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Abstract

This mini-review reports the recent advances in biomolecular simulations, particularly for nucleic 

acids, and provides the potential effects of the emerging exascale computing on nucleic acid 

simulations, emphasizing the need for advanced computational strategies to fully exploit this 

technological frontier. Specifically, we introduce recent breakthroughs in computer architectures 

for large-scale biomolecular simulations and review the simulation protocols for nucleic acids 

regarding force fields, enhanced sampling methods, coarse-grained models, and interactions with 

ligands. We also explore the integration of machine learning methods into simulations, which 

promises to significantly enhance the predictive modeling of biomolecules and the analysis of 

complex data generated by the exascale simulations. Finally, we discuss the challenges and 

perspectives for biomolecular simulations as we enter the dawning exascale computing era.

1. Introduction

The emergence of exascale computing capable of quintillion (1018) calculations per second 

marks a new era in high-performance computing (HPC) for biomolecular simulations, 

driven by the unparalleled computational prowess of supercomputers such as Frontier 

from the United States, OceanLight and Tianhe-3 from China, and the anticipated arrival 

of Aurora and El Capitan in the United States, as well as JUPITER in Europe. The pre-

exascale computing has enabled biomolecular simulations that encompass time scales from 

femtoseconds to milliseconds and system sizes that can accommodate large macromolecular 

complexes [1]. The atomistic level of detail is essential for enhancing our understanding of 

biological processes, from protein and RNA folding to the biomolecular interactions within 

cellular environments. For example, Galvanetto et al. simulated biomolecular condensate 

dynamics for millions of atoms over 6.02 microseconds, taking approximately 6 months of 

supercomputer time [2]. By simulating systems from drug-target interactions to large viral 

particle assembly, HPC community made significant contributions to fight the COVID-19 

pandemic [3]. The transition from pre-exascale computing to exascale computing may 

facilitate new breakthroughs in biomolecular simulations [4, 5]. For example, the enhanced 

sampling methods for exascale simulations have advanced the classification of phosphatase 
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and tensin homolog (PTEN) missense variants of uncertain significance in PTEN-related 

cancers [6].

In the emerging era of exascale computing, the utilization of this advanced technology for 

biomolecular simulations, particularly in studying nucleic acids, is beginning to be explored. 

Nucleic acids are crucial for cellular functions at the level of transcription, translation and 

the regulation of gene expression. The implementation of exascale computing is expected 

to enable simulations of nucleic acid systems with unprecedented temporal and spatial 

resolution. This mini-review aims to explore the recent advances of bimolecular simulations 

in the nascent exascale era, especially for nucleic acids. Fig. 1 presents the pertinent 

hardware and software components that are involved in exascale computing for biomolecular 

simulations with potential applications, and subsequent sections will elaborate on specific 

aspects.

2. Biomolecular simulations with next-generation supercomputers

Biomolecular simulations have been profoundly revolutionized by the advent of novel 

computer architectures, such as Anton 3 [7, 8], MODYLAS [9], Alkaid [10], and 

Folding@home [11]. The novel computing architectures have offered unprecedented 

computational speeds and capabilities in handling complex biomolecular systems.

Anton 3 [7, 8] is a specialized supercomputer designed for molecular dynamics (MD) 

simulations with remarkable speed and efficiency, which adopts an advanced chip design 

that leverages increased parallelism and high-speed communication channels. It can perform 

multi-microsecond simulations for systems of more than 50 million atoms that are crucial 

for scientific discovery and drug development.

MODYLAS [9] is an exascale high-performance MD simulation program deployed on the 

Fugaku supercomputer. MODYLAS features highly efficient communication, and maintains 

performance even with high parallelization. It can efficiently handle large systems, such as a 

101.8-million-atom system, distributing data across 32,768 nodes in 2.3 ms per MD step.

Alkaid [10] is an advanced HPC cluster specifically engineered to deliver breakthrough 

performance in MD simulations at the microsecond scale per day for systems comprising 

millions of atoms. Notably, Alkaid achieves this high-level performance with significantly 

reduced power consumption, making it an environmentally conscious alternative to 

traditional supercomputers.

Folding@home [11] represents a novel approach in biomolecular simulations, utilizing a 

massively parallel computing strategy through global volunteer resources. Remarkably, it 

has evolved into the world’s first exascale computing resource for studying the SARS-CoV-2 

virus [11]. Through the Folding@home distributed computing platform, over a million 

citizen scientists contributed to simulating the viral proteome for 0.1 seconds, providing 

insights into the dramatic opening of the apo spike complex and revealing over 50 cryptic 

pockets that may be targeted for antiviral drug design [12].
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The advancement of the above supercomputer architectures highlights a trajectory 

towards specialized, energy-efficient computation with massive parallelism and high-speed 

communication, enabling breakthroughs in scientific discovery and drug development 

[13]. The continued evolution of these architectures promises to address current scaling 

challenges and further enhance our computational capabilities in the exascale era.

3. Force fields for nucleic acids

MD simulations provide detailed insights into biomolecules, achieving high spatial and 

temporal resolution beyond the reach of conventional experimental approaches. The efficacy 

of these simulations is contingent on the precision of the force fields employed. However, 

current force fields rely on Lennard-Jones (LJ) and electrostatic parameters that have not 

been optimized for nucleic acids [14]. Moreover, the structures and dynamics of nucleic 

acids are influenced by the choice of force fields, such as for the DNA mini-dumbbell 

system [15].

While no force field is without imperfections, continuous advancements have been achieved 

in refining the force fields for nucleic acids. The Shaw group refined the AMBER ff14 

RNA force field to more accurately represent nucleobase stacking, base pairing, and 

torsional conformers in RNA structures [16]. Subsequently, they optimized the DNA force 

field parameters to better characterize the thermal stability and conformational flexibility 

of single- and double-stranded DNA structures [17]. Tumuc1, a new DNA force field 

derived from quantum calculations [18], offers improved simulation accuracy for various 

DNA structures and folding processes, enhancing the understanding of DNA structures 

and dynamics through MD simulations. Mlýnský et al. proposed a modification to the 

AMBER OL3 force field by adjusting the nonbonded parameters for the intranucleotide 

base-phosphate interaction to fix steric clashes in RNA nucleotide structures, yielding better 

alignment with experimental data for various RNA motif structures [19].

In contrast to the traditional force fields, a polarizable force field offers the capability of 

dynamically altering the electron distributions within biomolecules, thus more precisely 

replicating the interactions and dynamics. However, limitations still exist for polarizable 

force fields. For example, the current Drude polarizable force field can not accurately model 

the single stranded RNA structures [20] and the duplex DNA structures [21]. Moreover, 

simulations in polarizable force fields are generally slower than in traditional (non-

polarizable) force fields due to the additional complexity and calculations. Consequently, 

the advent of exascale computing presents a promising avenue for the efficient application of 

polarizable force fields, necessitating further optimization of the calculations. Furthermore, 

in the exascale computing era, the long-time simulations of large-scale systems can in turn 

facilitate the validation of the accuracy of the force fields for nucleic acids.

In addition to the accuracy of force fields for nucleic acids, the transition from petascale 

to exascale computing requires new algorithms for force calculation that can exploit the 

vast parallelism for the new supercomputers [4, 5]. For most systems, the computation of 

electrostatic interactions proves to be the most time-intensive and its accuracy is critical 

for modeling the behavior of biomolecular systems [22]. The recent ANKH method [23] 
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emerges as a novel solution, applying an interpolated Ewald strategy to achieve O(N) 

computational complexity. Comparatively, the ANKH method maintains the accuracy seen 

in the traditional methods while offering better scalability and reduced computational 

demands. This makes it particularly advantageous for modern HPC architectures, where 

it can leverage parallelization and GPU capabilities to accommodate the increasing size and 

complexity of biomolecular simulations.

4. Enhanced sampling methods

In the pursuit of harnessing exascale computing capabilities of massively parallel CPUs 

and GPUs, it is also essential to develop enhanced sampling techniques tailored to this 

advanced scale. Various enhanced sampling methods have significantly improved our ability 

to study rare or slow events in molecular systems via MD simulations [24], such as umbrella 

sampling (US), metadynamics (MetaD), replica exchange molecular dynamics (REMD), 

steered molecular dynamics (SMD), adaptive biasing force (ABF), temperature accelerated 

molecular dynamics (TAMD). For example, Sanbonmatsu and colleagues applied MetaD 

to investigate the energy landscape of the SAM-I riboswitch using a modified collective 

variable (CV) based on tertiary contacts, and validated their simulations through SAXS 

experiments [25]. A recent work involving the integration of runtime steering in MD 

simulations presents a paradigm shift from post-simulation analysis to active, on-the-fly 

analysis [26]. This in situ framework enables the early termination or restart of simulations 

based on the real-time analysis of CVs, leading to a more rapid and resource-efficient 

exploration of conformational space. Unlike the centralized data analysis methods, which 

scale poorly on large datasets, the in situ framework’s distributed nature enables scalable and 

efficient MD simulations on HPC systems.

5. Coarse-grained modeling of nucleic acids

Compared with all-atom models, coarse-grained (CG) models for nucleic acids have far 

fewer atoms or beads and a much smoother energy landscape, enabling more efficient 

conformational sampling. Various CG models have been employed in nucleic acid research. 

Some focus on structure prediction, such as SimRNA [27], RNApps [28], IsRNA [29], 

RNAJP [30] for RNA 3D structure prediction and Shi’s model [31] for DNA 3D structure 

prediction. Some other CG models focus on studying the thermodynamic and physical 

properties, and folding processes of nucleic acid structures, such as HiRe-RNA [32] and 

oxRNA [33] for RNA molecules, oxDNA [34] for DNA molecules. For a more extensive 

list, please refer to the provided references [35, 36]. CG models excel in efficiency when 

applied to large systems, such as chromatin, chromosomes, and nanostructures composed of 

DNA or RNA. We will present selected recent studies employing CG models to investigate 

these sizable structures.

Li et al. performed Brownian dynamics simulations at the nucleosome resolution with GPUs 

to study mesoscale chromatin fibers [37]. The results from these simulations align well with 

experimental observations, providing insights into the behavior of chromatin under various 

conditions, including the presence of different salt concentrations and linker histones. This 
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study is instrumental in enhancing the understanding of chromatin’s role in gene regulation 

and related diseases.

Wasim et al. developed a data-driven CG model to study the E. coli chromosome of 4.6 × 

106 base pairs (bp), integrating the harmonic distance restraints converted from the genomic 

contact probability map at 5000-bp resolution derived via the Hi-C experiment, and the 

annotation of chromosome regions at 500-bp resolution obtained from RNA-sequencing data 

[38]. In their model, 500-bp DNA is reduced as a bead and the unreplicated chromosome 

is characterized as a polymer of 9,280 such beads. Through MD simulations, this polymer-

physics based model produced a conformational ensemble that the E. coli chromosome can 

adopt under the experimental constraints, demonstrating that it spontaneously forms distinct 

macrodomains. The authors also extended the model to study the replicating chromosome. 

Prior to this research, Lappala et al. had developed a method known as “4DHiC” [39], which 

incorporated the harmonic distance restraints derived from Hi-C contact maps evolving over 

time into CG simulations. They used this method to spatiotemporally study the structural 

reorganization of the mammalian X chromosome at 200-kb resolution.

Tan et al. developed residue-level CG models for protein, RNA, and DNA for large-scale 

MD simulations, which can be efficiently implemented in the software GENESIS [40]. They 

optimized the algorithms and enhanced the parallelization performance on HPC. Using the 

new models, they studied the large-scale systems including the virus capsid of 1,687,980 CG 

beads and the chromatin of 2,318,796 CG beads corresponding to 1024 nucleosomes and 

219,213 DNA bp.

Wong et al. used the nucleotide-level CG model oxDNA in conjunction with umbrella 

sampling to delineate the free-energy landscapes pertinent to the mechanical deformation 

of large-scale DNA nanostructures [41]. This methodology holds significant promise for 

advancing the field of DNA mechanotechnology and in elucidating the stress dynamics 

during the self-assembly of DNA origami structures. Moreover, an advanced and convenient 

graphical web service for conducting, visualizing, and analyzing oxDNA and oxRNA MD 

simulations can be accessed at OxDNA.org, accelerated by GPU-optimized HPC servers 

[42].

While previous studies have affirmed the efficacy of computational simulations employing 

CG models for investigating large-scale nucleic acid systems, it is important to note that 

these simulations may encounter limitations in terms of accuracy. These limitations arise 

from the inherent coarse-graining of nucleic acids and the omission of crucial environmental 

factors, such as solvent and ions, which can impact the fidelity of the simulations. In 

the forth-coming era of exascale computing, we anticipate the ability to incorporate finer 

details into large-scale simulation systems, allowing for longer and more comprehensive 

simulations.

6. Simulations of nucleic acids with ligands

RNA-targeted drug discovery is an emerging field for designing novel drugs. Though 

structure-based virtual screening (SBVS) using molecular docking has proven useful for 
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identifying potential lead compounds for various RNA targets [43, 44], MD simulations 

offer more accurate predictions of structural, thermodynamic, and kinetic properties albeit 

at greater computational cost. Here we highlight selected recent MD studies focused on 

characterizing RNA-ligand interactions, demonstrating the growing potential and need for 

enhanced computing resource of this versatile technique as we enter exascale computing era.

Paternoga et al. performed all-atom explicit-solvent MD simulations to investigate the 

temperature influence (−180 to 37°C) on bound drug (lincomycin) and water molecules for 

a large ribosomal subunit (LSU) [45]. Their results revealed that while all water molecules 

remained stably bound at 37°C, increased fluctuations occurred at higher temperatures. They 

also found the extent of the fluctuations varied for different water molecules in a manner that 

aligned well with the cryo-EM density map. This suggests a viable strategy for designing 

new antibiotic derivatives by identifying regions within the lead compounds that could be 

modified to displace stably bound waters and interact with the RNA target.

Wang et al. studied the dissociation of cognate and synthetic ligands from a Tte-PreQ1 

riboswitch aptamer system at an all-atom resolution through an artificial intelligence (AI)-

augmented biased MD simulation method [46]. To tackle the challenge of finding a proper 

a priori estimate of the reaction coordinates (RCs), Wang et al. employed an AI-based 

sampling method to automate the learning of the dominant slow degrees of freedom on 

the fly. This scheme iterates between typical MD to generate data and deep learning to 

construct approximate RCs from the data. The optimized RCs were expressed as a linear 

combination of different RNA-ligand heavy atom contacts and were used to run several 

independent biased MD simulations using well-tempered metadynamics to estimate the 

free energy profiles of the systems. The AI-augmented simulations indicated that cognate 

and synthetic ligands have different preferences for two observed dissociation pathways. 

Furthermore, the simulations predicted that mutations of two nucleotides distal to the 

binding site, which exhibited the most significant relative movement during the dissociation 

process, would have differing impacts on the cognate and synthetic ligand-bound systems. 

Subsequent mutagenesis experiments measuring equilibrium dissociation constant KD for 

six mutant RNA-ligand systems validated these predictions. This work demonstrates a 

novel AI-assisted strategy to access the slower timescales of ligand dissociation, which are 

typically inaccessible to standard MD simulations.

The implementation of hardware and software infrastructures to enable exascale computing 

is anticipated to rapidly advance the field [13, 47]. Such platforms not only allow the 

extension of accessible system sizes, timescales, and accuracy of classical MD methods, 

but also facilitate a wider use of hybrid approaches such as quantum mechanics/molecular 

mechanics (QM/MM) simulations.

7. Integration of machine learning in biomolecular simulations

Machine learning tools, such as AlphaFold [48], have been heavily employed for protein 

structure prediction, benefiting from the ability to associate complex patterns in large 

datasets to predict protein folds from sequences. The success of machine learning 

applications in structural biology is underscored by their notable accuracy in predicting 
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protein structures within CASP competitions [49], although, for RNA structure prediction, 

machine learning approaches lag behind conventional methods [50, 51]. Despite the high 

degree of precision in protein structure prediction accuracy afforded by current machine 

learning methodologies, they are limited to yielding a singular, static conformation. This 

constraint renders them inadequate for elucidating the array of transitional structures 

pertinent to the execution of biological functions. Moreover, these methods do not 

furnish insights into dynamic properties, thereby rendering MD simulations an essential 

complement for comprehensive structural analysis [52].

The integration of machine learning with exascale computing is revolutionizing 

biomolecular simulations for protein and nucleic acid folding and dynamics. The 

development of force fields is undergoing a transformation due to machine learning, which 

can predict a wide range of functional forms for energies and forces, thus capturing 

complex multi-body correlations that may be missing in classical force fields [53, 54]. QM 

force fields are instrumental in the detailed modeling of electronic structures pertinent to 

drug design and enzymatic catalysis. However, biomolecular computations utilizing QM 

are notably time-intensive. Recent advancements have seen machine learning methods 

substantially enhance the accuracy and efficiency of calculating QM force fields [55]. 

Similarly, modeling protein in coarse-grained force fields is also being developed using 

machine learning to treat larger systems and longer timescales [56]. For RNA, there exist 

some machine learning-based scoring functions [57, 58]. However, they are generally used 

to score RNA 3D structures and can not be used for MD simulations. Therefore, the 

development of machine learning-based force fields for RNA is an area that is yet to be fully 

explored and realized. Recently, the latest version 8 of the MD package OpenMM has been 

released, which can perform MD simulations with machine learning potentials [59].

Furthermore, advancements in computing power have significantly enhanced the capabilities 

of long MD simulations. This increase in data generation necessitates the development 

of machine learning techniques to make sense of these vast datasets. Machine learning is 

making a significant impact in the analysis of protein dynamics [60, 61]. The future is 

anticipated to see an increased application of machine learning techniques in the analysis 

of extensive data for nucleic acid systems and the development of interpretable machine 

learning models [62].

These advancements resulting from machine learning methods are likely to continue 

evolving, providing deeper insights into the mechanisms underlying protein/nucleic acid-

related diseases and the discovery of new therapeutic approaches. While machine learning 

offers powerful tools for advancing biomolecular sciences, it does not replace but rather 

complements the invaluable physical and chemical knowledge necessary to design and 

interpret complex biomolecular simulations.

8. Challenges and perspectives

While the power of exascale systems is formidable, it brings with it the need for 

advancements in software development, data management, and methodological approaches 

that can fully utilize this power. One of the main challenges lies in the integration of 
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these powerful computing systems into the existing framework of biomolecular simulation. 

Despite the advances, there is still a need for extensive programming and coding efforts to 

adapt or develop new simulation codes that can efficiently harness the computational might 

of exascale computers. The complexity of this task is compounded by the heterogeneous 

architecture of exascale systems, requiring a sophisticated understanding of how to best 

allocate computational tasks to diverse processing units. Another challenge is to ensure 

that the simulation results are not only accurate but also relevant and interpretable in a 

biological context, reflecting the true nature of biological systems. To make simulations 

computationally tractable for large systems, CG models are often used and the impacts 

of the environmental conditions, such as ions and ligands, are not explicitly considered. 

Such simplifications may introduce biases or errors that affect the biological relevance of 

the simulation results, especially considering the complexity of large biological systems. 

Finally, the efficient storage and retrieval of extensive simulation data for public use remain 

formidable challenges amid the emergence of exascale simulations.

Looking to the future, the integration of technologies such as quantum computing with 

exascale systems may further revolutionize the field of biomolecular simulation. The future 

also holds the promise of increasingly sophisticated AI and deep learning models that 

can learn from and interpret the massive datasets generated by exascale simulations. In 

an exascale community, cloud computing will offer scalable and on-demand access to 

unprecedented computational speeds needed for biomedical computing [63].

Specific to nucleic acid simulations, exascale computing power in long-time, large-scale 

atomistic simulations could further significantly enhance our ability to predict RNA folding 

in vivo, including cotranscriptionally folding [64], to integrate experimental information into 

MD simulations for nucleic acid systems [65], to design and simulate RNA/DNA origami 

[66] and RNA riboswitches [67]. Furthermore, the optimization of classical force fields 

and the development of machine learning potentials for nucleic acids fall behind proteins. 

Historically, there has been a greater volume of research and development focused on 

proteins compared to nucleic acids. With the advent of exascale computing power, nucleic 

acid research has promising potential to advance at a rapid pace, especially for the large-

scale structures such as ribosomes [68, 69], nucleosomes, chromatin, and chromosomes 

[70], and even the entirety of a cell [71].
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Figure 1: 
Diagrammatic representation of core hardware and software elements in exascale computing 

systems for biomolecular simulations with potential applications.
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