Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 1995 Dec;52(12):834–841. doi: 10.1136/oem.52.12.834

Acute effects of vibration on digital circulatory function in healthy men.

M Bovenzi 1, M J Griffin 1, C M Ruffell 1
PMCID: PMC1128386  PMID: 8563848

Abstract

OBJECTIVES--To investigate the local and central pathophysiological mechanisms involved in the acute effects of unilateral vibration on the digital circulation of healthy men. METHODS--Finger blood flow (FBF) and finger skin temperature (FST) in thermoneutral conditions, and the percentage change in finger systolic pressure (FSP%) after local cooling from 30 to 10 degrees C were measured in the fingers of both hands in eight men (aged 23-47 years) who were not occupationally exposed to hand transmitted vibration. The right hand was exposed for 30 minutes to sinusoidal vibration with a frequency of 125 Hz and an acceleration of 87.5 m.s-2 rms (root mean square). A control condition consisted of exposure to static load only (10 N) without vibration. The measures of digital circulation were taken before exposure to vibration and static load and at 0, 30, 60, and 90 minutes after the end of each exposure. RESULTS--Exposure to static load caused no significant changes in FBF, FST, or FSP% in either the test right or the control left finger. Immediately after vibration exposure, there was a temporary increase in FBF in the vibrated right finger, whereas the non-vibrated left finger showed no vasodilation. In both the vibrated and non-vibrated fingers, FBF and FST were significantly reduced during the recovery time. A large variability between subjects was found for FBF and, to a lesser extent, for FST. In the vibrated right hand the decrease in FBF was significantly related to cold induced vaso-constriction in the digital vessels. Such a relation was not found in the non-vibrated left hand. CONCLUSIONS--The results of this investigation suggest that acute vibration can disturb the function of digital vessels through two different and opposite mechanisms. Vibration seems to produce local vasodilation and to trigger a central sympathetic reflex vasoconstriction that can be recorded in the ipsilateral and the contralateral finger to vibration. Both local and central vasoconstrictor mechanisms are likely to be involved in the responsiveness to cold found in the digital vessels of a vibrated finger.

Full text

PDF
836

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma T., Ohhashi T., Sakaguchi M. An approach to the pathogenesis of "white finger" induced by vibratory stimulation: acute but sustained changes in vascular responsiveness of canine hindlimb to noradrenaline. Cardiovasc Res. 1980 Dec;14(12):725–730. doi: 10.1093/cvr/14.12.725. [DOI] [PubMed] [Google Scholar]
  2. Azuma T., Ohhashi T., Sakaguchi M. Vibration-induced hyperresponsiveness of arterial smooth muscle to noradrenaline with special reference to Raynaud's phenomenon in vibration disease. Cardiovasc Res. 1978 Dec;12(12):758–764. doi: 10.1093/cvr/12.12.758. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya A., Knapp C. F., McCutcheon E. P., Edwards R. G. Parameters for assessing vibration-induced cardiovascular responses in awake dogs. J Appl Physiol Respir Environ Exerc Physiol. 1977 May;42(5):682–689. doi: 10.1152/jappl.1977.42.5.682. [DOI] [PubMed] [Google Scholar]
  4. Bovenzi M. Cardiovascular responses to autonomic stimuli in workers with vibration-induced white finger. Eur J Appl Physiol Occup Physiol. 1989;59(3):199–208. doi: 10.1007/BF02386188. [DOI] [PubMed] [Google Scholar]
  5. Cleophas T. J., Fennis J. F., van't Laar A. Finger temperature after a finger-cooling test: influence of air temperature and smoking. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1167–1171. doi: 10.1152/jappl.1982.52.5.1167. [DOI] [PubMed] [Google Scholar]
  6. Ekenvall L., Lindblad L. E., Bevegård S., Etzell B. M. High vascular tone but no obliterative lesions in vibration white fingers. Am J Ind Med. 1987;12(1):47–54. doi: 10.1002/ajim.4700120106. [DOI] [PubMed] [Google Scholar]
  7. Furuta M., Sakakibara H., Miyao M., Kondo T., Yamada S. Effect of vibration frequency on finger blood flow. Int Arch Occup Environ Health. 1991;63(3):221–224. doi: 10.1007/BF00381572. [DOI] [PubMed] [Google Scholar]
  8. Färkkilä M., Pyykkö I. Blood flow in the contralateral hand during vibration and hand grip contractions of lumberjacks. Scand J Work Environ Health. 1979 Dec;5(4):368–374. doi: 10.5271/sjweh.2644. [DOI] [PubMed] [Google Scholar]
  9. GREENFIELD A. D., WHITNEY R. J., MOWBRAY J. F. Methods for the investigation of peripheral blood flow. Br Med Bull. 1963 May;19:101–109. doi: 10.1093/oxfordjournals.bmb.a070026. [DOI] [PubMed] [Google Scholar]
  10. Greenstein D., Kester R. C. Acute vibration--its effect on digital blood flow by central and local mechanisms. Proc Inst Mech Eng H. 1992;206(2):105–108. doi: 10.1243/PIME_PROC_1992_206_274_02. [DOI] [PubMed] [Google Scholar]
  11. Griffin M. J. Foundations of hand-transmitted vibration standards. Nagoya J Med Sci. 1994 May;57 (Suppl):147–164. [PubMed] [Google Scholar]
  12. Hyvärinen J., Pyykkö I., Sundberg S. Vibration frequencies and amplitudes in the aetiology of traumatic vasospastic disease. Lancet. 1973 Apr 14;1(7807):791–794. doi: 10.1016/s0140-6736(73)90598-9. [DOI] [PubMed] [Google Scholar]
  13. Kent P., Williams G., Kester R. C. Altered sensitivity of digital blood flow to acute vibration in patients with vasospastic disease. J Biomed Eng. 1991 May;13(3):269–271. doi: 10.1016/0141-5425(91)90141-s. [DOI] [PubMed] [Google Scholar]
  14. Kondo T., Sakakibara H., Miyao M., Akamatsu Y., Yamada S., Nakagawa T., Koike Y. Effect of exposure to hand-transmitted vibration on digital skin temperature change. Ind Health. 1987;25(2):41–53. doi: 10.2486/indhealth.25.41. [DOI] [PubMed] [Google Scholar]
  15. Liedtke A. J., Schmid P. G. Effect of vibration on total vascular resistance in the forelimb of the dog. J Appl Physiol. 1969 Jan;26(1):95–100. doi: 10.1152/jappl.1969.26.1.95. [DOI] [PubMed] [Google Scholar]
  16. Lindblad L. E., Lorenz R. R., Shepherd J. T., Vanhoutte P. M. Effect of vibration on a canine cutaneous artery. Am J Physiol. 1986 Mar;250(3 Pt 2):H519–H523. doi: 10.1152/ajpheart.1986.250.3.H519. [DOI] [PubMed] [Google Scholar]
  17. Lindblad L. E., Lorenz R. R., Shepherd J. T., Vanhoutte P. M. Prolonged vibration of cutaneous artery: absence of persisting aftereffects. Experientia. 1984 Dec 15;40(12):1372–1373. doi: 10.1007/BF01951895. [DOI] [PubMed] [Google Scholar]
  18. Ljung B., Sivertsson R. Vibration-induced inhibition of vascular smooth muscle contraction. Blood Vessels. 1975;12(1):38–52. doi: 10.1159/000158037. [DOI] [PubMed] [Google Scholar]
  19. Lundström R. J. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to vibration. Scand J Work Environ Health. 1986 Aug;12(4 Spec No):413–416. [PubMed] [Google Scholar]
  20. McKenna K. M., Blann A. D., Allen J. A. Vascular responses in chain saw operators. Occup Environ Med. 1994 Jun;51(6):366–370. doi: 10.1136/oem.51.6.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nasu Y. Changes of the skin temperature caused by local vibratory stimulation in normals and patients with vibration syndrome. Yonago Acta Med. 1977 Oct;21(2):83–99. [PubMed] [Google Scholar]
  22. Nielsen S. L., Lassen N. A. Measurement of digital blood pressure after local cooling. J Appl Physiol Respir Environ Exerc Physiol. 1977 Nov;43(5):907–910. doi: 10.1152/jappl.1977.43.5.907. [DOI] [PubMed] [Google Scholar]
  23. Olsen N. Centrally and locally mediated vasomotor activities in Raynaud's phenomenon. Scand J Work Environ Health. 1987 Aug;13(4):309–312. doi: 10.5271/sjweh.2047. [DOI] [PubMed] [Google Scholar]
  24. Olsen N., Hansen S. W. Vasomotor functions of skin microcirculation in vasospastic Raynaud's phenomena. Acta Physiol Scand Suppl. 1991;603:101–107. [PubMed] [Google Scholar]
  25. Olsen N., Petring O. U., Rossing N. Transitory postural vasomotor dysfunction in the finger after short term hand vibration. Br J Ind Med. 1989 Aug;46(8):575–581. doi: 10.1136/oem.46.8.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Olsen N. Vibration aftereffects on vasoconstrictor response to cold in the normal finger. Eur J Appl Physiol Occup Physiol. 1993;66(3):246–248. doi: 10.1007/BF00235101. [DOI] [PubMed] [Google Scholar]
  27. SPURR G. B., HUTT B. K., HORVATH S. M. The effects of age on finger temperature responses to local cooling. Am Heart J. 1955 Oct;50(4):551–555. doi: 10.1016/0002-8703(55)90300-8. [DOI] [PubMed] [Google Scholar]
  28. Sakakibara H., Iwase S., Mano T., Watanabe T., Kobayashi F., Furuta M., Kondo T., Miyao M., Yamada S. Skin sympathetic activity in the tibial nerve triggered by vibration applied to the hand. Int Arch Occup Environ Health. 1990;62(6):455–458. doi: 10.1007/BF00379063. [DOI] [PubMed] [Google Scholar]
  29. Scheffer M., Dupuis H. Effects of combined hand-arm vibration and cold on skin temperature. Int Arch Occup Environ Health. 1989;61(6):375–378. doi: 10.1007/BF00381027. [DOI] [PubMed] [Google Scholar]
  30. Takeuchi T., Futatsuka M., Imanishi H., Yamada S. Pathological changes observed in the finger biopsy of patients with vibration-induced white finger. Scand J Work Environ Health. 1986 Aug;12(4 Spec No):280–283. doi: 10.5271/sjweh.2140. [DOI] [PubMed] [Google Scholar]
  31. Wagner J. A., Horvath S. M. Influences of age and gender on human thermoregulatory responses to cold exposures. J Appl Physiol (1985) 1985 Jan;58(1):180–186. doi: 10.1152/jappl.1985.58.1.180. [DOI] [PubMed] [Google Scholar]
  32. Welsh C. L. The effect of vibration on digital blood flow. Br J Surg. 1980 Oct;67(10):708–710. doi: 10.1002/bjs.1800671009. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES