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Graphical Abstract

∙ Multi-omics analysis of asthma sputum identified five omics-associated
clusters (OAC1-5).

∙ OAC2–OAC4 consist of patients with severe asthma while OAC1 and OAC5
mainly contain mild-to-moderate asthmatics.

∙ OAC3 represents a Th2 eosinophilic cluster.
∙ OAC2 and OAC4 are distinct severe mixed and neutrophilic asthma clusters
with different neutrophil subtypes and activated pathways.

Clin. Transl. Med. 2024;e1771. wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1771

https://orcid.org/0000-0003-2479-3861
https://orcid.org/0000-0001-7101-1426
https://orcid.org/0000-0003-2101-8843
mailto:n.kermani@imperial.ac.uk
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1771


Received: 5 March 2024 Revised: 4 July 2024 Accepted: 8 July 2024

DOI: 10.1002/ctm2.1771

RESEARCH ARTICLE

Endotypes of severe neutrophilic and eosinophilic asthma
frommulti-omics integration of U-BIOPRED sputum
samples

Nazanin Zounemat Kermani1,2 Chuan-Xing Li3 Ali Versi1 Yusef Badi1

Kai Sun2 Mahmoud I Abdel-Aziz4 Martina Bonatti3

Anke-Hilse Maitland-van der Zee4 Ratko Djukanovic5 Åsa Wheelock3,6

Sven-Erik Dahlen3 Peter Howarth5 Yike Guo2 Kian Fan Chung1,2

Ian M. Adcock1,2 On behalf of U-BIOPRED Project Team
1National Heart and Lung Institute, Imperial College London, London, UK
2Data Science Institute, Imperial College London, London, UK
3Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
4Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
5NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, Southampton, UK
6Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden

Correspondence
Dr. Nazanin Zounemat-Kermani, Data
Science Institute, Imperial College
London, William Penney Laboratory,
South Kensington Campus, London SW7
2AZ, UK.
Email: n.kermani@imperial.ac.uk

Funding information
Innovative Medicines Initiative,
Grant/Award Number: 115010; European
Union’s Seventh Framework Programme,
Grant/Award Number: FP7/2007−2013;
European Federation of Pharmaceutical
Industries and Associations (EFPIA); UK
Research and Innovation (UKRI); UK
National Institute for Health Research
(NIHR); PRISM, Grant/Award Number:
MR/T010371/1; AI-RESPIRE,
Grant/Award Number: EP/Y018680/1

Abstract
Background: Clustering approaches using single omics platforms are increas-
ingly used to characterisemolecular phenotypes of eosinophilic and neutrophilic
asthma. Effective integration of multi-omics platforms should lead towards
greater refinement of asthma endotypes across molecular dimensions and
indicate key targets for intervention or biomarker development.
Objectives: To determine whether multi-omics integration of sputum leads to
improved granularity of the molecular classification of severe asthma.
Methods:We analyzed six -omics data blocks–microarray transcriptomics, gene
set variation analysis of microarray transcriptomics, SomaSCAN proteomics
assay, shotgun proteomics, 16S microbiome sequencing, and shotgun metage-
nomic sequencing–from induced sputum samples of 57 severe asthma patients,
15 mild-moderate asthma patients, and 13 healthy volunteers in the U-BIOPRED
European cohort.We usedMonti consensus clustering algorithm for aggregation
of clustering results and SimilarityNetworkFusion to integrate the 6multi-omics
datasets of the 72 asthmatics.
Results: Five stable omics-associated clusters were identified (OACs). OAC1 had
the best lung function with the least number of severe asthmatics with sputum
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paucigranulocytic inflammation. OAC5 also had fewer severe asthma patients
but the highest incidence of atopy and allergic rhinitis, with paucigranulocytic
inflammation. OAC3 comprised only severe asthmatics with the highest spu-
tum eosinophilia. OAC2 had the highest sputum neutrophilia followed by OAC4
with both clusters consisting of mostly severe asthma but with more ex/current
smokers in OAC4. Compared to OAC4, there was higher incidence of nasal
polyps, allergic rhinitis, and eczema inOAC2.OAC2hadmicrobial dysbiosiswith
abundantMoraxella catarrhalis and Haemophilus influenzae. OAC4 was associ-
ated with pathways linked to IL-22 cytokine activation, with the prediction of
therapeutic response to anti-IL22 antibody therapy.
Conclusion:Multi-omics analysis of sputum in asthma has definedwith greater
granularity the asthma endotypes linked to neutrophilic and eosinophilic inflam-
mation.Modelling diverse types of high-dimensional interactionswill contribute
to a more comprehensive understanding of complex endotypes.

KEYWORDS
asthma endotype, consensus clustering, eosinophilic inflammation, gene set variation analysis,
neutrophilic inflammation, pathogenic bacteria, severe asthma, similarity network fusion

Key Points
∙ Unsupervised clustering on sputummulti-omics of asthma subjects identified
3 out of 5 clusters with predominantly severe asthma.

∙ One severe asthma cluster was linked to type 2 inflammation and sputum
eosinophilia while the other 2 clusters to sputum neutrophilia.

∙ One severe neutrophilic asthma cluster was linked to Moraxella catarrhalis
and to a lesser extent Haemophilus influenzae while the second cluster to
activation of IL-22.

1 INTRODUCTION

Asthma is a heterogeneous chronic inflammatory disease
of the airways with many clinical phenotypes1 including
severity based on the level of treatment needed to control
symptoms.2 Patients with type 2 (T2) high inflammation
have been defined as those with frequent exacerbations,
high blood or sputum eosinophils and raised levels of frac-
tional exhaled nitric oxide (FeNO).3 These patients are
more likely to respond to corticosteroid therapy and to bio-
logics targeted against the cytokines of the T2 pathway,
such as anti-IL5 and anti-IL5R antibodies or the anti-
IL4R antibody that blocks the effect of IL4 and IL13.4,5
Another inflammatory severe asthma phenotype charac-
terised by sputum neutrophilia characterises neutrophilic
andmixed granulocytic asthma that has a poor response to
corticosteroid therapy but so far, no targeted antibody ther-
apies are currently available for this non-T2 inflammatory
phenotype.6–8

Clustering of patients with severe asthma using either
transcriptomic or proteomic analytical approaches has
helped to define the molecular pathways underlying these
different inflammatory phenotypes using sputum sam-
ples, which has been used to define the granulocytic
inflammation.9,10 Three transcriptome-associated clusters
were described including one with sputum eosinophilia
characterised by immune receptors IL33R, CCR3 and
TSLPR and high enrichment of gene signatures for
interleukin-13/T-helper cell type 2 (Th2) and another one
with sputum neutrophilia characterised by interferon,
tumour necrosis factor-α and inflammasome-associated
genes.9 Using proteomic data analysis, ten clusters were
described with the definition of 3 highly eosinophilic, 3
highly neutrophilic, and 2 highly atopic with relatively low
granulocytic inflammation.10 In addition, sputum analysis
has yielded two microbial clusters with one having ele-
vated levels of the pathogenicHaemophilus influenzae and
Moraxella catarrhalis.11
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Systems biology defined as ‘an approach to understand-
ing living systems that focuses on modelling diverse types
of high-dimensional interactions to develop a more com-
prehensive understanding of complex phenotypes mani-
fested by the system’ remains a key strategy for improving
the outputs from the high-throughput data.12 Although
these single omics studies of severe asthma have yielded
new molecular clusters, we hypothesised that integrating
the several omics platforms of data will likely enable more
holistic and granular models that reflects the complex
inter-molecular interactions of different pathways, and
proteins, transcripts and of microbiome and the pertur-
bations in asthma. Thus, combining multi-omics datasets
will generate clear subsets of severe asthma that are asso-
ciated with different pathways and pathogenic organisms.
We therefore integrated sputum transcriptomics (microar-
ray and pathway enrichment scores), proteomics (shotgun
and SomaLogic) together with 16S and metagenomics
using the consensus clustering algorithm and similar-
ity network fusion to generate omics-associated clusters
(OACs). Five endotypes were identified; three were severe
asthma endotypes: two were associated with sputum neu-
trophilia with one linked predominantly with Moraxella
catarrhalis and to a lesser extentHaemophillus influenzae,
while the other with a drug response signature to anti-
IL-22 antibody treatment, and the third one with sputum
eosinophilia.

2 METHODS

2.1 Participants and data collection

The European-wide U-BIOPRED (Unbiased BIOmarkers
in PREDiction of respiratory disease outcomes) cohort
consisted of 4 groups of participants: severe nonsmoking
asthma, ever smokers with severe asthma, mild/moderate
nonsmoking asthmatics (MMA) and nonsmoking healthy
volunteers (HV, n = 101).13 Out of this, a subset of
85 subjects (13 healthy and 15 mild-to-moderate, 37
severe nonsmokers and 20 severe ever smokers asth-
matics), who produced sputum cells for RNA extraction
(Table S1) and expression profiling undertaken as previ-
ously described,9,14 were included in the current analysis.
A CONSORT diagram is provided in Figure 1A. The
72 subjects included had similar characteristics to the
remainder of the cohort (Table S1). In addition, shot-
gun and SomaScan proteomics10 and 16S sequencing and
metagenomics15 were also undertaken in sputum sam-
ples, as previously described. All U-BIOPRED participants
gave signed informed consent to participate in the study,
which was approved by the local Ethics Committee of each
country.

Data were downloaded from the tranSMART database
on 2 February 2020. Seventy-two asthmatics were aligned
across omics datasets (Table S2), with the data from
healthy volunteers excluded from the datasets but acting
as a control group. All datasets were checked for fea-
tures with zero variance (ZV) with 16S and metagenomics
datasets having 71 and 14 features with ZV, respectively.We
derived enrichment scores of 1471 pathways from a curated
pathways database (GeneGO, Thomson Reuters, http://
portal.genego.com) using the transcriptomics matrix and
gene set variation analysis (GSVA).17 By adding pathways’
information as a data-block, we capture more robust and
interpretable patterns in the data that can be captured
by the transcriptomics data alone, thereby reducing the
impact of noisy or irrelevant features of the transcriptomics
matrix that could exacerbate the curse of dimensionality
Figure 1B.

2.2 Monti consensus clustering and
similarity network fusion (SNF)

We employed theMonti consensus clustering algorithm to
aggregate clustering results from multiple subsamples of
the data.19 This approach allowed us to identify groupings
of the data that were robust and less sensitive to the exclu-
sion of individual subjects. The consensus clustering was
conducted using the ConsensusClusterPlus package in R
(version 1.48.0).
Additionally, we integrated Similarity Network Fusion

(SNF)16 into the consensus clustering process. SNF enables
the integration of multiple datasets by computing affinity
matrices from distance matrices, which capture pairwise
similarities between samples in each dataset. These affin-
ity matrices are then combined to construct a consensus
network that integrates information from all datasets,
enabling the discovery of underlying relationships and
patterns across heterogeneous data sources. For transcrip-
tomics and proteomics datasets, we used the Euclidean dis-
tance measure, while for 16S and metagenomics datasets,
we utilised the ‘m’ and ‘−2′ beta-diversity measures,
respectively, as provided by the ‘vegan’ R package.
We calculated affinity matrices for each dataset and set

the parameters for SNF to include 20 neighbours with an
alpha value of 0.5. These affinity matrices were then inte-
grated using the SNF algorithm, with parameters set to 20
neighbours and 50 iterations. We conducted two separate
runs of SNF-based clustering using finiteGaussianmixture
clustering (GMM)20 and spectral clustering methods.21
While spectral clustering is the preferred method for

SNF, our previous observations suggested that apply-
ing finite GMM to SNF-derived vectors produced similar
but more stable clusters.22 We determined the optimal

http://portal.genego.com
http://portal.genego.com
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F IGURE 1 Machine learning workflow. (A) CONSORT flow chart reporting the patients and controls we studied. (B) Three types of data
were the starting point of the workflow, that is, transcriptomics, proteomics and microbiome date. Each of these three data types included 2
data matrices either derived by incorporating available knowledge or from various bioanalytical platforms, for example, proteomics data from
LC-MS/MS and somaSCAN, microbiome from 16S and Metagenomics platforms. The workflow consists of three main multi-faceted
compartments: (1) select/integrate/cluster, (2) find meaningful clusters, (3) characterise clusters. The first compartment is about running a
data integration and clustering algorithm on different combination of data and generating clusters. The second compartment includes
multiple steps to calculate, compare and visualise various groupings generated by the first compartment. The goal of this step is to aid
decision making about the optimal number of clusters. Finally, the third compartment characterises the only clustering result that is deemed
to be most suitable and stable through the second compartment.
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number of clusters by comparing variations in clustering
results across different combinations of the data.

2.3 Determining the optimal number of
clusters

To identify the optimal cluster number, we evaluated
clustering results using both GMM and spectral methods
across seven possible combinations of the data (Table S3).
We utilised the Adjusted Rand Index (ARI) to measure the
similarity between clustering results.23 A higher ARI value
indicates greater similarity between clustering methods.
We visualised the results by plotting the cluster num-

ber against the ARI value and selecting the clustering
with a relatively high ARI between the two methods and
minimal variation across data combinations. The optimal
cluster number was determined by identifying a point
where the relative change in the cumulative distribution
function (CDF) became minimal and stable, with cluster
number k = 5 being selected as optimal based on this cri-
terion as demonstrated under ‘find meaningful clusters’ in
Figures 1B and S2.

2.4 Clinical, molecular and pathway
characteristics of clusters

We analysed the clusters according to (i) clinical/demo-
graphical/haematology/quality of life questionnaires/
sputum cell counts, (ii) pathway analysis, (iii) drug signa-
ture analysis and (iv)microbiome diversity. For the clinical
features, a chi-squared test was used for computing the
p value of categorical variables while the normality of
numerical variables was examined by the Shapiro–Wilk
test. Mann–Whitney U test was used for nonnormally
distributed numerical variables and a pairwise Student’s
t-test for normally distributed numerical variables. The
significance level used for hypothesis testing was specified
at α = .05, with multiple testing correction applied using
the False-Discovery Rate (FDR) method.
GSVA was applied to each of these datasets to calcu-

late the enrichment scores (ES) for the 1471 pathways that
were recorded in the curated pathways database (GeneGO,
Thomson Reuters, http://portal.genego.com) based on
the transcriptomics, SomaScan and shotgun proteomics
datasets.17 The minimum overlap between datasets and
pathwayswere set to 3 to ensure that theESwere calculated
only for pathways with at least 3 genes in common. Aword
cloud visualisation was used to visualise genes belonging
to the 31 common pathways, which were frequently differ-
entiated between clusters. We hypothesised that each clus-
ter would deviate from the healthy population and other

clusters in a unique manner to generate heterogeneous
clinical andmolecular characteristics. GSVAwas also used
to determine the neutrophilic activation mechanisms util-
ising enrichment of previously defined gene signatures
and neutrophil subtypes18 in the OAC2, OAC4 and healthy
controls. When a cluster comprised both severe asthma
and mild-to-moderate asthma cases (e.g. OAC1 and OAC5)
and containedmore than fivemild-to-moderate asthmatics
(e.g. OAC1), we conducted differential gene/protein analy-
sis to elucidate the pathogenic mechanisms distinguishing
severe from nonsevere asthma.
We next analysed the 5 OACs according to

ActivePathways.16 ActivePathways integrates statistical
information frommultiple omics datasets using a Brown’s
method to prioritise biologically relevant pathways. It then
applies a hypergeometric test to identify overrepresented
pathways, providing a robust approach for pathway anal-
ysis in the presence of multiple omics datasets. We used
molecular pathways of the Reactome database (version 82)
and EnrichmentMap app of Cytoscape for network visual-
isation. We introduced a new concept for finding subjects
that are more likely to respond to a drug, called the ‘N’
method. We illustrated this method using ‘Fezakinumab’.
It is an anti-IL22 antibody used to block the effect of the
IL-22 cytokine and has been approved for the treatment
of atopic dermatitis. First, we derived disease and drug
response gene signatures from recent publications27 and
used GSVA to study the distribution of the drug/disease
signature ES across the clusters. We hypothesised that if a
cluster was up- or downregulated for the disease signature
and was in the right direction for the corresponding drug
signature(s), that group might respond to this drug or
antibody.
16S and metagenomics data were used to calculate

Shannon α-diversity across the clusters. The differen-
tial bacterial abundance between clusters was computed
using edgeR (R package edgeR version 3.26.8) after geo-
metric mean of pairwise ratios (GMPR) normalisation.28
For intracluster comparison and comparison with healthy
population, we used the nonparametric Kruskal–Wallis
Rank Sum test. To minimise the number of false posi-
tives, for each group comparison, we collated the p values
derived from all datasets and adjusted the p values using
Benjamini-Hochberg FDR method. We plotted the his-
togram of the p values and a heatmap for each dataset
was used to visualise the overall between-group differences
(Figure S1).

2.5 Network visualisation

Datasets undergo feature selection to identify key fea-
tures distinguishing OACwithin each omics domain. Each

http://portal.genego.com
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dataset undergoes an application of the Prediction Analy-
sis for Microarrays (PAMR) framework.17 For each OAC, a
structure is formed, integrating gene/protein/microbiome
IDs and class labels. The PAMR model is trained with a
positive sign contrast to discern upregulated genes specific
to theOACsubtype.A 10-fold cross-validation is performed
to assess the predictive accuracy of the model, with the
minimum cross-validated error reported as a metric of
model performance.
Subsequently, signature matrices are constructed for

each dataset, capturing distinctive molecular patterns
associated with OACs. These matrices are then amal-
gamated across datasets and underwent clustering for
community detection, allowing for a high level visualisa-
tion of holistic differences of OAC-related alterations at the
transcriptomics, proteomic and microbiomic levels.18
The ARENA3D19 tool was employed to create an inter-

active three-dimensional representation of the correlation
networks. This tool allows for a dynamic exploration of
the networks, facilitating the identification of densely con-
nected clusters or modules and highlighting potential hub
signatures that exhibit strong correlations across omics
layers.

3 RESULTS

3.1 Clustering and optimisation of
cluster number

The optimal number of clusters was determined as k = 5.
The 5 clusters exhibit a relatively small increase of the
relative change in the CDF at the k + 1 cluster analysis.
Changes wereminimal after k= 5 and had the highest ARI
after that for three clusters, but k= 5 had the smallest vari-
ance. This demonstrates that 5 clusters are less sensitive
to clustering methods and combination of the data. Thus,
clustering using consensus clustering and SNF identified 5
stable omics-associated clusters (OAC1-5) (Figure S2).

3.2 Clinical and physiological
characteristics of OAC1–5

The 5 clusters generated according to themulti-omics inte-
gration of data had distinct features that generally mapped
to known clinical subtypes of asthma (Table 1). Thus,OAC1
(n = 20) had the lowest percentage of severe asthmatics
(50%) and oral corticosteroid use (10%), compared to the
4 other clusters. OAC1 also has the highest FEV1 % pre-
dicted compared to all other OACs except for OAC5 where
the difference did not reach significance. OAC3 (n = 18)
patients are all severe asthmatics with the highest level
of sputum eosinophils (35.5%, Table 1) and highest oral

corticosteroid use (56%). Sputum eosinophil levels were
significantly higher in OAC3 subjects compared to patients
in OAC1, OAC2 and OAC4 (Table 1).
In contrast, we defined 2 clusters of patients with high

neutrophil levels: OAC2 (n = 12) patients have the high-
est levels of sputum neutrophils (91.3%, Table 1) and are
predominantly female (75%) with high levels of allergic
rhinitis and eczema while OAC4 (n = 12) patients are
all severe asthmatics with the lowest incidence of aller-
gic rhinitis (9%), lowest history of pneumonia (10%) and
the second highest levels of sputum neutrophils (65.4%,
Table 1). All patients in this group are either overweight
or obese (Table 1). Finally, OAC5 consists of 10 patients
with the highest incidence of allergic rhinitis (88%) and
combined atopy based on the regional aeroallergens (80%).

3.3 Analysis of OAC clusters according
to sputum granulocytes

Sputum granulocyte status is a recognised way to sub-
phenotype patients with asthma.14,20 We found that there
was a preferential enrichment of eosinophilic asthma in
OAC3 (83%) and in patients in OAC4 (58%) with the least
number of eosinophilic patients inOAC2 (15%) (Table 2). In
contrast, OAC2 patientswere preferentially enriched in the
patients with neutrophilic andmixed granulocytic asthma.
Of all OAC2 subjects, 41.7% (5 of 12) were neutrophilic
and 50% (6 of 12) were mixed granulocytic phenotype.
The OAC2 mixed group were represented by 3 subjects
with nasal polyps and 3 patients with allergic rhinitis.
We acknowledge that the higher prevalence of rhinitis
in OA2 compared to OA3, while seemingly contradictory
to previous studies, is clarified by the presence of mixed
granulocytic subjects in OA2. We divided OA2 subjects
into neutrophilic and mixed types. Overall, there were no
significant clinical or biochemical/biomarker differences
between themixed granulocytic and neutrophilic subtypes
in OAC2, which may reflect the low numbers (6 and 5) in
each group (see Table S4). Patients with paucigranulocytic
asthma represented the majority of patients in OAC1 and
OAC5 clusters (Table 2).
Molecular phenotyping of the OACs indicated that

patients within the OAC3 cluster were enriched for the
Woodruff T2 signature21 (Figure 2A) and for a compos-
ite of various T2-specific mediators (Figure 2B) including
IL-5 (p = .00183, Figure S3A), IL-13 (p = 5 × 10−5,
Figure S3B) and IL-4 (p = .05493, Figure S3C). Patients
in OAC3 represent those with severe eosinophilic T2
asthma and have a similar comparative enrichment of the
Woodruff signature as reported previously between the
eosinophilic TAC1 and the neutrophilic/inflammasome-
containing TAC2 subjects.14 Data from the U-BIOPRED
cohort show that sputum eosinophil changes partially
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TABLE 2 Distribution of sputum eosinophilic inflammation across OAC clusters.

Group comparison (p values)

OAC1 OAC 2 OAC3 OAC4 OAC5
1 vs.
2

1 vs.
3

1 vs.
4

1 vs.
5

2 vs.
3

2 vs.
4

2 vs.
5

3 vs.
4

3 vs.
5

4 vs.
5

Sputum
eosinophilia,
n (%)

5 (25%) 1 (8.3%) 15 (83.3%) 7 (58.3%) 2 (20%) <.001 ** *** *** ns *** *** * *** ***

Sputum
neutrophilia,
n (%)

1 (5%) 5 (41.7%) 1 (5.6%) 2 (16.7%) 1 (10%) .046 ** ns * ns ** ** ** * ns

Sputum
mixed,
n (%)

0 (0%) 6 (50%) 1 (5.6%) 1 (8.3%) 1 (10%) .001 ** * ** ** ** ** ** ns ns

Sputum pauci
granulocytic,
n (%)

14 (70%) 0 (0%) 1 (5.6%) 2 (16.7%) 6 (60%) <.001 *** *** *** ns * *** *** * ***

Note: Statistical significance: *p < .05; **p < .01; ***p < .001; ****p < .0001; otherwise nonsignificant (p > .05).

F IGURE 2 Enrichment of type 2 (T2) inflammation in omics-associated cluster (OAC)3. Gene set variation analysis (GSVA) boxplots
showing the enrichment score (ES) for the Woodruff T2 signature (A) and a composite T2 cytokine and mediator panel (B) in sputum
omics-associated cluster (OAC)3 compared to other OACs.

reflect changes in blood eosinophils, with the correlation
strength affected by OCS use. OCS-dependent subjects
had a positive correlation with sputum–blood eosinophil
(rho = .44), which was increased for OCS nondepen-
dent subjects (rho = .55). The correlation between OCS
use and sputum neutrophils was significant only in OCS-
dependent subjects (rho = .31) and not in non-OCS users.

3.4 Molecular analysis of OAC clusters
according to asthma severity

To explore the molecular variances between MMA and SA
in clusters,we conducted a comparative analysis of sputum

omics datasets for OAC1. Our findings indicated that the
MMA sample sizes in OAC2 (n = 1), OAC3 (n = 0), OAC4
(n = 0), and OAC5 (n = 3) were insufficient for meaning-
ful analysis in these clusters. Based on initial univariate
analysis comparing MMA with SA, we observed that con-
founding effect of clinical variables such as BMI, smoking
status and atopy can influence gene expression levels and
asthma severity. By adjusting for these variables, we can
better isolate the truemolecular differences betweenMMA
and SA in OAC1 and reduce the influence of confound-
ing factors. After adjusting for these confounding factors,
we found a number of proteins being upregulated in the
severe asthmatics compared to MMA. These were Com-
plement C9, MIA, TIMP2, UNC5C, CFP, CCL21, KNG1,
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EFNA5, PRSS22, ADAM9, RETN, TNFRSF21, RARRES2,
TXNDC12, EPHB2 and VEGFA (Figure S4).
We ran network analysis using these proteins and string-

db (version 12.0). By utilising these proteins and conduct-
ing a pathway analysis, we discovered the enrichment of
several biological terms. Three gene ontology (GO) terms
were overrepresented. The common elements between
these three processes are the genes CCL21, TNFRSF21
and KNG1. These proteins are involved in the humoral
immune response, negative regulation of cell adhesion,
and response to external stimulus. Eleven GO compart-
ments were overrepresented. Common genes among these
compartments include RETN, CFP, TIMP2, RARRES2 and
KNG1. These genes are involved in the extracellular region,
extracellular space, secretory granule lumen and specific
granule lumen, highlighting their roles in extracellular
and granule-related processes. Table S5 presents enriched
biological terms and protein features associated with SA
compared to MMA in OAC1.

3.5 Reduced microbial diversity in
OAC2

We next examined the microbial diversity across the 5
OACs (Figure S4). This analysis indicated that the Shan-
non index of alpha diversity from themetagenomics or 16S
omics was significantly reduced inOAC2 (the high sputum
neutrophil cluster) compared to the other clusters includ-
ing OAC4 (Figure S4A and B). Network analysis identified
distinct multi-omic networks of nodes and edges in OAC1
(Figure 3A), OAC2 (Figure 3B), OAC3 (Figure 3C), OAC4
(Figure 3D) and OAC5 (Figure 3E). Further analysis of
OAC2 demonstrates the association of upregulated gene
and protein pathways in this cluster with a high enrich-
ment of Moraxella catarrhalis and an association with
Haemophillus influenzae (Figure 3F). In contrast, OAC1
was associated with the presence of commensal bacte-
ria such as Prevotella and there was a limited association
of upregulated pathways with any bacterial species for
OAC3–5.

3.6 Pathways associated with OAC
clusters

Figure 4A shows the heatmap of the pathway enrichment
scores for the transcriptomics, SomaScan proteomics and
shotgun proteomics according to 5 OAC clusters compared
with HV and the assignment of subjects according to spu-
tumgranulocyte status, gender, asthma severity, bodymass
index (BMI) and oral corticosteroid (OCS) therapy. We ini-
tially examined the number of significantly (q value < .05)

TABLE 3 Frequency of enriched pathways.

Pathways Frequency
Blood coagulation Platelet microparticle
generation

8

Cell adhesion Plasmin signalling 7
Cytoskeleton remodelling Keratin filaments 6
Development Transcriptional regulation of
megakaryopoiesis

6

Eosinophil granule protein release in asthma 6
Immune response CCR3 signalling in
eosinophils

6

Immune response LPS-induced platelet
activation

6

Platelet activation during
ADAM-TS13-deficient thrombotic
microangiopathy development

6

SHH signalling in colorectal cancer 6
Th2 cytokine- and TNF-alpha-induced
inflammatory response in asthmatic airway
fibroblasts

6

Note: The first column shows pathways, and the second column shows the
frequency that these pathways were differentially enriched between healthy
and clusters 1:5 based on the transcriptomics and proteomics datasets.

differentially enriched pathways between HV and patients
in each OAC (Figure 4B). There were 39, 1213, 668, 402, 284
pathways differentially enriched between HV and OAC1-
5, respectively. The top 10 pathways with most replication
in the list of significantly differentiated pathways in the
group comparison between healthy and OACs are shown
inTable 3. No pathwaywas consistently perturbed between
HV and the OACs. Themost frequently enriched pathways
across OAC1-5 compared with HVs include those related
to complement and platelet activation, cell adhesion and
eosinophil and Th2 pathways (Table 3). Because we are
using more than one omics dataset and several groups of
subjects, one pathway can be detected more than once
either by omics datasets or by groups. The differentially
enriched pathways (DEPs) across all 3 omics datasets com-
pared to HVs were limited to coagulation in OAC3 versus
HVs and cell adhesion, platelets, immune responses and
MIF in OAC2 compared with HVs (Table S6).
The 5 pathwayswith the highest and lowestmedian fold-

change for each comparison are shown in Table S7. All
significantly enriched pathways are reported in the Sup-
plementary file ‘SignificantlyDifferentWithHG.xlsx’. Tran-
scriptomics data predominantly drove the total number of
DEPs, particularly for OAC3 and 4 (Figure 4B). However,
the top DEPs (up- and downregulated) between OACs and
HV were driven by proteomic data for OAC1 (6/10 path-
ways), OAC2 (10/10 pathways) and OAC3 (7/10 pathways)
(Table S7).
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F IGURE 3 Network visualisation of clusters formed by interaction between omics and a multi-channel view of omics interactions
related to omics-associated cluster (OAC)2. Communities in the multi-omics data detected via random walks clustering for OAC1 (A), OAC2
(B), OAC3 (C), OAC4 (D) and OAC5 (E). (F) Highlights proteins and pathways that serve as distinctive signatures of OAC2, showcasing their
interaction with microbiome signatures (r > .4) and are shown using the Arena3Dweb tool.

We then compared the significant (q value < .05) DEPs
between each OAC (Figure 4C). Each pie chart shows the
number of perturbed pathways between one OAC and the
remaining OACs. We found 626, 1323, 958, 563 and 747
DEPs across OAC1–5, respectively, which is considerably
higher than the number of perturbed pathways seen in
comparison with HV. All pathways are reported in the
Supplementary file ‘SignificantlyDifferentIntraOACs.xlsx’.
Transcriptomic data drove most pathways for OAC1, 3
and 4 while proteomics drove the majority of pathways in
OAC2 and 5 (Figure 4C).
For each cluster, the DEPs based on all three datasets

are shown in Table 4. The top 10 pathways with most
replication between groups are shown in Table 5. Table S8
shows the 5 pathwayswith highest and lowestmedian fold-
change. Thirty-one pathways were commonly occurred
across all the group comparison; this is shown in Table
S9. Interestingly, we saw an initial reduction in the enrich-
ment of the pathway ‘Eosinophil survival in Asthma’ in

OAC3, which was surprising as we expected this to be
enriched (Table S8). Further analysis of the up- and down-
regulated genes in this pathway indicated an upregulation
of the positive genes in OAC3 and downregulation of the
negative genes in this pathway (Figure S6). This indicates
the need to further analyse pathways that include both up-
and downregulated genes.
Figure S7 presents a word cloud visualization of genes

involved in the 31 common pathways. Each word repre-
sents a gene symbol, with its font size increasing based
on the number of pathways it participates in, thereby
indicating its relative importance. It highlights the key
proinflammatory pathways such as MAPK, PI3K-AKT,
NF-κB and apoptosis across the OACs with the 2 most
important genes being AKT2 and MAPK1 which occur
in 18 pathways. OAC1 was associated with apoptosis and
immune responses, OAC2 with cell adhesion and neu-
trophil function, OAC3 with Wnt signalling and MAPK
activation in asthma, OAC4 with checkpoint and NF-κB
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F IGURE 4 Enrichment of genes, proteins and pathways across the sputum omics-associated clusters. (A) Heatmap of 72 asthmatic
subjects (columns) with 1472, 1362 and 781 pathways (rows) based on the gene set variation analysis (GSVA) of transcriptomic, somaScan and
shotgun proteomics datasets, respectively. The sputum neutrophil and eosinophil percentages, sex, oral corticosteroids (OCS) use, body mass
index (BMI), and asthma severity for each participant are mapped above the Heatmap. (B) Piechart of number of differentially enriched
pathways between clusters and healthy population (q value < .05). The numbers on the segments are number of differentially enriched
pathways between the 5 omics-associated clusters (OACs) and healthy volunteers (HV). (C) Pie chart of the number of differentially enriched
pathways between clusters (q value < .05). The numbers on the segments show differentially enriched pathways by one versus comparison
(e.g. OAC1 vs. OAC2:5). Pie charts are coloured based on the datasets: SomaScan in blue, shotgun proteomics in orange and transcriptomics in
grey. SA, severe asthma; MMA, mild and moderate asthma.

activation andOAC5with glucocorticoid and growth factor
activation.
We next analysed the 5 OACs according to

ActivePathways.16 This methodology integrates mul-
tiple molecular datasets and pathway annotations to
enhance systems-level understanding of cellular organ-
isation in health and disease. OAC1 was linked to
NEF-mediated transport linked to T-cell receptor sig-
nalling and antigen-presenting cells (Figure S8) and OAC2
with bile metabolism and fatty bile metabolism (Figure
S9). This suggested that patients in OAC2 may have suffer
from gastro-oesophageal reflux disease (GORD) because
of the link between abnormal bile metabolism and
GORD.22 Indeed, 7 out of the 12 OAC2 subjects have either
active GORD or have previously used GORD medication.
Patients with OAC3 were predominantly associated with
AMPK activation reflecting a metabolic imbalance (Figure
S10) while OAC5 was associated with extracellular matrix
degradation, cell junction formation and plasma assembly
remodelling (Figure S11). There were no ActivePathways
identified for OAC4.

3.7 IL-22 activation in OACs – a new
method for drug repurposing

We thenutilised a computationalmethod to find drugs that
may be associated with patients in OAC4. This approach
was to re-purpose existing drugs for asthma using gene
signatures that reflect transcriptomic as well as clinical
response to therapies. Thus, we examined whether there
was a pattern of (1) downregulation of disease down-
regulated genes, (2) upregulation of disease upregulated
genes, (3) downregulation of genes upregulated by the
drug, and (4) upregulation of genes downregulated by the
drug. Enrichment scores of the disease and drug signatures
of those 4 aspects were plotted for each cluster. By join-
ing the average enrichment scores for each signature, the
cluster that follows the pattern shows an N shape, hence
the name ‘N’ method for this stratification. We exam-
ined the drug, fezakinumab (FZ), which is an anti-IL22
antibody that blocks the effect of the IL-22 cytokine that
has been approved for the treatment of atopic dermatitis
(AD).23
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TABLE 4 Differentially enriched pathways (up- or downregulated) from all three omics datasets between each omics-associated cluster
(OAC) versus the rest.

Omics-associated clusters (OAC) Pathways identified by all three omics datasets
OAC1 Cell adhesion; Plasmin signalling

Eosinophil adhesion and transendothelial migration in asthma
OAC2 Development Regulation of endothelial progenitor cell differentiation from adult stem cells

Development Regulation of epithelial-to-mesenchymal transition (EMT)
Eosinophil adhesion and transendothelial migration in asthma
Inhibition of neutrophil migration by proresolving lipid mediators in COPD
Nociception Nociceptin receptor signalling
Prolactin/ JAK2 signalling in breast cancer
Proteases and EGFR-induced mucin synthesis in normal and asthmatic epithelium
Role of cell adhesion in vaso-occlusion in Sickle cell disease
Role of integrins in eosinophil degranulation in asthma
Role of platelets in allograft rejection
Role of platelets in the initiation of in-stent restenosis

OAC3 Role of IL-23/ T17 pathogenic axis in psoriasis
OAC4 None
OAC5 Development Keratinocyte differentiation

ErbB2-induced breast cancer cell invasion
Immune response IL-3 signalling via ERK and PI3K

TABLE 5 Differentially enriched pathways of the
transcriptomics and proteomics datasets that occur frequently
between OACs.

Differentially enriched pathways Frequency
Role of integrins in eosinophil degranulation in
asthma

8

Blood coagulation Blood coagulation 7
Cell adhesion Plasmin signalling 7
Development Keratinocyte differentiation 7
Development Leptin signalling via JAK/STAT
and MAPK cascades

7

Development VEGF-family signalling 7
Eosinophil adhesion and transendothelial
migration in asthma

7

ErbB2-induced breast cancer cell invasion 7
Immune response IL-3 signalling via ERK and
PI3K

7

Mechanisms of drug resistance in SCLC 7

We investigated four signatures derived from AD
patients: twoADdisease signatures (one up and one down)
and two signatures of lesional AD skin tissue following FZ
therapy (one up and one down).24 OAC4 patients gave an
N-shaped response suggesting that these subjects are most
likely to respond to FZ (Figure 5). In contrast, using the

F IGURE 5 Gene set variation analysis (GSVA) of disease and
anti-IL-22 (Fezakinumab, Fz) response signatures across 5
omics-associated clusters (OACs)1-5. Significantly down- and
upregulated genes expressed in disease (Disease signature Down□
and Up□), and genes that are significantly up- and downregulated
by Fz (Fz response Up□, FZ response Down□) are shown for
OACs 1–5. A cluster that is likely to respond to Fz will have a low
Disease Down and Fz Up signature enrichment and a high Disease
Up and Fz Down signature. This results in an ‘N’-shaped response
(indicated in blue). This criterion is met by OAC4.

same approach only 2, 3, 0 and 1 subject(s) from OAC1,
2, 3 and 5 respectively could be categorised as potential
responders.
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F IGURE 6 Differential enrichment of neutrophil subsets between neutrophil-enriched omic-associated clusters (OAC2) and OAC4. (A)
Heatmap showing enrichment of neutrophil subtype gene signatures according to OAC2 and 4 and correlation with blood eosinophils and
sputum neutrophil percentages. Boxplots showing enrichment scores (ES) for gene set variation analysis (GSVA) of neutrophil subtypes N1S
(B), N1R (C), N2BAL (D) and (N4R (E) in the sputum of OAC2 and OAC4 patients. Adjusted p values are shown. (F) Inverse relationship
between sputum neutrophil percentages and tryptophan metabolism in OAC4 (r = −.64, p = .019) but not in other OACs. (G, H) Heatmaps of
microbial species showing the increased prevalence of Moraxella catarrhalis in OAC2 compared to OAC4 and a greater reduction of most
other species in OAC4 compared to OAC2.

3.8 Comparison between neutrophilic
subtypes in OAC2 and OAC4

Since we obtained two distinct neutrophilic subtypes in
our cluster analysis, we utilised GSVA to undertake cellu-
lar deconvolution to identify whether different neutrophil
subtypes25 were present in the two OAC clusters. Cluster-
ing of the enrichment scores for the 3 BAL neutrophil sub-
types and the 5 peripheral blood neutrophil subsets iden-
tified by either Seq-Well (S) or Rhapsody (R) (Figure 6A)
demonstrated significant enrichment of neutrophil sub-
types between OACs (Figures 6A and S12). There was a
significant enrichment of the LCN2 expressing neutrophil
progenitors N1S (Figure 6B) and N1R (Figure 6C) cells and
of the N2BAL (Figure 6D) neutrophil subset, enriched for
genes related to influenza infection, in OAC4 compared to
OAC2. No neutrophil subsets were significantly enriched
in OAC2 compared with OAC4 although that of the end-
point N4R neutrophil subset almost reached significance
(p = .051, Figure 6E). There was no significant difference
in the expression of other intermediate or endpoint neu-
trophil subsets or in the N1BAL and N3BAL subsets. In
addition, there was an inverse relationship between spu-

tum neutrophil percentages and tryptophan metabolism
in OAC4 (r = −.64, p = .019) but not in other OACs
(Figure 6F). As we have previously shown a reduction in
Shannon Index in OAC2 comparedwith OAC4 (Figure S5),
we examined the relative expression of microbial species
between these 2 clusters. A heatmap of microbial species
highlights the prevalence ofMoraxella catarrhalis in OAC2
compared to OAC4 and a greater reduction of most other
species in OAC4 compared to OAC2 (Figure 6G and H).

3.9 Neutrophilic activation mechanism
between neutrophilic subtypes in OAC2
and OAC4

To further investigate the neutrophilic activation mech-
anisms in OAC2 and OAC4, we analysed 129 signatures
related to various aspects of neutrophil activation and
aging, as well as Th1-, Th17-, ILC3-,macrophage-, NETosis-
and MyD88-related signatures. We examined the enrich-
ment scores of these signatures in OAC2 and OAC4 using
GSVA, applying a significance threshold of α= .05. The 129
pathways are detailed in the Table S10, along with their
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statistical significance between the OAC2 and OAC4
groups and comparisons to healthy controls.
OAC2 shows heightened neutrophil functions linked to

IgE-dependent proinflammatorymediator release, chemo-
taxis, activation, apoptosis, NETosis and immune response
versusHVandOAC4. Contrastingly, OAC4 cluster displays
enrichment for neutrophil activation and aging including
Th17-, TLR- and MyD88-related signatures compared to
OAC2. In addition, macrophage signatures suggested that
M1 drivers such as IFN-γ, TNF, LPS and fatty acid stimu-
lation were significantly enriched in OAC4 compared with
OAC2.

4 DISCUSSION

Integration of sputum multi-omics data identified 5 clus-
ters with distinct clinical and pathway features which
mapped to some asthma clinical subtypes including a
severe asthma cluster with high sputum eosinophilia and
OCS use (OAC3). OAC3 patients were enriched for the
expression of T2 cytokines, mediators and signatures.
Patients with paucigranulocytic asthma represented the
majority of patients in OAC1 and OAC5 clusters. OAC1
consists mostly of MMA at 55%, compared to OAC5’s 27%
MMA composition. Prolonged asthma duration, smoking,
allergic rhinitis, and allergy status likely shape the molec-
ular profiles of OAC1 and OAC5 patients, aligning them
more closely with severe asthma (SA) cases. Elevated pro-
teins and pathways in SA compared MMA in OAC1 reveal
processes involving stronger humoral immune responses,
altered cell adhesion, increased reactivity to external stim-
uli, and significant extracellular and secretory activity.
These differences highlight the complex interplay between
clinical phenotypes (MMA vs. SA) and underlying molec-
ular mechanisms in asthma pathogenesis.
Importantly, we identified 2 sputum neutrophil clus-

ters – those with the highest levels of sputum neutrophilia
(OAC2) were associated predominantly with the pres-
ence of Moraxella catarrhalis and to a lesser extent with
Haemophilus influenzae and a low α-diversity and were
also present in the mixed granulocytic group. By con-
trast, the other sputum neutrophil high group (OAC4)
were all severe asthmatics and were associated with IL-
22 activation rather than the presence of pathogenic
bacteria. A subset of these subjects was also present
in the sputum eosinophil high group. Furthermore, we
show that OAC2 and OAC4 were associated with dis-
tinct subtypes of neutrophils and inversely associated
with tryptophan metabolism. Thus, the application of a
multi-omics analysis to severe asthma identifiedmolecular
phenotypes not distinguished by clinical and biochemi-
cal features, but involving the presence of distinct neu-

trophil subtypes that may respond to different therapeutic
approaches.
Across various aspects of neutrophil activation and

aging, as well as Th1-, Th17-, ILC3-, macrophage-, and
MyD88-related signatures, OAC4 exhibits a higher level
of enrichment for activated aging neutrophils influenced
than OAC2. This increase is associated with the activa-
tion of TLR andMyD88 pathways. Overall, Th17 signatures
were more enriched in OAC4 than in OAC2 patients
although no clear differences were seen for Th1 and ILC3
signatures. In addition, macrophage signatures suggested
that M1 drivers such as IFN-γ, TNF, LPS and fatty acid
stimulation were significantly enriched in OAC4 com-
pared with OAC2. In contrast, the neutrophil signature
associated with IgE-dependent proinflammatory media-
tor release is more enriched in OAC2 than in OAC4 and
may reflect the increased degree of atopy and atopy-related
diseases seen in patients in the OAC2 cluster. A NETosis
signature was also more enriched in OAC2 than in OAC4.
Although most intermediate and endpoint neutrophil

subtypes25 were similar between the OAC2 and OAC4
groups, there were some differences identified. The LCN2-
containing N1 progenitor neutrophil signature, which
was enriched in the OAC4 group, also contains the
alarmins (S100A8, S100A9, S100A12) that drive mucus
hypersecretion, alveolar destruction and lung function
decline in COPD.26,27 In addition, N2BAL neutrophils,
which were significantly enriched in OAC4 compared
to OAC2 patients, preferentially express genes associated
with influenza virus infection and translation.25 Overall,
these differences in neutrophil subtypes present between
the two neutrophil high groups may reflect the differ-
ent levels of pathogenic microbial species present and/or
ongoing viral infection in OAC4 patients. Any infection in
subjects, whether bacterial or viral, would have been sub-
clinical as sputum induction was not performed within 3
months of an exacerbation.28
A link between sputum neutrophilia and airway bac-

terial imbalance exists which suggests that patients with
this phenotype of asthma have an underlying molecular
phenotype reflecting the host-microbial innate immune
response and changes in the expression of protective
mechanisms.29 Analysis of the sputummetagenome in the
U-BIOPRED cohort indicated a lower α-diversity at the
species level in patients with severe asthma compared to
mild-to-moderate asthma and healthy controls.15 The α-
diversity was also decreased in the previously described
transcriptome-associated clusters (TACs),14 with TAC1 and
TAC2 subjects having high levels of Haemophilus influen-
zae and Tropheryma whipplei and Haemophilus influen-
zae and Moraxella catarrhalis, respectively, compared to
healthy controls. Sputum neutrophil counts correlated
with Moraxella catarrhalis.15 In addition, Haemophilus
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influenzae has been commonly cultured and sequenced
in a separate small cohorts of stable patients with severe
sputum neutrophilic asthma.30
Two clusters of adult patients with severe asthma

were defined by the sputum microbiome within the U-
BIOPRED study.11 Patients within the lowest Bray–Curtis
microbiome β-diversity had relatively worse asthma out-
comes, raised sputum neutrophils and a microbial imbal-
ance with elevated levels of the pathogenic Haemophilus
influenzae and Moraxella catarrhalis.11 Subsequent anal-
ysis of the multi-omics profiles associated with these
two severe asthma clusters identified many differentially
expressed genes, proteins and eicosanoids.31 These empha-
sised the importance of innate immune dysregulation,
inflammation, toll receptor activation, IFN-/Th1-/Th17-
related pathways and neutrophil activation in the more
severe pathogenic bacteria-containing cluster.31
IL-22 is released by several immune cells such as CD4+

T helper cells, γδT cells, NK cells and ILC3 cells and
is implicated in the pathophysiology of various chronic
inflammatory diseases including asthma and COPD and
in mucosal-associated infections.24,32 The IL-22 receptor
(IL-22R) is localised to structural cells, particularly epithe-
lial cells, within the airway allowing immune-stromal cell
crosstalk and the regulation of antimicrobial proteins and
neutrophil chemoattractants. IL-22 also promotes epithe-
lial proliferation and repair following injury.33 IL-22 levels
are increased in children and adults with allergic airway
diseases and is likely to be associated with proinflamma-
tory features.34 For example, a cross-sectional study of
asthmatic patients with highly neutrophilic asthma iden-
tified high levels of IL-17+ and IL-22+ staining cells in
the bronchial lamina propria compared to patientswithout
neutrophilic asthma.35 In addition, IL-22might control the
extent of IFN-γ-mediated lung inflammation and therefore
play a tissue-restricted regulatory role.36 We have previ-
ously reported that an IL-22/Th22 signalling pathway gene
signature was raised in patients with severe neutrophilic
and mixed granulocytic asthma. These patients were also
enriched for a 296 gene signature obtained from atopic der-
matitis patients who were clinical super-responders to the
anti-IL-22 antibody, Fezakinumab.24
In a mouse model of neutrophilic asthma generated

by OVA-LPS challenge, neutrophilia was associated with
raised levels of IL-17A and IL-22 all of which were atten-
uated following ILC depletion using Rag2–/– mice.37 In a
similar model, repeated low dose nasal endotoxin chal-
lenge enhanced AHR, BAL neutrophilia and elevated
levels of IL-17A and IL-22.38 Furthermore, the combination
of IL-22with IL-17, but neither alone, elicitedAHR in naïve
mice and both elicited proinflammatory mediator release
from primaryHBECs. RORγt blockade in a Th2 lowmouse
model of asthma suppressed both IL-17 and IL-22 expres-

sion and attenuated AHR and neutrophilia.39 In contrast,
some mouse studies suggest that IL-22 may have both
inflammatory and anti-inflammatory effects in asthma40
since administration of exogenous IL-22 plays a protective
role in anOVA-induced asthmamodel.41 A similar bidirec-
tional effect of IL-22 is seen in mouse models of COPD42

although we have previously reported elevated levels of
IL-22 and IL-22R mRNA and protein in the airways of
mild-to-moderate COPD patients. In a mouse model pul-
monary neutrophilic inflammation, airway remodelling
and emphysema were reduced and lung function was
improved in IL-22 KO mice exposed to cigarette smoke
compared to WT controls.32
In a similar sized study to the one reported here

for severe asthma, Yan and coworkers43 examined
multi-omics integration of the sputum metagenome,
metabolome, host transcriptome and proteome in COPD
(99 subjects) compared with healthy control subjects
(n = 36). There was a much greater host-microbial asso-
ciation between neutrophilic compared to eosinophilic
COPD.43 This confirms the results seen between the
microbiome and the host transcriptome/proteome in
this study whereby the neutrophilic OAC2 cluster has
much more intense links to the microbiome than the
eosinophilic OAC3 cluster. Interestingly, 3 metage-
nomic/host metabolomic features were associated with
neutrophilic COPD with low levels of indole-3-acetic acid
linked to reduced levels of IL-22 pathway signalling in
response to reducedmicrobialmetabolism.43 The presence
of different levels and types of bacteria between OAC2 and
OAC4may explain the difference in IL-22 association with
neutrophilia seen in this study. The presence ofMoraxella
catarrhalis and, to a lesser extent, Haemophilus influenzae
in OAC2 may have clinical implications. Azithromycin
attenuated airway Haemophilus influenza burden in
persistent uncontrolled asthma without affecting total
or Moraxella catarrhalis bacterial load in the Asthma
and Macrolides: The Azithromycin Efficacy and Safety
(AMAZES) trial.44 Greater activation of Th17 pathways in
OAC4 compared to OAC2 (Table S10) might explain the
lack of microbial dysbiosis observed in OAC4 since the
Th17 pathway has antimicrobial effects. In addition, IL-22
is also produced by Th-17 cells. Clinically, this suggests
that patients in OAC4 might have a preferential response
to anti-IL-22 therapy while those associated with OAC2
might be better treated with antibiotics such as macrolides
that may suppress Haemophilus influenzae andMoraxella
catarrhalis.
Multi-omics analysis is increasingly recognised as a

crucial tool in asthma research due to its comprehen-
sive approach to investigating the disease’s multifaceted
nature.45,46 By incorporating diverse omic fields such as
genomics, transcriptomics and proteomics, it unveils the
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complex molecular interactions at play in asthma’s patho-
genesis and progression. Crucially, multi-omics facilitates
the discovery of new biomarkers and the refinement of
disease phenotyping and endotyping, paving the way for
personalised therapies.45,46 Despite its potential, the full
integration of omics-derived insights into clinical settings
remains a work in progress, underscoring the necessity for
continued research to bridge the gap between scientific
discovery and therapeutic application.
Li et al.47 used SNF and integrated nine omics data

blocks from various anatomical sites in 52women, enhanc-
ing group classification accuracy for COPD patients versus
healthy never-smokers and smokers with normal spirom-
etry. This reduced the necessary group sizes from 30 to
6 for 95% power, with four to seven omics combinations
achieving over 95% accuracy. By enhancing classification
accuracy and reducing the need for larger sample sizes,
this method addresses the issue of detecting significant
findings with smaller groups, mitigating the risk of type
I and type II errors commonly associated with inadequate
sample sizes.
Niazi48 highlightedFDA’s increasing emphasis on omics

technologies; the future of the field lies in embracing a
multi-omics perspective. While Niazi et al.48 underscore
the potential of individual omics approaches, integrat-
ing these diverse datasets holds the key to unlocking a
more comprehensive understanding of complex biological
systems.
Although we acknowledge that larger, more compre-

hensive studies are needed to fully realise the potential of
multi-omics integration, the study conducted here thus far
serves as crucial pilot and scoping exercises. This initial
foray into integrated omics provides a valuable foundation
for future research and paves theway for larger-scale inves-
tigations. By embracing this powerful approach, we can
drive the field, leading to more efficient drug development
and improved patient access to life-changing therapies.
There are several limitations to this study including the

lack of a replication cohort. As far as we are aware there
are no publicly available asthma or severe asthma datasets
that incorporate this depth of omics analysis. Asthma is
a dynamic condition with variable disease trajectories.49
Clusters, if over only one time point, may not capture
the evolving nature of the disease over time and patients
may transition between different phenotypes. Our identi-
fied clusters were mostly based on the UK and European
Caucasian population andmight not generalise well across
diverse populations. Factors such as geographic location,
ethnicity and environmental exposures can influence the
manifestation of asthma and may limit the generalisabil-
ity of findings to broader populations. Small clusters may
lead to overfitting and clusters may not generalise well
to other populations. In addition, we did not undertake

bacterial culture to confirm the bacterial species reported
here. Although we were previously able to demonstrate
enhanced expression of sputum IL-22 protein and the IL-
22/Fezakinumab gene response signature in patients with
severe asthma,24 the numbers in OAC clusters 2 and 4 did
not generate significant differences in this study. Finally,
we may have identified more OAC-associated genes and
proteins if we had used bulk or single cell RNA-sequencing
together with a higher detection of proteins.
Our workflow integrating sputum omics data has gen-

erated interesting clusters of asthma patients that make
sense clinically and also provides novel insight into poten-
tial underlying pathways driving disease. The improved
granularity obtained by fusing datasets probably results
from not having to place subjects into an inappropriate
bin as often happens if using a single omics dataset.47,50
In a previous study combining sputum and serum datasets
in asthma we found that addition of serum proteomics
revealed heterogeneity in the neutrophil cluster; that is,
it was divided into 2 subgroups.50 Including the metage-
nomics data, we have shown the presence of 2 neutrophil
clusters in severe asthma sputum that are associated
with distinct neutrophil subtypes, the presence or not
of pathogenic bacterial species and identified a poten-
tial novel therapeutic target for a subset of patients with
neutrophilic asthma.
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