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Abstract

Children with optic pathway gliomas (OPGs), a low-grade brain tumor associated with 

neurofibromatosis type 1 (NF1-OPG), are at risk for permanent vision loss. While OPG size 

has been associated with vision loss, it is unclear how changes in size, shape, and imaging features 

of OPGs are associated with the likelihood of vision loss. This paper presents a fully automatic 

framework for accurate prediction of visual acuity loss using multi-sequence magnetic resonance 

images (MRIs). Our proposed framework includes a transformer-based segmentation network 

using transfer learning, statistical analysis of radiomic features, and a machine learning method for 

predicting vision loss. Our segmentation network was evaluated on multi-sequence MRIs acquired 

from 75 pediatric subjects with NF1-OPG and obtained an average Dice similarity coefficient of 

0.791. The ability to predict vision loss was evaluated on a subset of 25 subjects with ground truth 

using cross-validation and achieved an average accuracy of 0.8. Analyzing multiple MRI features 

appear to be good indicators of vision loss, potentially permitting early treatment decisions.

I. INTRODUCTION

About one in five children with neurofibromatosis type 1 (NF1), a genetic condition causing 

tumor growth along the nerves, will develop optic pathway gliomas (OPGs). NF1-OPGs 

are low-grade brain tumors affecting the anterior visual pathway (AVP) that includes the 

optic nerves, optic chiasm and optic tracts [1]. Localized along AVP, the tumor has a large 

impact on the quality of life in children with NF1-OPG because it can cause permanent 

vision loss. Children experiencing or at risk for vision loss are treated with chemotherapy. 

However, less than 50% of NF1-OPGs require treatment with chemotherapy [2] and in some 

cases determining clinical deterioration can be very challenging. Thus, determining which 

children with NF1-OPGs are experiencing disease progression and when treatment with 

chemotherapy is needed remains a significant challenge.
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A decline in visual acuity (VA) is a well-established clinical indication to initiate treatment, 

however this can be challenging in young children who may not reliably cooperate with 

testing. Instead, optical coherence tomography (OCT) images of the circumpapillary retinal 

nerve fiber layer (cpRNFL) have been used as an objective measure of damage to the 

AVP and can be complementary to standard VA testing. In this paper, we develop a fully 

automatic end-to-end framework using magnetic resonance imaging (MRI) to predict VA 

loss.

MRI is critical for the diagnosis and monitoring of NF1-OPGs. Generally, an MRI scan 

is performed every 3 to 6 months after diagnosis to monitor for changes in tumor size 

and enhancement. MRI features not measured during the clinical interpretation may contain 

important information relevant to decision-making. However, radiomic features in general 

have not been formally studied in NF1-OPGs.

Generally, radiomic analysis for clinical diagnosis and prognosis is a multi-step process [3], 

[4]. One of the most important steps is an accurate segmentation of a dedicated region of 

interest (ROI) to permit feature extraction. To avoid the inter-observer variability due to 

manual processing and to enable a reliable framework for integration in clinical workflows 

and large-scale studies, automatic segmentation of the ROI is needed. However, automatic 

quantification and segmentation of the AVP is difficult due to its small, elongated, and 

thin morphology. The segmentation is even more challenging in the presence of amorphous 

OPGs along the AVP.

Deep learning approaches have been used to effectively address such challenges in AVP 

segmentation [5]. However, deep learning-based models strongly depend on the quantity 

and quality of their training data. Thus, for rare diseases, such as pediatric brain tumors, 

it is critical to obtain a sufficiently large and diverse supply of data from multiple sources, 

which is both challenging and adds protocol variability to the training data. On the other 

hand, transformer-based models have shown great potential for downstream vision tasks 

such as classification, when pre-trained on larger amounts of data and then transferred to 

smaller datasets [6]. When processing 3D medical imaging data, transformer-based models 

usually need to deal with high-resolution image complexity and limited supply of data. To 

address these challenges and obtain a high-quality segmentation for VA loss prediction, we 

pretrained a variation of Swin transformer for 3D images (SwinUNETR) [7], [8], [9] on a 

large publicly available dataset (BraTS [10], [11]) with adult brain MRIs. Further, only a 

part of the pretrained weights were transferred to be finetuned on our in-house OPG dataset, 

to remedy for large domain gap between these two datasets.

Our work is also inspired by previous reports that demonstrated that overall tumor size 

assessed using volumetric measures of the AVP is associated with vision outcomes in 

children with NF1-OPGs [12]. Thus, the automated volumetric analysis of NF1-OPG 

could advance the clinical care of impacted children. Other indicators related to imaging 

intensity features (diffusion tensor imaging) have also been studied [13]. However, features 

from the most common clinical MRI sequences are not established. To address this gap 

in clinical knowledge, in this work, we perform automated NF1-OPG segmentation with 

comprehensive analysis of features including shape, size, dimension, and intensity from 
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multi-sequence MRI (T1-weighted, T2-weighted and T2-FLAIR) to define predictive scores 

on VA loss.

The main contributions of this work are: 1) fully automatic deep learning-based framework 

for vision outcome prediction using MRI; 2) 3D Swin transformer model with adapted 

transfer learning to tackle the segmentation of small and amorphous structures like AVP; 3) 

analysis of correlation of MRI radiomic features and their predictive performance on vision 

outcome.

II. METHODS

A. Image acquisition and preprocessing

This study includes brain MRI of 75 children with NF1-OPG at the Children’s Hospital of 

Philadelphia. Data were acquired using Siemens scanner (Erlangen, Germany). Each subject 

in the dataset contains multi-sequence MRI: high-resolution (HR) T1-weighted volumetric 

sequence, low-resolution (LR) anisotropic T2-weighted sequence and LR anisotropic T2-

FLAIR sequence (Table I). The AVP ground truth was manually segmented on unprocessed 

T1 sequences by medical experts. This study was conducted retrospectively using human 

subject data and received ethical approval from Institutional Review Boards.

Standard image preprocessing was applied, including N4 bias field correction and intra-

subject co-registration of the three sequences to T1. Preprocessing was carried out using the 

Advanced Normalization Tools [14]. All registered images were resampled to an isotropic 

resolution of 0.84 × 0.84 × 0.84 mm, close to the finest average resolution of T1.

A subset of 25 children among the above subjects underwent neuro-ophthalmic evaluation to 

determine the presence or absence of VA loss as ground truth. OCT images were acquired 

using a spectral-domain OCT device (Spectralis; Heidelberg Engineering, Heidelberg, 

Germany). The VA outcome per-eye (normal or abnormal vision) was determined by both 

VA (≥ 0.2 logarithm of the minimum angle of resolution (logMAR)) and cpRNFL thickness 

(< 80 microns). If abnormal vision occurred in any of the two eyes, the subject was labeled 

as positive for VA loss, which resulted in a balanced dataset of 13 positive and 12 negative 

cases.

The dataset of the BraTS Challenge 2021 [15], [16] was used for supervised pretraining of 

the deep learning model, which includes multi-institutional multi-sequence brain MRI. 1251 

adult cases with 3 glioblastoma labels (necrotic area, peritumoral edematous, enhancing 

tumor) are available. Each case has 4 co-registered sequences (T1, contrast enhanced T1, T2, 

T2-FLAIR), all resampled to an isotropic resolution of 1 mm3 and 240 × 240 × 155 voxels.

B. Transformer-based segmentation network

The principal aim of this paper is to develop a fully automatic end-to-end framework for 

VA loss prediction and seamlessly provide VA loss-related risks from input MRI sequences 

(T1, T2, T2-FLAIR) in real time. The framework is composed of the following parts: i) 

transformer-based segmentation network; ii) radiomic feature extraction and selection using 

statistical analysis; iii) estimator for VA loss prediction (Fig. 1).
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The transformer-based model was pretrained on the large BraTS dataset available through 

the challenge and then finetuned on our specific in-house OPG dataset. This was done to 

facilitate transfer learning of knowledge and achieve efficient AVP segmentation with the 

limited number of available subjects with rare NF1-OPG condition (n=75). To make the 

pretraining samples consistent with our NF1-OPG training data, only the 1251 T1 sequences 

in the BraTS dataset containing whole tumor labels were used, so that our network can 

benefit from pretraining on the same MRI sequence and output, but on a larger dataset.

However, using pretrained weights for all the network layers may not be helpful due to 

the distinct domain gap between images and labels (adult vs. pediatric, glioblastoma vs. 

AVP/OPG). In the pretrained Swin transformer, features learned by later-stage convolutional 

neural network (CNN) layers are highly conditioned by the BraTS segmentation task, which 

could prevent a better fine-tuning on OPG. Thus, partially pretraining the transformer (only 

green blocks in Figure 1) should be more optimal. The effect of training from scratch, 

full pretraining, and partial pretraining is further investigated in the results section (Section 

III-A).

Another well-known challenge with transformer models is related to HR images and the 

gradient corruption problem in a later stage of training. There are several reasons for 

transformer models to be unstable compared to CNN, such as mixed precision, learning 

rate, and batch size [17]. In our segmentation task, the input patch size of a training image 

plays a critical role. A small patch size in each dimension can only cover a very small 

portion of the 3D T1 image, which leads to insufficient contextual information for the 

network to learn. On the other hand, the whole MR image cannot be fed into the network 

due to limitation of computational resources available in a typical research and clinical 

environment. However, it has been demonstrated that increasing patch size can improve the 

stability and performance [18]. Thus, we selected a patch size of 192 × 192 × 192 voxels to 

cover the largest feasible portion of the input images for training on a state-of-the-art GPU 

and to ensure stable training. In addition, the BraTS images were upsampled to match the 

resolution of our training images and the same patch size was applied. The SwinUNETR 

model was implemented in PyTorch-based framework MONAI (https://monai.io).

C. Radiomics and feature selection

Using the segmented AVP volume of interest, we extracted 293 radiomic features using 

the PyRadiomics package [19]. These features are divided into four groups: shape-based 

features (n=14) and three groups of intensity-based features, associated with the three image 

sequences (n=93 features per image sequence). Three additional numerical features were 

also included: brain volume, AVP volume normalized by brain volume (NormVol), and age 

of child. Thus, we ended up with a total of 296 imaging and demographic features. The brain 

volume was computed after skull-stripping.

The following univariate analyses were applied to identify 10 representative features that 

predict VA loss most accurately. Empirically, 10 features are sufficient for a sample size of 

25 for a prediction task. We used leave-one-out cross-validation to investigate the stability 

of the feature selection process. Within each fold, univariate statistical tests (ANOVA F-test) 

were performed to rank the 296 features based on VA labels. After the selection of 10 
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highest-ranked features, strongly correlated features were removed and a smaller set of 

features was used to predict VA loss, as presented in Section III-B.

D. Visual acuity loss prediction

Following feature selection, a linear support vector machine (SVM) was used to predict VA 

loss (normal or abnormal vision). To prevent overfitting and estimate unbiased performance, 

leave-one-out cross-validation was also applied (25 folds). We used the Platt scaling 

for probability calibration to compute the receiver operating characteristic (ROC) curve. 

Univariate analysis, SVM and probability calibration were implemented in scikit-learn [20].

III. RESULTS

A. Anterior visual pathway segmentation

The dataset (n=75) with T1 images and labels was randomly split for 5-fold cross-validation 

into a training (80%) and a validation set (20%). The segmentation network was separately 

trained and validated within each fold, and metrics were aggregated. Randomly cropped 3D 

volumes were used to feed the network. The training was performed on an NVIDIA RTX 

A6000 48G GPU using batch size of 1 and 350 epochs.

The models were evaluated on three metrics. The first is Dice similarity coefficient (DSC). 

The second is normalized surface distance (NSD) [21], and its implementation in [22] 

was used. In our study, the AVP volume is an important clinical feature for patient 

prognosis, thus the metric evaluated was the relative volumetric error (RVE): RV E(S,T) 

= ǁVS − VTǁ/VT, where VS and VT are the volumes of the segmentation and ground truth, 

respectively.

Fig. 2 illustrates qualitative results of the segmented AVP. Table II summarizes quantitative 

results that demonstrate an overall high-quality segmentation. To put these results in 

perspective, in another independent study [5], the human inter-observer variability defined 

by average of DSC was reported to be 0.75 ± 0.06. Previous work on automatic AVP 

segmentation [24] showed a DSC of 0.602±0.201 and a RVE of 0.373 ± 0.293, but on a 

different and smaller dataset.

B. Statistical analysis of vision loss prediction

Based on the averaged cross-validated ranks of features, we identified the following 10 

features to be the most predictive of vision loss. Table III summarizes these features (shape- 

and intensity-based) with associated p-values (rounded to 0.001) using ANOVA F-tests, 

the p-values show greater statistical significance of the observed difference in each feature 

between normal and abnormal vision outcome.

Multiple features were highly correlated with each other and needed to be eliminated. 

After eliminating lower ranking features with Pearson correlation coefficient larger than 

0.8, two final features were included in the classification, namely the sphericity and local 

homogeneity in T2 measured by inverse difference moment normalized. The quantitative 

prediction of our cross-validation resulted in an accuracy of 0.8 with 0.69 sensitivity, 0.92 

specificity and ROC of 0.77.
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IV. DISCUSSION

The segmentation results confirmed that applying directly pretrained model weights may 

not perform well due to a large domain gap between general adult brain tumors and 

pediatric cases with NF1-OPG. In some cases, the knowledge acquired on one dataset for 

one task cannot be transferred directly to another dataset for a different downstream task. 

Using partially randomly initialized weights in the pretrained model can be a remedy for a 

successful transfer learning.

To put our results in perspective, previous work [12] using manually segmented images 

has validated the association of normalized total AVP volume with VA loss. Our study 

confirms this conclusion. Sphericity, which was strongly correlated with volume, was the 

top-ranking feature in the classifier. In addition, we identified new intensity-based features 

from T2-weighted images that may improve the prediction of vision loss. Importantly, our 

approach is automatic and reproducible compared to the variable manual segmentations of 

the AVP, which are unreliable and impractical in clinical practice.

A limitation of this work is the size of the dataset, which was acquired at a single institution. 

This is a general limitation for the advancement of studies of rare diseases. Nevertheless, 

the quality of data curation was a great advantage in this study that demonstrated good 

potential to have an impact on the clinical outcome of children with NF1-OPG. In future, 

we will evaluate the framework on datasets from more institutions that enroll patients with 

NF1-OPG in clinical trials.

V. CONCLUSIONS

The decision on whether to start chemotherapy treatment for children with NF1-OPGs is 

critical and challenging due to the competing risks of treatment versus permanent vision loss 

caused by tumor progression. In this paper, we proposed a deep learning-based automatic 

framework to assist the clinical decision-making. The framework predicts vision loss from 

multi-sequence MRI by performing automatic segmentation of AVP using a transformer-

based model, followed by radiomic features extraction and analysis. Through this work, we 

identified new shape- and intensity-based features of NF1-OPG that have the potential to 

accelerate and guide the treatment of affected children.
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Clinical relevance—

Accurately determining which children with NF1-OPGs are at risk and hence require 

preventive treatment before vision loss remains challenging, towards this we present a 

fully automatic deep learning-based framework for vision outcome prediction, potentially 

permitting early treatment decisions.
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Fig. 1. 
Our proposed end-to-end framework for AVP ROI segmentation and VA loss prediction 

using statisitically signficant radiomic features from the ROI in pediatric brain MRIs.
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Fig. 2. 
Qualitative results of AVP segmentation: selected case has large OPGs (AVP volume=5.095 

ml, DSC=0.877). From left to right: 3 parts of AVP (optic nerves, chiasm and optic tracts) 

shown on different slices of T1 sequence. Labels: segmentation-red, ground truth-green, 

overlap-blue.
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TABLE I

Summary of acquisition protocols: mean ± standard deviation of the resolution across 75 subjects. SR, CR, AR 

refer to sagittal, coronal, axial resolution, respectively.

Sequence T1 T2 T2-FLAIR

SR (mm) 0.91 ± 0.04 0.54 ± 0.05 0.60 ± 0.14

CR (mm) 0.83 ± 0.05 0.69 ± 0.46 0.61 ± 0.14

AR (mm) 0.83 ± 0.06 1.93 ± 0.54 3.69 ± 0.96
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