
ARTICLE OPEN

DEPDC1 as a metabolic target regulates glycolysis in renal cell
carcinoma through AKT/mTOR/HIF1α pathway
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Renal cell carcinoma (RCC) is considered a “metabolic disease” characterized by elevated glycolysis in patients with advanced RCC.
Tyrosine kinase inhibitor (TKI) therapy is currently an important treatment option for advanced RCC, but drug resistance may
develop in some patients. Combining TKI with targeted metabolic therapy may provide a more effective approach for patients with
advanced RCC. An analysis of 14 RCC patients (including three needle biopsy samples with TKI resistance) revealed by sing-cell RNA
sequencing (scRNA-seq) that glycolysis played a crucial role in poor prognosis and drug resistance in RCC. TCGA-KIRC and glycolysis
gene set analysis identified DEPDC1 as a target associated with malignant progression and drug resistance in KIRC. Subsequent
experiments demonstrated that DEPDC1 promoted malignant progression and glycolysis of RCC, and knockdown DEPDC1 could
reverse TKI resistance in RCC cell lines. Bulk RNA sequencing (RNA-seq) and non-targeted metabolomics sequencing suggested that
DEPDC1 may regulate RCC glycolysis via AKT/mTOR/HIF1α pathway, a finding supported by protein-level analysis. Clinical tissue
samples from 98 RCC patients demonstrated that DEPDC1 was associated with poor prognosis and predicted RCC metastasis. In
conclusion, this multi-omics analysis suggests that DEPDC1 could serve as a novel target for TKI combined with targeted metabolic
therapy in advanced RCC patients with TKI resistance.
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INTRODUCTION
By 2021, while overall cancer death rates are declining, progress in
cancer prevention is lagging, with rates continuing to increase for
six of the top 10 cancers, including renal cell carcinoma, which
continues to increase at a rate of 1.5% per year [1]. Renal cell
carcinoma (RCC) constitutes around 90% of all renal carcinoma
cases [2]. Approximately one-third of renal cell carcinoma patients
were already diagnosed with advanced metastatic renal cell
carcinoma at the initial diagnosis [3]. Even though some early-
stage patients underwent surgical treatment, 30–40% of patients
still developed metastasis or postoperative recurrences [4].
Currently, tyrosine kinase inhibitor (TKI) has served as the first-
line therapy for advanced RCC, demonstrating substantial
enhancements in overall survival (OS) and progression-free
survival (PFS) in patients with advanced RCC [5]. Nonetheless,
patients undergoing TKI therapy are susceptible to developing TKI
resistance, thus diminishing the therapeutic efficacy [5]. Hence,
there is an urgent need to investigate novel treatment modalities
to counter TKI resistance and enhance the therapeutic effective-
ness and improve the prognosis of patients with advanced RCC.
Given the presence of unique von Hippel-Lindau (VHL) gene

mutation in kidney tumors causing various metabolic anomalies,
such as glucose metabolism, lipid metabolism, and amino acid

metabolism, RCC is commonly referred to as a “metabolic disease”
[6]. Current research demonstrates that “metabolism” is a key
characteristic of cancer, and all histologies of RCC display increases
in metabolic activity with disease progression. In particular, one
common feature is the invocation of aerobic glycolysis, known as
the “Warburg effect” [7, 8]. Mammalian target of rapamycin
(mTOR) stands as the primary metabolic target for treating RCC,
knowing that multiple studies have illustrated its role in regulating
HIF1α translation and glycolytic activity [6]. Nonetheless, given the
propensity of advanced RCC patients to develop resistance to
mTOR inhibitors and TKIs, exploration of new targets in glucose
metabolism within RCC to counter drug resistance in this patient
population represents a promising avenue for future research.
Recently, a ccRCC proteomic study reported that the PI3K/AKT/

mTOR pathway was the resistance mechanism of sunitinib treatment
in ccRCC patients, and the Warburg effect derived from VHL
mutations can further enhance TKI resistance in ccRCC [9]. In the
present study, we identified glycolysis as a key factor contributing to
poor prognosis and drug resistance in RCC by using scRNA-seq
analysis, and found that the glycolysis-related gene DEP domain
containing 1 (DEPDC1) played a role in malignant progression and
drug resistance of RCC, and may regulate RCC glycolysis through AKT/
mTOR/HIF1α pathway. However, in previous studies, DEPDC1 has
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been little studied in tumor glycolysis. As only a glycolytic-related
gene, DEPDC1 can regulate the malignant progression of oral
squamous cell carcinoma through the WNT/β-Catenin pathway, and
as one of the prognostic risk predictors of hepatocellular carcinoma
[10, 11]. In our study, DEPDC1 was identified as a promising new
therapeutic target for patients with advanced RCC, especially when it
was combined with TKIs and targeted metabolism therapies.

MATERIALS AND METHODS
Patients and sample collection
All experimental procedures were approved by the ethical review board of
Xinhua Hospital (Shanghai, China), and written informed consent was
obtained from all included patients. Fourteen scRNA-seq samples were

obtained from surgical resection tissues or needle biopsy tissues of
patients with pathologically confirmed RCC. Data details are shown in
Table 1. The two tissue microarrays (TMA30, n= 28 and TMA2021, n= 70)
were obtained from 98 patients from Xinhua Hospital. The clinical
information is detailed in Table 2, S1 and S2. TCGA sample data came
from UCSC Xena (https://xena.ucsc.edu/), including RNA-seq, somatic
mutation and clinical data. The clinical information is detailed in Table S3.

scRNA-seq and data processing
Single-cell suspension and droplet sequencing was performed according to
the manufacturer’s protocol and our previous work [12]. Data quality control
was performed using Seurat (version 3.0.1) [13]. Markers for each major cell
cluster were identified by the “FindAllMarker” function. Cell type markers were
obtained from CellMarker website [14] and previous studies [15, 16].

InferCNV and cell malignancy evaluation
Copy number variations (CNVs) were investigated by scRNA-seq analysis
using pipeline parameters of the InferCNV package. Each cell was scored
based on the extent of the CNV signal, which was defined according to the
previous work [12, 17]. Finally, cells with CNV signal greater than 0.05 and
CNV correlation coefficient greater than 0.5 were defined as malignant
cells, and cells lower than these two thresholds were defined as non-
malignant cells.

High-dimensional weighted correlation network analysis
(hdWGCNA)
The scRNA-seq data obtained were analyzed by hdWGCNA. Genes that
were expressed in at least 5% cells were selected to construct the
hdWGCNA object, which was then transformed into a Metacells object. A
co-expression network was constructed for subsequent analysis (soft
threshold = 4, max Block Size = 30, min Module Size = 30). All standard
downstream analyses were conducted according to the official pipeline,
which can be found at https://smorabit.github.io/hdWGCNA/articles/
basic_tutorial.html (accessed on 1 January 2023) [18]. First, soft threshold
calculation was performed to obtain the optimal soft threshold, and then
the similarity matrix was obtained by calculating the Pearson correlation
coefficient between genes. Then, the correlation between different
modules and different clinical stages was calculated by the harmony-
corrected module signature genes (hME), and the correlation between
genes within the module and the module itself was calculated by the
membership module (kME).

Table 1. Clinical information of RCC patients in scRNA-seq analysis.

Patient ID Gender Age Grade Stage Treatment

C1 Female 62 1 III Naive

C2 Male 46 2 I Naive

C3 Female 58 2 I Naive

C4 Male 65 3 I Naive

C5 Male 59 3 IV Naive

C6 Male 70 2 II Naive

C7 Female 71 2 II Naive

C8 Female 49 3 III Naive

C9 Male 65 3 IV Naive

C10 Female 71 2 IV Naive

C11 Female 49 3 III Naive

C12 Male 63 3 IV Sunitinib, non-
response

C13 Male 57 4 IV Pazopanib,
non-response

C14 Male 39 4 IV Pazopanib,
non-response

Table 2. Clinical characteristics of patients according to DEPDC1 expression in TMA (n= 98).

Characteristics DEPDC1 in TMA Sum
(n= 98)

P value

High expression
(n= 36)

Low expression
(n= 62)

Diagnosis age 0.0088

<60 14 41 55

≥60 22 21 43

Gender 0.2813

Male 23 46 69

Female 13 16 29

Fuhrman grade 0.0037

G1-2 25 57 82

G3-4 11 5 16

TNM stage 0.0019

I–II 29 61 90

III–IV 7 1 8

Any metastases or recurrence <0.0001

Yes 21 6 27

No 15 56 71

Overall survival <0.0001

Dead 22 9 31

Alive 14 53 67
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Gene set enrichment analysis (GSEA)
Malignant cells in scRNA-seq, TCGA samples, and RNA-seq samples were
divided into DEPDC1high group and DEPDC1low group. GSEA was used to
determine which gene sets were enriched in subgroup comparisons. Only
a p value of a gene less 0.05 was considered as the target of interest. The
annotation gene sets included GO_BP, GO_MF, GO_CC, KEGG, HALLMARK,
REACTOME and WikiPathways from Molecular Signatures Database
(MSigDB) [19].

Public database analysis
Two hundred glycolysis genes were obtained from MSigDB in Table S4 [19].
Using bioinformatics, a Venn diagram was created [20]. The mRNA expression
of DEPDC1 in pan-cancer was obtained from Timer 2.0 [21]. OS of survival
curves for DEPDC1 was obtained by Kaplan-Meier Plotter [22]. OS and Disease-
free survival (DFS) of survival curve for DEPDC1, differential expression of key
glycolysis enzymes in KIRC, and the correlation between key glycolysis
enzymes and DEPDC1 were obtained through GEPIA2 [23]. The half inhibitory
concentration (IC50) of DEPDC1 against sunitinib and pazopanib was obtained
from GDSC database (https://www.cancerrxgene.org/). Expression levels of
DEPDC1 between tumors and normal tissues, as well as different nodal
metastasis statuses, tumor grades, and cancer stages in KIRC, were retrieved
using UALCAN [24].

Cell culture
Human renal tubular epithelial cells (HK-2), 786-O, 769-P, OS-RC-2, A498
and ACHN were obtained from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). Cells were cultured with 1640 or DMEM+ 10%
fetal bovine serum (FBS)+ 1% penicillin at 37°C and 5% CO2.
Sunitinib-resistant 786-O (786-O-R) cell lines were continuously exposed

to increasing doses of sunitinib (MCE, HY-10255A) for about 12 weeks. The
starting dose was 5 µM for 4 weeks, which was increased to 10 µM for
additional 4 weeks, to 15 µM for last 4 weeks [25]. 786-O-R cell lines were
finally cultured in RPMI-1640 supplemented with 10% (v/v) FBS and 10 µM
Sunitinib [26].

Lentiviral gene tool establishment and gene knockdown
The overexpression or shRNA lentivirus DEPDC1 (OE-DEPDC1 and sh-
DEPDC1) was synthesized by OBiO technology (Shanghai, China) and the
siRNA of DEPDC1 or negative control siRNA was synthesized by IBSBIO
(Shanghai, China) using the sequences (Table S5). The OS-RC-2, 786-O and
786-O-R cell lines were constructed using lentivirus to stably knock down
DEPDC1. The A498 and ACHN cell lines were constructed using lentivirus to
stably overexpress DEPDC1. Lipofectamine 3000 reagent (L3000015,
Invitrogen) was used for siRNA transfection according to the manufac-
turer’s protocol.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted using TRIZOL (Invitrogen, USA) and reversed
transcribed into cDNA. Gene transcripts were quantitated by SYBR Green
Real-Time PCR Master Mix (QPK201, Japan), and then normalized to the
β-actin expression. The sequences of primers are shown in Table S6.

Western blot
Cell samples were lysed in RIPA buffer (Beyotime, China) mixed with the
loading buffer. The obtained proteins were separated on SDS/PAGE gel
and then transferred into PVDF membranes. Proteins were incubated
with specific primary antibodies and proper secondary antibodies. The
blots were detected by ECL system. The following antibodies were used:
anti-DEPDC1 (Abcepta, AP5428a), anti-β-actin (ABclonal, AC026), anti-
Phospho-AKT(Ser473) (Cell Signaling Technology, 4060), anti-AKT(pan)
(C67E7) (Cell Signaling Technology, 4691), anti-Phospho-mTOR (Ser2448)
(Cell Signaling Technology, 5536), anti-mTOR (7C10) (Cell Signaling
Technology, 2983), anti-HIF1α (proteintech, 20960), anti-HK-2 (protein-
tech, 22029), anti-PKM2 (proteintech, 15822), and anti-LDHA (protein-
tech, 19987).

Cell function assays
For cell proliferation assessment, the proliferation of RCC cells under
specified conditions was detected with CCK8 kit (Dojindo Kumamoto,
Japan) according to the manufacturer’s instructions. The media were
replaced with fresh ones before testing. 10 μl CCK-8 was added to each
well, and the samples were cultured at 37 °C for 2 h. OD values were

measured at 450 nm absorbance using a microplate reader. For migration
and invasion experiments, transwell chambers (Corning, USA) were used
without or with Matrigel (BD Biosciences, USA). Cells were seeded in the
upper chamber with medium lacking FBS, while the lower chamber was
plated with medium containing FBS. After 24-h seeding, cells in the lower
chamber were fixed using 4% paraformaldehyde Fix Solution (Sangon
Biotech, Shanghai), stained with crystal violet (Sangon Biotech, Shanghai),
and then scanned at ×200 magnification.

Glycolytic metabolite assays
Cells were seeded in a 6-well plate and cultured for 24 h. Then the medium
was collected and tested for glucose, lactate, and pyruvate using the
glucose assay kit, lactate assay kit, and pyruvate assay kit (Nanjing Jian
Cheng Bioengineering Institute, China) following the manufacturer’s
protocols.

Animal experiments
All animal experimental procedures were approved by Xinhua hospital
Animal Care and Use Committee. Approximately 5 × 106 OE-DEPDC1 A498
cells or control A498 cells were injected subcutaneously into the upper
right hind leg of the mice. Body weight and tumor size were measured
weekly, and at the 7th week, tumors were removed, weighed and
measured for volume. The tissue was then fixed in a 10% buffered formalin
solution for subsequent immunohistochemical (IHC) analysis.

Bulk RNA sequencing (RNA-seq)
One milliliter TRIzol was separately added to 5 × 106 786-O cells (sh-NC or
sh-DEPDC1) to isolate total RNA. Samples were then immediately stored on
dry ice. Subsequently, the samples were subjected to RNA quality control
testing and sequenced using the Illumina NovaSeq 6000 sequencer from
Cosmos Wisdom (Hangzhou, China). Data obtained from sequencing were
analyzed using R software.

Non-targeted metabolomics sequencing
1 × 107 786-O (sh-NC and sh-DEPDC1) and 1 × 107 786-O-R (sh-NC and sh-
DEPDC1) cells were prepared, washed twice with PBS buffer, transferred to
a 1.5 ml EP tube, soaked in liquid nitrogen for ≥ 5min to quench, and
stored at −80 °C for later use. Then sequencing was performed according
to the method of Cosmos Wisdom (Hangzhou, China), and the sequencing
data were analyzed using R software.

IHC and H-score
IHC was conducted following the previous protocol [12], using rabbit anti-
DEPDC1 (Abcepta, AP5428a) for staining. The IHC results were evaluated
using H-score. The scoring system categorized results as negative, low
positive, positive, and high positive. The H-score = 0 * the percentage of
negative cell nucleus + 1 * the percentage of low-positive cell nucleus
+ 2 * the percentage of positive cell nucleus + 3 * the percentage of high-
positive cell nucleus, which ranges from 0 to 300 [12].

Statistical analysis
Statistical differences between numerical data (mean ± SD) were calculated
by Student’s t test (two-tailed). Categorical variables were analyzed using
the chi-square test. Univariate Cox regression analysis was performed
using SPSS 22.0 (IBM corporation). Survival curves were drawn using
GraphPad Prism 9.5 (GraphPad Software, Inc.), and receiver operating
characteristic (ROC) analysis was performed to obtain the critical value of
H-score and AUC. Nomogram analysis was conducted by “foreign” (version
0.8–78) and “rms” (version 6.0.1) packages for establishing the risk
prediction model. All experiments were performed independently at least
three times.

RESULTS
scRNA-seq identifies glycolysis as a key module leading to
poor prognosis and drug resistance in RCC
To investigate the relationship between clinical malignancy and
glycolysis in RCC, scRNA-seq analysis was conducted on primary
tumors from 14 RCC patients, including 3 needle biopsy samples
with TKI resistance (Table 1). Quality control measures involved
analyzing 87,770 cells from the 14 patients, which were
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clustered into 7 major cell types, involving 33,557 malignant
cells, renal tubular cells, endothelial cells, fibroblasts, T cells and
NK cells, B cells and plasma cells, and myeloid cells (Table S7).
The cell composition ratio for each patient is presented in Fig.
1a. Using the Test Soft Powers function in the hdWGCNA
package, different soft thresholds were tested to find a suitable
value that gives the constructed co-expression network a scale-
free network structure. Ultimately, 4 was selected as the optimal
soft threshold, making the topology of the network most
consistent with the actual biological relationships (Fig. S1a).
Subsequently, we explored the relationships between gene
modules in the co-expression network by measuring gene
expression similarity, calculating the topological overlap matrix,
and performing hierarchical clustering analysis. The hierarchical
structure of the co-expression network was visualized using a
dendrogram (Fig. 1b). Furthermore, correlation analysis demon-
strated the strength of correlations between each module and
all other modules (Fig. 1c). The module characteristic values at
different clinical stages were determined via the harmony-
corrected module signature genes (hME), revealing an increase
only in the hME value of the M2 module with clinical stage (Figs.
1d, S1b and Table S8). Next, we obtained genes with
representative expression patterns in each module (module
eigengenes) and calculated the correlation of each gene with
the module eigenvector (module connectivity, kME). We
visualized the relationships between genes within modules
using a connectivity plot (Figs. 1e, S1c and Table S9). Further
analysis involved GSEA functional enrichment of all genes within
the M2 module, indicating a positive correlation with glycolysis,
mTORC1 signaling, HIF1α targeting, and other pathways, while
showing a negative correlation with the citric acid (TCA) cycle
and respiratory electron transport (Fig. 1f, g). These findings
suggest that glycolysis played a critical role in driving poor
prognosis and drug resistance in RCC.

Glycolysis-related gene DEPDC1 is associated with malignant
progression and drug resistance in KIRC
Knowing that glycolysis played a crucial role in the poor
prognosis and drug resistance in RCC, we conducted further
investigations into the connection between RCC and glycolysis.
Through a differential expression analysis of TCGA-KIRC, we
identified 4687 upregulated differentially expressed genes
(DEGs) and 4207 down-regulated DEGs (Fig. 2a). Subsequently,
we focused on identifying glycolysis-related biomarkers that
drive RCC progression by intersecting the 4687 upregulated
DEGs with the glycolysis gene set. As a result, 44 glycolysis-
related genes (GRGs) were identified (Fig. 2b and Table S4). The
univariate Cox regression analysis based on the clinical
information highlighted the gene DEPDC1 as having the highest
risk ratio (HR= 3.023, p < 0.001) (Fig. 2c). The comprehensive
results of univariate Cox regression analysis are shown in Fig.
S2a. Timer 2.0 database analysis revealed that DEPDC1 was
expressed at higher levels in tumor tissues compared to normal
tissues, particularly in KIRC (Fig. 2d). Furthermore, high DEPDC1
expression was linked to poor prognosis in KIRC patients (Fig.
2e), a finding corroborated by the GEPIA2 database (Fig. S2b, c).
Exploring the relationship between DEPDC1 expression and TKIs
for first-line treatment of advanced RCC using the Genomics of
GDSC database demonstrated that the sensitivity to sunitinib
and pazopanib was enhanced in the low DEPDC1 expression
group, as evidenced by lower IC50 of response compared to the
high-expression group (Fig. 2f, g). Additionally, the UALCAN
database revealed that high DEPDC1 expression correlated with
nodal metastasis, high tumor grade, and advanced cancer stage
in KIRC patients (Fig. 2h–k). To investigate the link between the
glycolysis-related gene DEPDC1 and glycolysis in RCC, we
categorized all malignant cells from Fig. 1a and patients from
TCGA-KIRC into high and low groups based on DEPDC1

expression levels. GSEA revealed a positive correlation between
high DEPDC1 expression and glycolysis, as well as a negative
correlation with oxidative phosphorylation (Fig. 2l, m). Finally,
we assessed somatic alterations in TCGA patients based on the
mean expression of DEPDC1 (high group, n= 160; low group,
n= 160). Genetic changes of previous studies on RCC are shown
in Fig. 2n. The BAP1, MUC16 and MTOR were presented
differences in DEPDC1 high and low groups (Fig. 2n). These
results suggest that DEPDC1, a glycolysis-related gene could
serve as a prognostic marker for poor prognosis and aggressive
disease progression in KIRC patients, potentially influencing
drug resistance and enhancing glycolysis in RCC.

DEPDC1 enhances the proliferation, migration, invasion, and
subcutaneous tumor formation ability of RCC cells
To explore the effect of DEPDC1 on the malignant biological
behavior of RCC, we used HK-2 as a control group, and found
that DEPDC1 expression was generally higher in RCC cells,
particularly in OS-RC-2 and 786-O cells, while A498 and ACHN
cells exhibited relatively low DEPDC1 expression levels as
determined by qRT-PCR and western blot (Fig. 3a, b). DEPDC1
knockdown cells (OS-RC-2 and 786-O) and DEPDC1 overexpres-
sion cells (A498 and ACHN) were constructed and detected for
efficiency using qRT-PCR and western blot (Figs. 3c, d and S2d,
e). The effect of DEPDC1 expression on RCC cell proliferation and
invasion was tested through CCK-8 cell proliferation assay,
transwell migration and invasion assays. The results showed that
the proliferation, migration and invasion abilities of RCC cells in
the DEPDC1 knockdown group were significantly reduced (Figs.
3e, f and S2f, g), while those in the DEPDC1 overexpression
group were significantly increased (Fig. 3g–l). We then
constructed a nude mouse subcutaneous tumor model using
A498 cells (Vector and OE-DEPDC1) to explore the effect of
overexpressing DEPDC1 on RCC cell growth in vivo. The results
demonstrated that the subcutaneous tumors in OE-DEPDC1
group were larger with a faster growth rate as compared with
those in the Vector group. There was no significant change in
body weight of the nude mice between the two groups. IHC
staining revealed higher expression of DEPDC1 in the tumor cell
nucleus of the OE-DEPDC1 group than that in the Vector group
(Fig. 3m–q). In summary, these results show that DEPDC1
promoted the proliferation, migration, invasion and subcuta-
neous tumor formation ability of RCC cells.

DEPDC1 is correlated with drug resistance in RCC and
enhances glycolysis
To investigate the potential reversal of RCC resistance to
sunitinib by knocking down DEPDC1, sunitinib-resistant 786-O
cell (786-O-R) was established by using CCK8 assays (Fig. 4a).
Western blot analysis revealed elevated DEPDC1 protein levels in
786-O-R cells compared to other RCC cells and HK-2 cell (Fig. 4b).
DEPDC1 knockdown in 786-O-R cells was confirmed by qRT-PCR
and western blot (Figs. 4c and S2h). Subsequent CCK8 assays
demonstrated that DEPDC1 knockdown inhibited the prolifera-
tion of 786-O-R cells compared with si-NC group (Fig. 4d).
Transwell assays further showed reduced migration and invasion
in 786-O-R cells with DEPDC1 knockdown (si-DEPDC1#1 and si-
DEPDC1#2) compared to si-NC group (Fig. 4e, f). Stable DEPDC1
knockdown in OS-RC-2, 786-O, and 786-O-R cells was validated
using qRT-PCR and western blot (Figs. 4g, h and S2i, j).
Additionally, we examined the metabolite content in the cell
culture supernatant. Glucose consumption, pyruvate production,
and lactate production were measured in DEPDC1 knockdown or
overexpression RCC cells, revealing that the glycolytic activity
was reduced after DEPDC1 knockdown, and increased after
DEPDC1 overexpression (Fig. 4i–n). These findings collectively
suggest that DEPDC1 played a role in RCC TKI resistance and
glycolysis promotion.
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Fig. 1 scRNA-seq discovered a key module for poor prognosis and drug resistance in RCC. a UMAP plot showing all cells and composition
proportions of 14 patients, including malignant, tubules, endothelial, fibroblasts, T&NK, B&Plasma, and Myelold cells. b Dendrogram
visualizing the hierarchical structure of the co-expression network, where each module color represents a distinct module. c Inter-module
correlation analysis, showing the strength of correlation between each module and all other modules. d hME showing the module
characteristic values of gene modules in different clinical stages. e kME showing the correlation between core genes and gene modules.
f Hallmark enrichment analysis showing a positive correlation of M2 module genes with glycolysis, mTORC1 signaling and other related
pathways. g Reactome enrichment analysis showing a positive correlation of M2 module genes with glycolysis, glucose metabolism and other
related pathways, and a negative correlation with TCA cycle. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 2 Glycolysis-related gene DEPDC1 is associated with malignant progression and drug resistance in KIRC. a Heat map demonstrating
the results of the differential expression analyses using the TCGA-KIRC dataset, including 4687 upregulated DEGs and 4207 down-regulated
DEGs. b Venn diagram illustrating the intersection of 4687 upregulated DEGs and 200 GRGs. c Univariate Cox regression analysis of DEPDC1
and clinical information. d Timer 2.0 database demonstrating the expression level of DEPDC1 in pan-cancer. e Analysis of the K–M survival
curve of DEPDC1 high and low groups in TCGA-KIRC (n= 530). f, g The GDSC database provides IC50 predictions for sunitinib and pazopanib
in Endo_p high and low risk score groups. h–k UALCAN database offering insights into the expression levels of DEPDC1 in tumors and normal
tissues, different nodal metastasis statuses, different tumor grades, and different cancer stages. l, m The GSEA analysis of high DEPDC1
expression vs low DEPDC1 expression in malignant cells by scRNA-seq and TCGA-KIRC. n The oncoprint of conventional marker genes of RCC
with alterations in DEPDC1 high and low groups, where tumor mutation burden is represented for individual samples as a bar chart above the
oncoprint. *p < 0.05, **p < 0.01, ***p < 0.001. DEPDC1 DEP domain-containing protein 1, KIRC Kidney clear cell carcinoma, TCGA The Cancer
Genome Atlas.
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Fig. 3 DEPDC1 promotes malignant progression of RCC. a, b qRT-PCR and western blot revealing differential expression of DEPDC1 at the
mRNA and protein levels in various RCC cell lines (OS-RC-2, 786-O, 769-P, A498, ACHN) compared to HK-2 control group. c Western blot
showing the knockdown efficiency of DEPDC1 in OS-RC-2 and 786-O cells. d Western blot showing the overexpression efficiency of
DEPDC1 in A498 cells and ACHN cells. e, f Cell proliferation assay indicating the increased growth rate and proliferative activity of OS-RC-2
and 786-O cells in DEPDC1 knockdown group (si-DEPDC1#1 and si-DEPDC1#2) compared with si-NC control group. g, h Cell proliferation
assay showing changes in proliferation activity of A498 cells and ACHN cells in DEPDC1 overexpression group (OE-DEPDC1) compared with
the Vector control group. i–l Transwell assay showing changes in the number of migration and invasion cells in A498 and ACHN cells in
OE-DEPDC1 group compared with Vector control group, scale bar = 100 μm. m Representative images of xenografts collected from mice
receiving Vector or OE-DEPDC1 A498 cells (n= 10). n IHC staining of DEPDC1 in xenograft tumor cell nuclei in Vector and OE-DEPDC1
groups. o–q Tumor growth curve, weight comparison, and body weight changes of nude mice were collected from mice receiving Vector
or OE-DEPDC1 A498 cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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DEPDC1 regulates RCC glycolysis through AKT/mTOR/HIF1α
pathway
DEPDC1, a glycolysis-related gene, has been shown to promote
the progression of oral squamous cell carcinoma (OSCC), predict
the progression and prognosis of RCC, and serve as a predictor of
prognostic risk in hepatocellular carcinoma (HCC) [10, 11, 27].
However, the specific molecular mechanism through which
DEPDC1 enhances tumor glycolysis had not yet been fully
elucidated. To investigate the molecular mechanism of DEPDC1
in regulating glycolysis in RCC, we conducted transcriptional
analysis in 786-O cells (sh-NC and sh-DEPDC1 groups). DEGs
revealed by volcano plot are shown in Fig. 5a. Subsequent GSEA
results indicated that these DEGs were primarily involved in
regulating the glucose metabolic process, pyruvate metabolic
process, and hypoxia response, among other processes (Fig. 5b). It
was found that the glycolysis, hypoxia and phosphatidylinositol

3-kinase (PI3K)/AKT/mTOR pathways, as well as pyruvate transport
was positively regulated in high-expression DEPDC1 group, while
the oxidative phosphorylation and TCA cycle pathways were
negatively regulated (Fig. 5c, d). Our further analysis focused on
the impact of DEPDC1 knockdown on genes involved in glycolysis
regulation. The heat map in Fig. 5e shows the relative expression
of genes related to glycolysis and TCA cycle. Knocking down
DEPDC1 down-regulated ALDOA, LDHA, LDHB, PFKFB2, PFKM and
PGAM1 genes, which was associated with glycolysis, while up-
regulation of IDH2, OGDH and SDHA genes was associated with
TCA cycle (Fig. 5f). The result of GEPIA2 database analysis showed
that the expressions of key enzymes (ALDOA, ENO1, GLUT1,
GLUT3, HK-2, LDHA, PDK1 and PKM) in glycolysis were significantly
increased in KIRC compared with those in normal tissues.
Additionally, these enzymes exhibited a strong correlation with
DEPDC1 (Fig. S3). To investigate the effect of knocking down

Fig. 4 DEPDC1 is correlated with drug resistance and enhances glycolysis in RCC. a Cell proliferation assay detects the cell proliferation
activity of 786-O cells and 786-O-R cells as well as 786-O cells and 786-O-R cells treated with sunitinib (10 μM). b Western blot detecting the
protein expression levels of DEPDC1 in HK-2 and five types of RCC cells. c Western blot verifying the knockdown efficiency of DEPDC1 in 786-
O-R cell. d Cell proliferation assay showing changes in the proliferation activity of 786-O-R cells in si-DEPDC1#1 and si-DEPDC1#2 groups vs si-
NC group. e, f Transwell assay showing the number of migrating and invasive cells of 786-O-R cells in si-DEPDC1#1 group and si-DEPDC1#2

groups compared to si-NC group, scale bar = 100 μm. g, hWestern blot verifying the knockdown efficiency of DEPDC1 in OS-RC-2 cells, 786-O
cells and 786-O-R cells. i–k Glycolysis function assay showing changes in glucose consumption, pyruvate production, and lactate production
of OS-RC-2, 786-O and 786-O-R cells between sh-DEPDC1 and sh-NC groups. l–n Glycolysis function assay showing changes in glucose
consumption, pyruvate production, and lactate production of A498 and ACHN cells between OE-DEPDC1 and Vector groups. *p < 0.05,
**p < 0.01, ***p < 0.001.
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DEPDC1 on RCC glycolytic metabolites, LC/MS non-targeted
metabolism analysis was conducted on 786-O cells and 786-O-R
cells (sh-NC group and sh-DEPDC1 group). The heat map indicated
a decrease in the production of glycolytic metabolites, such as

lactate, dihydroxyacetone phosphate (DHAP), glucose hexapho-
sphate (G6P) in RCC cell lines, while there was an increase in TCA
cycle metabolites such as sedoheptulose, citrulline, particularly in
786-O-R cells (Fig. 5g). As previous study has shown that Warburg
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effect caused by VHL mutations also increases TKI resistance of
ccRCC, and the difference in glycolytic metabolites is more
significant in 786-O-R cells [9]. Specifically, the alterations in
glycolytic metabolites and TCA cycle metabolites in Fig. 5h were
statistically significant. According to the findings of transcriptomic
sequencing, we investigated how DEPDC1 regulated RCC glyco-
lysis by western blot analysis. The results revealed that knocking
down DEPDC1 led to a significant reduction in the protein
expression of p-AKT, p-mTOR, HIF1α, HK2, PKM2, and LDHA, while
overexpression of DEPDC1 resulted in a notable increase in these
proteins (Fig. 5i). In conclusion, DEPDC1 acted as a positive
regulator of RCC glycolysis via the AKT/mTOR/HIF1α pathway.

DEPDC1 is associated with poor prognosis and predicts
metastasis in RCC
To further explore the significance of DEPDC1 in RCC progression,
we conducted a study involving two cohorts (TMA30, n= 28;
TMA2021, n= 70). Quantitative analysis of the TMA2021 cohort
using H-score revealed higher DEPDC1 expression in tumor tissues
compared to para-cancerous tissues (Fig. 6a, b). Subsequently, we
stratified the combined cohorts (TMA30+ TMA2021) based on
clinical data and observed higher H-scores in patients with
metastasis (Fig. 6c), advanced tumor stage (Fig. 6d), and high
Fuhrman grade (Fig. 6e). ROC analysis on the TMA30 cohort for
5-year OS determined an optimal cutoff value for DEPDC1 H-score
at 182.5 with an AUC of 0.8353 (Fig. 6f). Further analysis using K-M
survival plots demonstrated that both OS and PFS were shorter in
patients of high DEPDC1 expression group (Fig. 6g, h). Multivariate
Cox nomogram analysis confirmed DEPDC1 expression as an
independent risk factor for OS and PFS in RCC patients (Figs.
6i and S4a–c). In summary, our findings suggest that DEPDC1 was
closely linked to poor prognosis and could serves as a valuable
predictor of RCC metastasis.

DISCUSSION
As RCC advances, its glycolytic metabolic activity increases,
potentially contributing to resistance against TKIs due to VHL
gene mutation [7, 9]. Thus, targeting glycolysis could offer a dual
benefit of inhibiting RCC progression and reversing TKI resistance.
A recent study has highlighted the role of phosphoglycerate
kinase 1 (PGK1) in promoting tumorigenesis and sorafenib
resistance in ccRCC by activating the CXCR4/ERK pathway and
enhancing glycolysis [28]. Additionally, CircME1 has been impli-
cated in promoting aerobic glycolysis and sunitinib resistance in
ccRCC through cis-regulating ME1 [29]. However, existing research
on the impact of glycolysis on RCC progression and drug
resistance is limited, our study is the first to identify glycolysis as
a crucial factor associated with poor prognosis and drug resistance
in RCC patients by utilizing scRNA-seq.
After clarifying the research focus on glycolysis, we identified

DEPDC1 as the glycolysis-related gene with the highest hazard
ratio (HR) in TCGA-KIRC and the glycolysis gene set (HR= 3.023,
p < 0.001) (Fig. S2a). DEPDC1, initially identified in bladder cancer,
was found to be overexpressed in various cancers including
bladder, liver, and lung cancer, and is widely recognized as an

oncogene [30–32]. Although some previous studies on RCC have
primarily incorporated DEPDC1 in glycolysis risk prognostic
models, they lacked in-depth in vitro and in vivo experimental
investigations [27]. In OSCC, DEPDC1 as a glycolysis-related gene
has been shown to enhance aerobic glycolysis, migration, and
invasion via the WNT/β-Catenin pathway [11]. Furthermore,
DEPDC1 has been implicated in promoting aggressive features
in breast cancer by activating the PI3K/AKT/mTOR pathway [33].
Consequently, the association between DEPDC1 and RCC

progression as well as drug resistance warrants further explora-
tion. In this study, we observed that the sensitivity to sunitinib and
pazopanib was reduced in high DEPDC1 group vs low DEPDC1
group using the GDSC database (Fig. 2f, g). GSEA revealed a
positive correlation between high DEPDC1 expression and
glycolysis (Fig. 2l, m). Additionally, we established sunitinib-
resistant RCC cells (786-O-R) and performed in vitro experiment,
finding that elevation of the DEPDC1 expression promoted
glycolysis and drug resistance in RCC (Fig. 4).
A recent proteomic study on ccRCC by Ye’s team at Fudan

University Shanghai Cancer Center revealed that the PI3K/AKT/
mTOR pathway was the mechanism contributing to sunitinib
resistance in ccRCC patients, which is consistent with our RNA-seq
findings [9]. Our study indicated a positive correlation of high
DEPDC1 expression with glycolysis and the PI3K/AKT/mTOR
pathway, and a negative correlation with oxidative phosphoryla-
tion and TCA cycle (Fig. 5b–d). Previous studies have demon-
strated that the PI3K/AKT pathway activated mTOR, leading to the
upregulation of glycolytic enzymes through the transcription
factor HIF1α [34, 35]. Our RNA-seq results showed that knocking
down DEPDC1 could downregulate key glycolytic enzymes like
ALDOA [36], LDHA [37], LDHB [38], and PFKFB2 [39], while
upregulating enzymes from the TCA cycle such as OGDH [40] and
SDHA [41] (Fig. 5f). Western blot analysis demonstrated that
DEPDC1 activated mTOR signaling, upregulated HIF1α, and
increased the expression of glycolytic enzymes HK2, PKM2, and
LDHA (Fig. 5i). Previous metabolomic studies also support our
findings, showing increased glycolytic metabolites in sunitinib-
treated RCC-resistant cells vs untreated RCC cells [42]. Our non-
targeted metabolomics further revealed more pronounced
differences in glycolytic and TCA cycle metabolites upon DEPDC1
knockdown in 786-O-R cells vs 786-O cells (Fig. 5g, h). Therefore,
our study strongly suggests that the glycolysis-related gene
DEPDC1 promotes glycolysis and TKI resistance in RCC by
activating the AKT/mTOR/HIFα pathway.

CONCLUSION
In summary, our study is the first to utilize scRNA-seq to reveal
that glycolysis plays a significant role in the poor prognosis and
TKI resistance in RCC. Additionally, multi-omics analysis identified
that DEPDC1 could promote RCC glycolysis and TKI resistance via
the AKT/mTOR/HIFα pathway (Fig. 7). Clinical findings from our
cohort indicate that high DEPDC1 expression is correlated with
poor prognosis and metastasis prediction in RCC patients. Overall,
our research presents a novel therapeutic target in glucose
metabolism for treating advanced TKI-resistant RCC patients.

Fig. 5 RNA-seq and non-targeted metabolomics reveal that DEPDC1 positively regulates glycolysis in RCC. a Volcano plot showing all
DEGs sequenced in the RNA-seq of 786-O cells (sh-NC and sh-DEPDC1 groups, n= 3). b GSEA bubble chart shows the biological processes
involved in the DEGs of 786-O cells. c, d GSEA analysis showing that high expression of DEPDC1 was positively correlated with glycolysis and
PI3K/AKT/mTOR and other pathways, and negatively correlated with TCA cycle and oxidative phosphorylation. e Heat map showing the
expression changes of genes related to the regulation of glycolysis and TCA cycle after knockdown of DEPDC1 in 786-O cells. f Histogram
showing significantly changed genes in 786-O cells after knocking down DEPDC1. g Heat map showing changes in glycolytic and TCA cycle
metabolites in 786-O and 786-O-R cells after knocking down DEPDC1. h Histogram showing significantly changed glycolytic and TCA cycle
metabolites in 786-O and 786-O-R cells after knocking down DEPDC1. i Western blot reveals changes in protein expression of AKT/mTOR/
HIF1α pathway and key glycolysis enzymes in RCC cells after knocking down or overexpressing DEPDC1. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 6 DEPDC1 predicts poor prognosis and metastasis in RCC within our clinical cohort. a Representative IHC staining and H-score of
DEPDC1 in RCC tissue and paired para-cancerous tissue (TMA2021, n= 70), scale bar = 50 μm. b IHC scores of RCC tissue and paired para-
cancerous tissue (TMA2021, n= 70). c IHC scores of tumor tissues from patients with and without metastasis. d IHC scores of patients with
stage I, II and stage III, IV. e IHC scores for patients with Fuhrman grades I, II and III, IV. f ROC curve of DEPDC1 expression in TMA30 cohort with
5-year OS. g K–M survival curve shows OS of DEPDC1 high-expression group and low-expression group. h K-M survival curve shows PFS of the
DEPDC1 high-expression and low-expression groups. i Multivariate nomogram analysis of 3 and 5-year OS. *p < 0.05, **p < 0.01, ***p < 0.001.
TMA tissue microarray.
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However, our study still has certain limitations. The next step is to
explore how DEPDC1 regulates the AKT/mTOR/HIF1α pathway and
key glycolytic enzymes, and to verify the effects of DEPDC1 in
primary drug-resistant tumor animal models of renal cell
carcinoma.
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