encoder and separate decoders or a decoder with separate latent embeddings for original and source 
faces, replacing the original identity when the source face decoder or latent embedding is chosen. These methods 
could swap faces while keeping facial details, but are always trained in face pairs and the decoders are mostly 
subject-specific, which limit their capability of generalization and scaled application. 3D vision based models, 
sometimes combined with neural scene representation and rendering techniques, manipulate the original 
identity by changing 3D face parameters and reconstructing faces with the source identity21–23. They allow face 
swapping with more synthetic flexibility but encounter troubles in precisely editing face areas like eyes and mouth 
and preserving subtle expressions. The performance is also affected by the underlying 3D models. Generative 
adversarial networks (GANs) for deepfake24–27 use generators to create faces with new identity and discriminators 
to improve image quality and attribute fidelity. GANs integrated with identity extractors enable the models to 
generalize to arbitrary identities which help eliminate the restrictions of paired faces and reduce computational 
loads. However, it remains an open question whether they could preserve facial movements for diagnoses, and 
how the preservation should be evaluated quantitatively.

In this study, we proposed FaceMotionPreserve , a generative deep learning model-based approach for subject-
agnostic de-identification and facial movement preservation of medical videos. We deployed our model to an 
integrated system to track and de-identify faces in real-time and demonstrated its feasibility of being a convenient 
tool for facial privacy protection in telemedicine. With FaceMotionPreserve , videos recorded by patients get 
de-identified while the facial dynamics are retained, and are then safely sent out for clinical diagnoses (Fig. 1).

FaceMotionPreserve de-identifies face images following a GAN-based pipeline. A novel facial landmark 
similarity module was integrated to enhance diagnostic information preservation. The model was trained only on 
publicly available datasets without any real patient data, and we specially constructed the training set with enough 
blink images to match natural blink distribution, reducing related training bias. The performance evaluation and 
model comparison were conducted with videos from patients with Parkinson’s disease, a movement disorder for 
which telemedicine has already showed the efficacy in remote diagnosis and programming of neuromodulation 
treatment28,29, where FaceMotionPreserve was directly applied. We have tested the de-identification performance 
with both human participants and a deep learning method. To comprehensively examine the preservation of 

Figure 1.   Workflow of FaceMotionPreserve for telemedicine privacy protection The system converts a patient 
face to a new identity in real time, providing de-identified videos to healthcare providers while keeping original 
facial movements with high fidelity. Medical decisions are made based on de-identified videos. The faces 
illustrated here are from the DeepFakeDetection Dataset.
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diagnostic information, we developed a framework of different evaluation aspects quantitatively, including 
specialist diagnostic consistency, critical facial behavior fidelity and general facial dynamic correlation. 
Evaluation results from neurologists, healthy human participants and algorithms demonstrated the capability 
of FaceMotionPreserve for both de-identification and facial dynamics preservation, which was improved by facial 
landmark loss and augmented training set with annotated blink images proportional to normal human behavior. 
We also compared FaceMotionPreserve with other deepfake models on a different cohort of patients with PD 
and showed its robustness and advantages in diagnostic facial motion information preservation.

FaceMotionPreserve provides a new way to overcome difficulties in removing facial identity while keeping 
diagnostic information. It could alleviate worries and concerns about facial privacy in telemedicine and further 
promote medical data sharing and secondary use for clinical and scientific research.

Methods
Participants and evaluation datasets
We recruited two groups of patients with PD, one through telemedicine and the other in clinical and lab settings, 
to obtain their face related test videos, according to the Movement Disorder Society Unified Parkinson’s Disease 
Rating Scale (MDS-UPDRS)10, which is the most widely adopted rating scale in assessing PD symptoms and 
severity. Three motor examination tests, which are facial expression, speech, and rest tremor for lip/jaw were 
chosen because they require face videos. Facial expression is scored based on the severity of hypomimia, including 
the degree of movement and expression reduction in the face, such as decreased blinks, fewer movements 
around the mouth and parted lips during rest. Rest tremor for lip/jaw is rated by examining the maximal tremor 
amplitude during the entire exam. Speech is rated by evaluating the understandability, considering various factors 
including volume, diction, prosody and clarity. Each test is scored from 0 to 4, indicating five levels of severity, 
namely normal (no symptom), slight, mild, moderate, and severe.

The first cohort included 76 patients (33 females and 43 males), with an average age of 67.6 years (s.d. 9.4 
years). They followed the test and recording instruction inside the telemedicine APP installed on smartphones30, 
recorded required videos by themselves or their caregivers, and uploaded the videos outside clinics or healthcare 
service places. The APP is equipped with deep learning models for pose and light condition detection, and 
provides voice prompts to guide the recording. If the face position or the light condition was not satisfied, new 
recordings were required. We also provided every patient with a mobile phone tripod to ensure the stability. We 
constructed PD dataset I of 60,818 frames from 76 videos of the facial expression test and 37,859 frames from 75 
videos of the speech test. Since rest tremor for lip/jaw could be scored from these recordings, we didn’t ask the 
patients to shoot extra videos. We worked on this dataset for the evaluation of FaceMotionPreserve .

The second cohort included 35 patients (15 females and 20 males), aged at 57.0 years on average (s.d. 8.7 
years). We composed PD dataset II of 10,295 frames from 35 videos of the facial expression test recorded by 
experienced physicians. This dataset was used for model comparison. While the patient face images were utilized 
as original images for model comparison, we acquired source faces from two healthy volunteers, one female 
recognized as a21 and one male recognized as a22, who granted their permissions to us for the usage of their 
face images. Their videos lasted for 20 seconds (1000 frames), including facial expressions for happy, surprise, 
sad and disgust.

For human evaluation of patient face de-identification performance with FaceMotionPreserve , we recruited 
seven adult participants as human judges to distinguish faces in the identification experiment.

This study was reviewed and approved by the Institutional Review Boards of Beijing Tsinghua Changgung 
Hospital and Tsinghua University Yuquan Hospital, and the Ethical Committees of Beijing Tiantan Hospital of 
Capital Medical University, Peking Union Medical College Hospital, and Qilu Hospital of Shandong University, 
Clinical Trials Identifiers NCT02937727 and NCT03053726. All experiments were performed in accordance 
with Declaration of Helsinki and Good Clinical Practice of China. All participants and volunteers signed their 
corresponding informed consents before participating. Any image or video frame involved in this study only 
contained one face.

FaceMotionPreserve Architecture
The architecture of FaceMotionPreserve is illustrated in Fig. 2. Following the general framework of generative 
adversarial network, FaceMotionPreserve modifies faces with a generator module, which was trained together 
with a discriminator module similar to the SimSwap model26. The generator module includes an encoder to 
encode the original image into a feature map, an ID injection step with the Adaptive Instance Normalization31 to 
implicitly inject source identity (a 512-d vector extracted by an ID extractor module called Arcface32) information 
into the feature map, and a decoder to generate the de-identified image using the modified feature map. The 
discriminator module33 was involved during training to improve image quality and facilitate the maintenance 
of facial attributes with different losses. We adopted some modules from SimSwap. During the adversarial 
training process, the generator get updated with feedback from the discriminator module (GAN loss, weak feature 
matching loss, etc.), ID extractor module (ID loss) and original images (image reconstruction loss).

To achieve facial movement and diagnostic information preservation, we extended the SimSwap, 
implementing a novel face dynamic similarity module, which uses a pretrained landmark extractor to quantify 
facial landmark discrepancy between the de-identified and original faces during training. The pretrained 
landmark detection module34 detects facial landmarks on original and de-identified images. Since temporal 
correlation information was not available during model training, mean Euclidean distance between original 
and de-identified facial landmarks that directly or strongly relate to facial expressions (eyebrows, eyes and 
inner mouth) was calculated as the landmark similarity loss, offering an optimization goal for facial movement 
invariability. The loss was calculated as the following:



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17275  | https://doi.org/10.1038/s41598-024-67989-5

www.nature.com/scientificreports/

where i, j are landmark index, n is landmark total number(30), li,j is Euclidean distance of landmark (i,j) pair of 
original and de-identified image.

The overall loss function of FaceMotionPreserve comprises losses derived from all modules, including the 
landmark similarity loss Llmk between landmarks of original and de-identified face images from the landmark 
extractor, and losses from the SimSwap model (identity loss LID between source and de-identified ID vectors, 
adversarial loss LGAN , image reconstruction loss Limg , weak feature matching loss26 Lfea and gradient penalty 
loss35 LGP between original and de-identified images), as the following:

The � s are weights of corresponding losses. δ is 1 if the original image has same identity with the source, and 0 
if the identity is different. k denotes �IDLID . �lmk was set to 0.2, and �ID = 10 , �GAN = 1 , �img = 10 , �fea = 10 , 
�GP = 1× 10−5 as in SimSwap. We applied adaptive weights that is inversely proportional to the identity loss 
and the landmark loss in order to better enforce facial landmark consistency in late training periods when all 
the other losses became small.

Training process
We built the training dataset with VGGFace236 and mEBAL37,38, and trained FaceMotionPreserve on these 
publicly available datasets only. The VGGFace2 is a widely used benchmark dataset for face recognition and 
related tasks containing large-scale face images of different identities. However, we observed that it lacked images 
of natural blink phases, causing models trained on it to be biased to eye-open cases. The approximate blink 
frequency of human adults is 17 times per minute39 on average and each blink lasts about 180 ms to 270 ms40, 
making up 5% to 8% of the human awake time. The mEBAL presents a dataset containing annotated blink 
video frames. To alleviate the no-blink bias, we constructed an augmented training set by complementing the 
VGGFace2 with blink frames from mEBAL to make the dataset comprising around 8% blink images in total. 
Images larger than 256x256 pixels in size were selected. We then aligned these face images and cropped them 
into 224×224 pixels as the input for the model.

During training, original images and source vectors of the same or different identities were passed to our 
model alternately. The model was trained 500 epochs on 8 NVIDIA 2080Ti GPUs with a batch size of 32 and the 
ADAM optimizer with learning rate of 1× 10−4 and β1 = 0, β2 = 0.990.
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Figure 2.   FaceMotionPreserve has a generator module that takes an original face and source identity as input, 
and outputs a de-identified face. During training, FaceMotionPreserve employs a discriminator module to 
improve image quality and preserve high semantic attributes, and a landmark extractor module to enhance 
facial dynamics preservation. Different losses are involved: identity loss ( LossID ) enforces identity replacement, 
image loss ( Lossimg ) and discriminator’s GAN loss ( LossGAN and LossGP ) and feature loss ( Lossfea ) improve 
image reconstruction, and landmark loss ( Losslmk ) enhances facial movement preservation.
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Model evaluation
After training, we evaluated FaceMotionPreserve on PD dataset I. Images from this dataset were referred to as 
original images and face images of actor 14 from the DeepFakeDetection Dataset41,42 were used as the source. We 
aligned face images and cropped them into 224×224 pixels to feed into our model with tools from InsightFace43. 
For each original images in PD dataset I, FaceMotionPreserve output a corresponding de-identified face image. 
We evaluated the proposed approach in four aspects: the performance of face de-identification, the clinical 
rating consistency of face-related motor tests after de-identification, the preservation of facial dynamics, and 
the invariance of body motion, as shown in Fig. 3.

Evaluation for face de‑identification
The performance of face de-identification was evaluated by both human judges and a widely adopted face 
recognition pretrained model, Arcface (model ms1mv3_r50)32. We recruited seven healthy adults to participate 
in the face re-identification task. They were showed six faces at a time, including a de-identified face, the 
corresponding original face from PD dataset I, the source face, and three other patients’ faces as controls. The 
images were shuffled, standardized (color transferred and color jittered to diminish non-identity clues, then 
center cropped) and simultaneously displayed. The participants were not disclosed of any information about 
the displayed faces. They were asked to determine whether there were two faces from the same identity and if 
so, which two.

Arcface projects face images into 512-dimension identity vectors. The cosine value of any two identity vectors 
was calculated to represent the similarity of the corresponding faces. We set face verification threshold to be 
0.34 (the corresponding angle between the vectors is 70◦ ) as suggested in44 (accuracy was about 0.9999 and 
false negative rate < 5× 10−5 in the benchmark IJBC face dataset45). All frames from PD dataset I were tested 
with Arcface.

Neurologist rating
To evaluate the performance of our model in clinical practice, the original and de-identified videos from PD 
dataset I were randomly shuffled and re-ordered. Three experienced MDS-licensed neurologists specialized in 
movement disorders independently watched these videos and rated the subjects’ facial expression, rest tremor 
for lip/jaw and speech. The neurologists would mark “not sure” on a video if he/she was not confident in scoring 
the symptom or severity. We got either a valid score or a “not sure” mark from each neurologist for every video 
(Fig. 5A). Some videos were recorded in noisy environment which affected the evaluation of a patient’s speech 
and were excluded from speech rating. We analyzed the rating consistency among all three neurologists only 
based on the valid scores (218 for hypomimia, 206 for tremor, 120 for speech).

Analysis of facial dynamics preservation
To analyze facial dynamics, we grouped the de-identified images to make de-identified videos in accordance 
with the original face videos in PD dataset I. Since it’s pointless to fix absolute landmark locations because they 
inherently vary with identity, we chose temporal sequences of facial landmark pair distance to quantify the 
general facial activities. We applied the SBR model34 for facial landmark detection for its reliable performance 
and reduced jittering on videos. For each face video, 51 landmarks in areas of eyes, brows, nose and mouth which 
are closely related to facial expressions and movements were extracted (see Fig. 6A). We paired all the landmarks 
and got 1275 (51*50/2) facial feature sequences: each feature sequence was the time series of distance vectors 
between a landmark pair, denoted as {dxi,j , dyi,j}t , where dxi,j = xi − xj and dyi,j = yi − yj were the differences 
in horizontal and vertical directions between the ith and the jth landmark, and t was the frame index. For each 
video, we calculated the Pearson correlation coefficients (r) for each paired original/de-identified video feature 

Figure 3.   Evaluation of FaceMotionPreserve . We applied FaceMotionPreserve to get de-identified images 
for PD dataset I. We then analyzed the performance with de-identification analysis, face dynamic analysis, 
neurologist rating and body keypoint analysis..
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sequence; and then averaged r on videos to measure invariability of a facial feature. We evaluated a model’s 
performance for holistic preservation using the mean value of the 1275 averaged r. We also applied canonical 
correlation analysis (CCA) to find the most related direction z and calculated the correlation coefficient of {dzi,j}t . 
Facial expression videos with validated tremor ratings and hypomimia ratings from all the neurologists in PD 
dataset I (56 cases) were used for analysis.

We also evaluated facial diagnostic information after de-identification, including eye blinks and the rest 
tremor. We set a state threshold statethre of eye aspect ratio (EAR), defined as the Euclidean distance between 
upper and lower eyelids normalized by eye width, to determine the open/close state of eyes46. Large EAR values 
indicate opened eyes and small values indicate closed eyes. The consecutive eye-close states that lasted for 60 
ms to 700 ms was considered as a blink. The original and de-identified EAR determined blinks were considered 
a true positive if two blink phases overlapped. We calculated the recall-precision curve of statethre ranging from 
0.05 to 0.30. Videos in which the patient squinted most of the time were excluded.

We evaluated rest tremor for lip/jaw using the temporal sequence of inner-lower-lip midpoint vertical position 
re-aligned to full image frames. The temporal sequences were high-pass filtered by a second order Butterworth 
filter with the critical frequency at 3 Hz. Spectrograms were obtained using a Tukey window with shape parameter 
of 0.25 and segment length of 8 second.

Body motion invariance
We also verified the invariance of body motion after facial de-identification as FaceMotionPreserve would be 
integrated in AI-based telemedicine systems where body motion are also analyzed with deep learning models. 
We detected 18 body keypoints (ankles, knees, hips, neck, shoulders, elbows, wrists, nose, eyes, ears) from 
video frames with OpenPose47. Keypoints in the original image were treated as ground truth and deviations of 
corresponding keypoints in the de-identified image were calculated. We used object keypoint similarity (OKS)48 
as the measuring metric, which evaluated keypoint deviation normalized by body size:

di is the Euclidean distance between the i-th keypoint in original and de-identified images, vi is the original 
visibility of the i-th keypoint ( vi > 0 if visible and = 0 otherwise), s is body size, and κi denotes keypoint-related 
coefficient. OKS ranges from 0 to 1 and quantifies keypoint similarity normalized by human annotator variance. 
When OKS=0.95, deviation is around 2% of body size on facial keypoints, 5% on hands/feet and 7% on hip 
joints. When OKS=0.5, deviation value expands 4 times. When OKS=1, keypoint positions are identical. AP0.5 
denotes average precision with OKS above threshold 0.5. AP0.5:0.95 is the primary metric where superscript 
0.5:0.95 means averaging AP on OKS thresholds ranging from 0.5 to 0.95 with steps of 0.05. We also created 
masked images with a black mask covering face area, blurred images with average blur of kernel size 1/4 of face 
area and pixelized images to 16× 16 grids for comparison. All video frames from PD dataset I were used for body 
keypoint detection analysis.

Model comparison
We qualitatively and quantitatively compared model performance under different settings with images in PD 
dataset II as the original and face images from the two volunteers as the source. We use d-l- to represent the 
ablated model without the landmark extractor and loss Llmk , and trained without mEBAL blink data; d-l+ for 
model trained without mEBAL blink data but with the same model architecture as FaceMotionPreserve and 
training loss; and d+l+ for the ultimate version of FaceMotionPreserve trained with blink data and landmark 
similarity block. We also compared our model with two state-of-the-art and widely adopted deepfake models, 
Faceswap18 and MegaFS27. Since the Faceswap model is subject-specific, for each patient in the dataset, we trained 
one model on the original face and the sex-matched source face with 1500 images (10% were blink images) from 
both faces (trained with 12,000 iterations with batch size 64, learning rate 5× 10−5 ). And we used the pretrained 
FTM version of MegaFS and the d+l+ version model for comparison. All 10,295 frames from the 35 patients in 
PD dataset II were measured with Pearson correlation coefficient and 28 videos were used in blink detection 
comparison (videos with large portion of frames of closed or squint eyes were excluded).

Statistics
We used paired t-test for face identity similarity analysis. Both two-sided and one-sided t-test have p value lower 
than 1× 10−10 (0.0 in SciPy v1.5.4).

Results
Face de‑identification
We first examined whether FaceMotionPreserve could prevent face re-identification from both human 
participants and learning algorithms for facial privacy protection. Human judges participated in a total of 532 
trials and their re-identification results are shown in Fig. 4. Although the original and the de-identified faces 
were always presented, more than 59.0% identifications declared no repetition of identity. In 16.7% of the trials, 
human participants mapped one of the control faces with original, source, or other control identities, and 22.6% 
of the time they mapped the source face to the de-identified face. The re-identification rate of de-identified and 
original pairs was only 1.7%.

OKS =

�i

[

exp
(

−
d2i

2s2κ2i
δ(vi > 0)

)]

�i[δ(vi > 0)]
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We used Arcface to further evaluate identity similarity between de-identified faces and original/source faces 
on all the 98,677 face frames in PD dataset I. As Fig. 4C shows, the average similarity score of the de-identified 
faces and their corresponding original faces was 0.13 (s.d. 0.08), lower than the face verification threshold 
of Arcface which is 0.34. Only 0.04% faces of which the similarity scores exceeded the threshold and might 
be recognized as the original identity. The average identity similarity between the de-identified faces and the 
source face is 0.61 (s.d. 0.04), higher than the face verification threshold, with only 0.01% outliers fell below. 
De-identified faces were much closer to the source faces than the original faces with statistical significance 
( p < 1× 10−10 ) in both two-sided and one-sided t-test, and only 0.008% de-identified faces were more closer 
to the original faces.

Both algorithmic and human identification significantly changed after FaceMotionPreserve processing and the 
chance of re-identifying the original identity was very low. These results demonstrate that FaceMotionPreserve 
could prevent facial re-identification and therefore protects facial privacy.

FaceMotionPreserve for facial diagnostic dynamic preservation
Neurologist ratings of facial symptom severity were consistent before and after FaceMotionPreserve de‑identification
We invited three experienced neurologists to watch the shuffled original and de-identified videos and rated 
three items (facial expression or hypomimia, rest tremor for lip/jaw and speech) in MDS-UPDRS, ranging 
from 0 to 4 for symptom severity. Speech abnormality was included because human interpretation of speech 
strongly correlates with visual cues from mouth49. Figure 5B depicts rating score distributions. Inter-rater score 
deviation of original data was {0.63, 0.74, 0.10} for hypomimia, {0.27, 0.05, 0.20} for tremor, and {0.77, 0.44, 
1.10} for speech. We then compared rating score deviation of paired original and de-identified videos and 
found high consistency between tremor and speech ratings: both showed symmetric deviation distribution 
and mean deviation close to 0 ( −0.03 and −0.07 ). 98% tremor score deviation was less than or equal to 1, and 
90% was identical. 99% of speech deviation was less than or equal to 1, and 68% was identical (see Fig. 5C, D). 
Hypomimia scores changed more than the other two items: mean deviation was −0.23 , indicating that facial 
expression features slightly shifted after de-identification. Nevertheless, rating of hypomimia still showed high 
consistency with 97% deviations ≤ 1.

Critical facial behaviors were invariant
One of key symptoms of PD hypomimia is decreased blinking; and facial tremor of PD is characterized by the 4 
to 6 Hz tremor at lip and jaw. Blink was defined as closing eyes (small EAR values) with a reasonable duration. We 
observed that modifying facial identity also altered eye outlines and led to the baseline of EAR value to change, 
which could consequently shift EAR threshold for blink detection (see Fig. 6C). To eliminate the shifting affects, 
we sampled various EAR thresholds to calculate blink invariability (overlap of detected blinks between original 
and de-identified images). Figure 6B shows that at threshold 0.243, the best performance yielded precision of 
0.94 and recall of 0.81. The false negatives and false positives of blink detection might come from differences of 
EAR values, whose slight deviation near threshold could drastically change detection results. The de-identified 
faces had precision higher than recall, indicating that they had smaller eye blink movement than the original 
faces, which might explain the increased hypomimia scores.

For lip/jaw rest tremor, spectrograms of lower lip location showed typical PD tremor at 4 to 6 Hz and were 
highly similar in frequency and intensity between original/de-identified data (see Fig. 6D).

Figure 4.   Face re-identification. We recruited participants to manually evaluate FaceMotionPreserve ’s 
de-identification performance. We also calculated the identity similarity between the de-identified faces and the 
original/source faces using the Arcface model. (A) Design of face re-identification experiment. (B) Results from 
seven human judges. (C) Distribution of identity similarity between de-identified and original face pairs, and 
de-identified and source face pairs. The red horizontal line indicates face verification threshold..
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General facial activity dynamics are invariant
The coherence of facial dynamics was evaluated by the Pearson correlation coefficient r of original/de-identified 
faces. We found that the y components had an average r = 0.736 and x components had an average r = 0.580 
(see Fig. 6E). The difference in x and y components indicated that facial movements were directional, and we 
applied canonical correlation analysis (CCA) on distance vector sequences to find the best direction. The CCA 
vectors had an average r = 0.844 , indicating that facial dynamics were strongly correlated. Higher CCA vector 
correlation (>0.9) was observed among facial parts that had relative movements in upper-lower mouth, lower 
mouth and eye, lower mouth and nose, upper eye and nose, upper eye and mouth.

FaceMotionPreserve for body movement preservation
Body pose estimation systems47 are increasingly aiding movement assessments, but they usually have large 
receptive fields that might be affected by facial changes. Hence, we validated body keypoint invariability by 
comparing keypoints distances between FaceMotionPreserve or traditionally de-identified (black masked, 
blurred, pixelization) videos and their original videos. Identical keypoint locations have OKS = 1 and OKS 
decays exponentially with distance. Almost all images after FaceMotionPreserve processing had nearly invariant 
keypoints: over 97% video frames had OKS larger than 0.95 and over 85% had OKS larger than 0.995, while 
traditional de-identification methods had significant keypoint changes not only in face but also in limb and torso. 
Masking, blurring and pixelization on facial area removed nose and eye information and greatly influenced ear 

Figure 5.   Neurologist evaluation experiments and results. Three experienced neurologists rated face-
related MDS-UPDRS scores on 76 PD patients’ original/de-identified videos. (A) We shuffled and renamed 
the original/de-identified videos for evaluation and analyzed rating scores. (B) Rating score distribution of 
original (left bars) and de-identified (right bars) videos. Scores were included if both the paired original and 
de-identified ratings were valid. (C) Summary of score deviation. (D) Distribution of hypomimia/tremor/speech 
rating score deviation. Scores were highly identical, and most scores changed ≤ 1.
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detection, leaving much fewer images (mask: 2.9%, blur: 42.0%, pixelization: 75.7%) with OKS larger than 0.95. 
FaceMotionPreserve induced smaller changes to keypoint detection and minimized information loss for body 
movement analysis, which is import in further integration of AI-powered system.

Model comparison
To locate dominant factors of model performance, we compared three model formations: one ablated model, 
trained without mEBAL blink data and landmark similarity block (d−l−); one trained without mEBAL blink 
data but with landmark similarity block (d−l+) and one trained with both mEBAL blink data and landmark 
similarity block (d+l+, FaceMotionPreserve model). Without extra blink data, the d−l+ model had slight inferior 
correlation on general facial dynamics with lower Pearson’s r ( rx = 0.564 , ry = 0.738 , rCCA = 0.840 ) compared 
to the d+l+ ( rx = 0.580 , ry = 0.736 , rCCA = 0.844 ) (Fig. 7A). The EAR curves (Fig. 7B–D) demonstrated that 
d−l+ had incomplete eye closing compared to d+l+ (mean EAR deviation 0.032 and 0.027, respectively), while 
maintaining overall blink consistency (precision 0.92 and recall 0.85 compared to d+l+’s precision 0.94 and recall 
0.81). The d−l− model further removed landmark similarity block, which reduced facial correlation ( rx = 0.536 , 
ry = 0.712 , rCCA = 0.827 ) and worsened blink tracking (Fig. 7C, precision and recall dropped from 0.92 and 0.85 
for d−l+ model to 0.77 and 0.62 for d−l− model). Rest tremor for lip/jaw at frequency of 4 to 6 Hz was better 
preserved by d+l+, with smaller average spectrogram power deviation (0.003) from the original compared to 
d−l− (0.106) and d−l+ (−0.078) (Fig. 7E). In short, the landmark similarity module substantially improved facial 
dynamical invariability and extra blink data considerably improved blink reconstruction.

Figure 6.   Facial dynamics invariability. We measured facial movements and compared the differences before/
after FaceMotionPreserve processing. (A) Illustration of facial landmarks. (B) Precision–recall curve for 
blink detection. (C) EAR and detected blinks of a patient before/after FaceMotionPreserve . The de-identified 
EAR values were temporally similar to the original ones with simultaneous blinks. (D) Mouth movement 
spectrogram of two patients that all neurologists diagnosed with tremor. Left: a patient whose original and 
de-identified video both had mean tremor score 2.3. Right: a patient whose original and de-identified video both 
had mean tremor score 2.0. The upper graphs are original spectrograms and the bottom graphs are de-identified 
spectrograms. The graphs have peak power in 4–6 Hz and show high similarity between the paired data. (E) 
Mean correlation of facial landmark pairs. Row i and column j depicts landmark pair (i,j) distance vector’s 
Pearson correlation coefficient before/after FaceMotionPreserve .
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We compared FaceMotionPreserve with other deepfake methods (Faceswap, a subject-specific auto-encoder 
model, and MegaFS, a subject-agnostic GAN model) on facial movement preservation performance. We 
conducted the evaluation on PD dataset II. Both FaceMotionPreserve and Faceswap consistently converted 
original faces to de-identified faces, whilst MegaFS sometimes encountered failure due to its noise-sensitive 
generator. MegaFS’s occasional failures caused apparent difficulty in facial landmark detection and disruption 
in both general facial dynamics correlation (lowest Pearson’s r among three models: rx = 0.197 , ry = 0.252 , 
rCCA = 0.423 , Fig. 7F) and blink detection (largest EAR deviation 1.346 and lowest precision 0.35 and recall 
0.66, Fig. 7H). FaceMotionPreserve demonstrated superior performance in facial dynamics preservation 
( rx = 0.408,ry = 0.503,rCCA = 0.618 ) compared to Faceswap ( rx = 0.383 , ry = 0.476 , rCCA = 0.601 ) and MegaFA 
((rx = 0.197 , ry = 0.252 , rCCA = 0.423 ) as shown in Fig. 7F. Although FaceMotionPreserve had higher EAR 
deviation (0.031) than Faceswap (0.028), it followed blinks better and captured intermediate blink status (Fig. 7G 
&I). FaceMotionPreserve had precision of 0.89 and recall of 0.84, which is more balanced. Faceswap had low 
precision of 0.65 and much higher recall of 0.92 due to too many false blinks from de-identified faces, indicating 

Figure 7.   Model comparison. We qualitatively and quantitatively compared model performance under different 
settings and with other deepfake models. Original: original data; d−l−: output from the ablated model trained 
without mEBAL blink data and without landmark similarity block; d−l+: output from the model trained 
without mEBAL blink data, with landmark similarity block; d+l+: output from FaceMotionPreserve model 
trained with blink data and landmark similarity block. (A) Pearson and CCA correlation coefficients of facial 
dynamics between original/de-identified pairs. Augmented training data and landmark similarity module both 
helped preserve facial dynamics. (B) Video frames of a patient’s blink. The d+l+ model output best matched the 
original. (C) Comparison of blink behaviors. The d−l+ improved blink detection accuracy and the d+l+ further 
improved eye closing completeness by lower eye blink threshold and smaller EAR deviation. (D) EAR curves 
of a patient. (E) Comparison of tremor spectrogram deviation of a patient. From left to right: d−l−, d−l+, d+l+ 
with mean deviation to the original spectrogram 0.106, −0.078 , 0.003 in 4–6 Hz, respectively. (F–I) Comparison 
to Faceswap and MegaFS..
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unsteadiness in eye movement reconstruction. Thus, FaceMotionPreserve outperformed Faceswap and MegaFS 
on facial movement preservation in general.

Discussion
Telemedicine delivers more convenient and accessible service via connecting patients and healthcare providers 
remotely. It frees the requirements of onsite visits at clinics, saves time and financial expenses, and promotes 
treatment compliance, with particular benefits to patients with movement disorders or cognitive impairments50. 
The privacy concerns on video streams could discourage patients to get involved. In this work, we developed 
FaceMotionPreserve , a generative model-base approach, to preserve medical information in de-identified patient 
videos for telemedicine. FaceMotionPreserve disentangles facial behavior from facial identity and preserves 
facial movements.

We validated FaceMotionPreserve for de-identification and built a comprehensive analysis framework to 
evaluate its capability of diagnostic information preservation. Our analyses revealed that the detected features 
(blinks, tremor, general facial movement features and body keypoints) had high similarity before and after 
de-identification, and the clinicians’ ratings were largely consistent. Compared to other deepfake models, 
FaceMotionPreserve is more robust on generating faces and preserving facial movements. Ablation studies 
demonstrated improved facial movement correlation with our novel landmark similarity module and proposed 
loss function, and improved eye movement reconstruction with augmented and blink-balanced training dataset. 
FaceMotionPreserve reconstructed natural face images with rich information that could retain data usage for 
future use. We also deployed the approach into a real-time face identity changing system, which could easily be 
integrated to telemedicine software as a de-identification module.

Besides data usability, we also carefully validated FaceMotionPreserve for privacy protection. We examined 
human participants’ perception of de-identified faces, which proved to be recognized more as the source face 
other than the original face. Although 1.7% identifications mapped de-identified face to the original face, it’s 
worth noting that the choices were made within very limited options (six faces) and the re-identification rate 
was far below chance level. In real world, human identities are enormous and the original identity hides far from 
the vast face collection span around the de-identified face, leaving very little chance to re-identify the original 
face. Worries might arise if powerful automatic face recognition tools could unearth the hidden original identity 
and threaten privacy. Our analysis revealed that the representative face recognition tool couldn’t match the 
de-identified face back to the original one, thereby assuring privacy protection against machine recognition 
attacks.

Facial identity is the most direct clue of personal identity and is one of the most sensitive privacy information, 
but eliminating facial identity alone can not guarantee absolute anonymous. Besides face, people might be 
recognized by gait, voice and other factors. However, it is unpractical to do thorough anonymization: some 
identifiers (like gait feature) are the core information to be evaluated under clinical protocol. There is a trade-off 
between information completeness and strength of privacy protection. Since other face obfuscation methods 
like blurring has been widely accepted, we believe FaceMotionPreserve offers adequate protection of privacy.

Our model has limitation on static image frame inputs: each single frame is a static snapshot of face, which 
might impair dynamical information preservation. However, it is interesting that the dynamical movements are 
kept by this image-based model. It suggests that FaceMotionPreserve generates rather identical facial expressions 
from still faces so that the resulting sequence still preserves facial dynamics. Video-based models may work 
better in preserving dynamical information in video-based telemedicine and might help resolve the problem of 
slightly higher hypomimia score. Another problem is heavy computing budget for running FaceMotionPreserve 
on real-time. Although FaceMotionPreserve could run on personal laptops once trained, it requires fairly intense 
computing resource for training and could not run fluently on some mobile phones. As mobile devices become 
more prevalent, it is crucial to empower users to secure identity information at their own hands. Hence, future 
work might compress the model to run on-device while retaining performance. FaceMotionPreserve mainly 
focuses on the preservation of facial movements, while some other facial symptoms caused by conditions such 
as jaundice and dermatologic lesions are not included. Future work could explore the potential of the model 
for retaining non-movement features that are not privacy-sensitive. Lastly, FaceMotionPreserve was tested only 
on patients with Parkinson’s disease and lacks validation on other facial movement disorders. We believe that 
the model is not confined to PD, because arbitrary facial movements could be decomposed into linear and 
non-linear combinations of facial landmark movements, which have been shown highly similar before and 
after de-identification. Yet adapting FaceMotionPreserve for other conditions needs a closer look on different 
characteristic symptoms and might require extra informative data, adaptive loss or model regularization.

FaceMotionPreserve provides powerful privacy protection for telemedicine that preserves rich medical 
information from faces. Changing facial identity provides strong impression of privacy protection that encourages 
data acquisition from participants, and paves a new way for secured telemedicine. In the future, more efficient 
and effective methods that adopt lighter model and absorb temporal information could further improve privacy 
protection in telemedicine.

Data availability
The datasets used and analyzed during the current study and the FaceMotionPreserve model are available on 
reasonable request.
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