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Gene body DNA hydroxymethylation
restricts the magnitude of transcriptional
changes during aging

James R. Occean 1, Na Yang 1, Yan Sun2, Marshall S. Dawkins1, Rachel Munk1,
Cedric Belair 1, Showkat Dar 1, Carlos Anerillas 1, Lin Wang1, Changyou Shi1,
Christopher Dunn 3, Michel Bernier 4, Nathan L. Price4, Julie S. Kim2,
Chang-Yi Cui1, Jinshui Fan 5, Moitrayee Bhattacharyya 6, Supriyo De 5,
Manolis Maragkakis 1, Rafael de Cabo 4, Simone Sidoli 2 & Payel Sen 1

DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of
DNA methylation, is typically enriched at enhancers and gene bodies of tran-
scriptionally active and tissue-specific genes. Although aberrant genomic
5hmC has been implicated in age-related diseases, its functional role in aging
remains unknown. Here, using mouse liver and cerebellum as model organs,
we show that 5hmC accumulates in gene bodies associated with tissue-specific
function and restricts the magnitude of gene expression changes with age.
Mechanistically, 5hmCdecreases the bindingof splicing associated factors and
correlates with age-related alternative splicing events. We found that various
age-related contexts, such as prolonged quiescence and senescence, drive the
accumulation of 5hmC with age. We provide evidence that this age-related
transcriptionally restrictive function is conserved inmouse and human tissues.
Ourfindings reveal that 5hmC regulates tissue-specific function andmayplay a
role in longevity.

Aging is characterized by progressive deterioration of physiological
function and is the main risk factor for morbidity andmortality. Aging
tissues display altered transcriptional landscapes1–4, consistent with an
important role for gene regulation in aging. Indeed, epigenetic
alterations, which involve mechanisms that shape chromatin archi-
tecture and modulate gene expression patterns, are a cardinal feature
of aging5–7 and age-related diseases, including cancer8, cardiovascular
disease9, neurodegeneration10, obesity11, and type 2 diabetes11. Due to
the reversible nature of epigenetic marks, they offer promising ther-
apeutic targets for ameliorating age-related functional decline.

In this study, we investigated the role of DNAhydroxymethylation
(5-hydroxymethylcytosine, 5hmC), an understudied epigenetic mark,
in aging. 5hmC is the most abundant oxidative derivative of DNA

methylation (5-methylcytosine, 5mC), a better-known biomarker of
age12–14. The oxidation of 5mC to 5hmC is mediated by the ten-eleven
translocation (TET) Fe2+ 2-oxoglutarate dioxygenase family of
enzymes15,16. Several factorsmay contribute to the formation of 5hmC.
For example, (i) reactive oxygen species (ROS) can form 5hmC via
abstraction of anH-atom from themethyl groupof 5mC17; (ii) vitaminC
can induce DNA demethylation and increase 5hmC by acting as a
cofactor for TET enzymes, facilitating the reduction of Fe3+ to Fe2+ 18,19;
(iii) prolonged quiescence can also increase the level of genomic 5hmC
over time. The latter is hintedbyfindings showing thatDNA replication
(such as in cancer) dilutes 5hmC20–22, and is further supported by the
present study. Additionally, TET proteins are more prone to oxidizing
5mC to 5hmC rather than further oxidizing 5hmC to its oxidative
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product, 5-formylcytosine (5fC), leading to the accumulation of 5hmC
over time23. Moreover, activity of the TET enzymes is dependent on α-
ketoglutarate, a metabolite generated in the tricarboxylic acid cycle
and previously reported to promote longevity in various
organisms24–26. Recent work has also shown that TET enzymes, namely
TET1 and TET2, are required for the age-related protective and
regenerative effects of OSK (Oct4, Sox2, and Klf4)-induced partial
reprogramming in mouse retinal ganglion cells27. These studies
strongly suggest a potential function for 5hmC in aging.

5hmC was formerly regarded as an intermediary step in the DNA
demethylation pathway. Importantly, previously established bisulfite-
based techniques (e.g., methylation arrays, reduced representation
bisulfite sequencing, whole-genome bisulfite sequencing, etc.) cannot
distinguish 5mC from 5hmC28, thereby confounding interpretations
and potentially minimizing the contribution of this modification.
Recent studies have revealed that 5hmC interacts with specific pro-
teins (or readers) unique from those associated with 5mC29. Certain
5hmC interactors, such as UHRF2 (Ubiquitin Like With PHD And Ring
Finger Domains 2), exhibited tissue-specificity and were dynamically
regulated during cellular differentiation29. Concomitantly, multi-tissue
studies have documented the presence of 5hmC at enhancer regions
and gene bodies of tissue-specific and transcriptionally active
genes30–36, suggesting an active regulatory role for the modification.
Additionally, findings from another study indicates a role for 5hmC in
averting lung inflammation by preventing inappropriate intragenic
transcription in smooth muscle cells37.

Here, we surveyedglobal levels of 5hmC inmultiple young andold
organs. We report that 5hmC accumulates in the aged liver, partly due
to prolonged quiescence. Using mouse liver and cerebellum as model

organs,we show that gene body 5hmCplays a critical role in restricting
themagnitude of transcriptional changes during aging, especially over
tissue-specific genes. We validate this finding in published 5hmC
datasets obtained from post-mortem human samples. Lastly, we show
that this transcriptionally restrictive function might be detrimental in
the response to stress, and that reduction of 5hmC under stress con-
ditions is important for longevity-promoting interventions.

Results
Global accumulation of 5hmC in the aging liver
We initiated this study by performing a global assessment of 5mC
and 5hmC in genomic DNA (gDNA) of young (~2–5months) and old
(~18–20months, n = 4 biological replicates per age group) C57BL/6JN
mice tissues of both sexes, including brain (cortex, cerebellum,
hippocampus), heart, lung, liver, spleen, kidney, and muscle (Fig. 1A,
Supplementary Dataset 1 & 2). As reported previously, brain showed
the highest absolute levels of 5hmC (~0.51%)38 by nano liquid chro-
matography tandem mass spectrometry (nLC-MS/MS) followed by
muscle (0.28%), liver (0.24%), kidney (0.17%), heart (0.17%), lung
(0.15%), and spleen (0.11%). Of note, the brain and heart are largely
post-mitotic, and the liver, kidney and lung are mildly proliferative
upon injury, while the spleen is a site of active proliferation; thus,
levels of 5hmC, to some degree, correlate with tissue proliferative
capacity. There were no significant differences in 5mC levels between
old and young for any of the tissues measured; however, a significant
increase in 5hmC levels was detected between the old and young
liver (mean difference = 0.24%). The global increase of 5hmCwith age
without detectable differences in 5mC is concordant with previously
reported LC-MS/MS results from mouse liver tissue39 and does not
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Fig. 1 | Global accumulation of 5hmC in the aging liver. A Schematic of experi-
mental procedure and tissues used to profile global levels of 5mC and 5hmC by
DNA mass spectrometry (nLC-MS/MS). Data are presented as mean ± SEM; statis-
tical significance was assessed using two-sided unpaired Welch’s t-test with Holm-
Šídák correction for multiple comparisons. B Dot blot for 5hmC using increasing
amounts of gDNA isolated from young and old (n = 4 each) mouse livers; + control
is 200 ng of young mouse hippocampus gDNA, – control is water. Signal quantifi-
cations are shown on the right. Data are presented as mean ± SD; statistical

significance was assessed using two-way ANOVA with Šídák correction for multiple
comparisons. AU represents arbitrary fluorescence units. C Representative immu-
nofluorescence microscopy for 5hmC in young and old (n = 2 each) sex-matched
liver sections. The mean 5hmC signal intensity per nucleus is quantified on the
right, using data from 10 fields of view for each of the two young and two old
biological replicates. Horizontal bar represents median; statistical significance was
assessed using two-sided unpaired Welch’s t-test. Source data are provided as a
Source Data file. Illustration credit: Endosymbiont GmbH.
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necessarily preclude a reduction of 5mC at local sites (as we
show below).

We corroborated the age-related increase of 5hmC in the liver
using two orthogonal approaches. Using an antibody against 5hmC
and gDNA derived from mouse liver tissue, we detected significantly
higher 5hmC signal in the old liver by dot blot analysis (Fig. 1B).
Similarly, immunofluorescence microscopy showed significantly
higher 5hmC signal in the nuclei of old liver tissue sections compared
to young (Fig. 1C). This increase of 5hmC with age was observed for
both sexes. Taken together, these data indicate a global increase of
5hmC in the aged liver.

5hmC accumulates at genic regions associated with hepatic
metabolism during aging
We next investigated the genomic localization of 5hmC using hydro-
xymethylated DNA immunoprecipitation followed by sequencing
(hMeDIP-seq). The hMeDIP-seq was performed on gDNA isolated from
the liver of young (~3–4 months) and old (~20–22months) C57BL/6JN
mice by immunoprecipitating (IP) with an antibody targeting 5hmC
(n = 4 biological replicates per age group, Supplementary Fig. 1A,
Supplementary Dataset 1). 10% of gDNA was kept as input and did not
go through IP. IP success was verified by qPCR analysis of exogenous
hydroxymethylated and unmodified DNA spike-in controls that were
added before samples underwent IP (Supplementary Fig. 1B). The
sequencing reads were aligned to the GRCm38/mm10 genome
assembly and were not significantly different between young and old
IP or input samples in terms of sequencing depth, mapped fragments,
fragment length, or duplication rate (Supplementary Fig. 1C–G).

To identify the primary source of variance in genome-wide 5hmC
signal, we performed principal component analysis (PCA) using the
RPKM (reads per kilobase per million) normalized and input sub-
tracted 5hmC samples. Principal component 1 (PC1) accounted for
79.4% of the variation in 5hmC signal and clearly distinguished the
samples by age, designating age as a main contributor to variability in
genome-wide 5hmC signal (Fig. 2A). To identify age-related differen-
tially hydroxymethylated regions (DHMRs), we used QSEA (quantita-
tive sequencing enrichment analysis)40. QSEA identified 16,315 regions
with significantly higher 5hmC enrichment in the old (hyper DHMRs,
fold change [FC] ≥ 2, FDR<0.05) and 13,592 regions with significantly
higher enrichment in young samples (hypo DHMRs, FC≤ −2, FDR <
0.05) (Fig. 2B, Supplementary Dataset 3). 5hmC signal at the center of
thehyperDHMRs showed reproduciblyhigher signal for old compared
to young, and vice versa for hypo DHMRs (Fig. 2C). Figure 2D shows
genome browser example views of hyper and hypo DHMRs.

To gain insight into the functional pathways associated with the
DHMRs, we performed Gene Ontology (GO) analysis using the Geno-
mic Regions Enrichment of Annotations Tool (GREAT)41. The top
pathways enriched for hypo and hyper DHMRs largely constituted
metabolic and mitochondrial-related terms, including fatty acid, small
molecule, and carboxylic acid metabolic processes (Fig. 2E). The
similarity in theGO termsbetween age-related hypo and hyper DHMRs
indicates that 5hmC undergoes dynamic changes at genomic regions
associated with metabolic and mitochondrial function. It is note-
worthy that the liver is a key regulator of whole-bodymetabolism, and
that 5hmC has been previously reported to mark tissue-specific
genes30,31,35, suggesting that age-related differences in 5hmC may, in
general, occur at tissue-specific genes. Consistent with this notion, we
assessed transcription factors (TFs) associated with the top 500 genes
marked by 5hmC in young andold using Lisa (epigenetic Landscape In-
Silico deletion Analysis)42, which revealed motifs for several TFs that
have been previously implicated in liver-specific function, including
peroxisome proliferator-activated receptors (PPARγ)43, T-box tran-
scription factor 3 (TBX3)44,45, and GLIS Family Zinc Finger 2 (GLIS2)46

(Supplementary Fig. 1H). We then annotated the DHMRs to CpG and
genic features, which revealed that most changes were occurring at

regions farthest (>4 kb) from CpG islands (interCGIs) and in gene
bodies, primarily intronic regions (Fig. 2F). Furthermore, when we
traced 5hmC signal from the transcription start site (TSS) to the tran-
scription end site (TES) of all known mm10 genes, we observed a
pronounced and significant accumulation of 5hmC at gene bodies in
the aged liver (Fig. 2G).

Collectively, these analyses show that 5hmC accumulates in the
aged liver genome-wide and undergoes dynamic changes at gene
bodies and regions associated with liver-specific function, primarily
hepatic metabolism.

Gene body 5hmC restricts the magnitude of transcriptional
changes during aging
The age-related accumulation of 5hmC at gene bodies and
metabolism-related loci in the liver prompted us to investigate the
functional role of gene body 5hmC.We analyzed RNA-seq data that we
previously generated from the livers of young (~2months) and old
(~18months, n = 3 biological replicates per age group) mice of both
sexes47 (Supplementary Dataset 1). We first assessed the association
between gene body 5hmC and gene expression “within each age
group” by tracing 5hmC signal over the gene body of protein-coding
genes with low, intermediate, and high expression, ranked according
to the averaged DESeq2 normalized mRNA count (Supplementary
Dataset 4). Consistent with previous studies30–33,35, we observed a
positive association between genebody 5hmCandgene expression for
both young (Fig. 3A, left) and old (Fig. 3A, right) age groups.

We next interrogated the role of gene body 5hmC in transcrip-
tional changes “across age groups”. Spearman’s rank-order correlation
revealed a significant, albeit weak, negative correlation between young
and old mean gene body 5hmC signal and mRNA FC (old vs young)
(Supplementary Fig. 1I, panels 1 and 2, note the negative rho). Similarly,
we also identified a significant, but weak, negative correlation between
5hmC FC (old vs young) andmRNA FC (Supplementary Fig. 1I, panel 3,
note the negative rho). These correlational analyses suggest a rela-
tionship between increased 5hmC levels and lower transcriptional
changes with age, which we investigated further.

Interestingly, we noted that, in the scatter plots (Supplementary
Fig. 1I, panels 1 and 2), genes with lowermean 5hmC signal are broadly
dispersed along the y-axis (mRNA FC) and as 5hmC increases, the
dispersion in mRNA FC decreases and the values center around y = 0
(no difference in mRNA between old and young). We confirmed that
this distributionwas dependent on 5hmC signal by generating random
5hmC values for each gene and correlating them with corresponding
mRNA FC. As shown in Supplementary Fig. 1I (panel 4), this correlation
was not statistically significant and did not mimic the trend in dis-
persion observed between young and old 5hmC levels and mRNA FC.
To validate this observation, we ranked all detectable protein-coding
genes into 100 groups (~169–192 genes per group) based on increasing
mean gene body 5hmC signal. We computed the variance (measure of
dispersion) in mRNA FC for all 100 groups. As speculated, there was a
strong negative correlation between increasing 5hmC signal and var-
iance in mRNA FC for both young and old age groups (Fig. 3B). These
observations led us to speculate that 5hmC may be associated with
lower dispersion and magnitude of transcriptional changes with age.

To illustrate the negative correlation between 5hmC levels and
age-related transcriptional changes, we compared gene expression
“across age groups”. Initially, we ranked and categorized all detectable
protein-coding genes based on FC between old vs young (Fig. 3C,
Supplementary Dataset 4). This categorization delineates genes
downregulated or upregulated with age. We plotted the 5hmC signal
over the gene body of the bottom 33% (downregulated genes,
n = 6340) and top 33% (upregulated genes, n = 6339). Similar to our
correlational analyses in Supplementary Fig. 1I, we found that genes
downregulated with age had pronounced and significantly higher
5hmC in the old (Fig. 3D, left), whereas genes upregulatedwith age had
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an overall low 5hmC profile (Fig. 3D, right) but still experienced a
significant increase in 5hmC with age, albeit with a much smaller
effect size.

To assess the relationship between 5hmC and magnitude of
transcriptional change, we next ranked and categorized all detectable
and protein-coding genes based on absolute FC between old and
young, neglecting direction of change ( | old vs young | , Fig. 3E,

Supplementary Dataset 4). This categorization delineates genes with
minimal or maximal expression changes with age. We observed that
genes with minimal expression change with age (bottom 33%,
n = 6340) had high gene body 5hmC signal in young samples, which
significantly increased in the old (Fig. 3F, left). Conversely, genes with
maximal expression change with age (top 33%, n = 6339) generally had
lower levels of 5hmC (Fig. 3F, right). Given that lowly expressed genes
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typically exhibit lower levels of 5hmC and are susceptible to noise due
to the detection limitations of short-read RNA sequencing, substantial
transcriptional changes observed in these genesmay partly stem from
this inherent variability. Consequently, this could potentially con-
tribute to an amplified change in mRNA expression levels with age. To
address this point, we manipulated 5hmC levels in Fig. 6 and assessed
the magnitude of transcriptional changes among genes with minimal
expression changes.

In summary, these data suggest a dual role for 5hmC in (1)
restricting the magnitude of gene expression changes with age,
potentially preserving homeostatic expression of tissue-specific
genes, and (2) promoting downregulation of transcription which
may decrease tissue-specific functions with age. Notably, in model
organisms lacking 5hmC, such as Caenorhabditis elegans and Droso-
phila melanogaster, another gene body-associated epigenetic mod-
ification, H3K36me3, has been implicated in age-related
transcriptional restriction. In that case, a global reduction in
H3K36me3 leads to higher variability in age-dependent transcrip-
tional changes and shortened lifespan48. Similarly, broad H3K4me3
domains, marking cell identity genes, are linked to “transcriptional
consistency”, akin to transcriptional restriction, across various
human and mouse cells49.

Age-related differences in 5hmC occur without detectable
differences in 5mC
Since 5hmCis a product of 5mCoxidation,we inquiredwhether anage-
related transcriptionally restrictive function for 5hmC would also be
apparent for 5mC. Accordingly, we profiled 5mC genome-wide in
gDNA isolated from liver tissue of the same mice as the hMeDIP-seq
using methylated DNA immunoprecipitation followed by sequencing
(MeDIP-seq) with an antibody targeting 5mC (QC metrics in Supple-
mentary Fig. 2A-G, the MeDIP data is reported in Yang et al.47). In PCA,
PC1 accounted for 31.8% of the variability in genome-wide 5mC signal
and showedamodest clusteringof the samples by age (Supplementary
Fig. 3A). Differential analysis of old vs young using the same QSEA
parameters and threshold as the liver hMeDIP-seq resulted in no
genomic window surviving FDR <0.05. To enable downstream com-
parison with the liver hMeDIP-seq data, we relaxed the threshold for
statistical significance and classified differentially methylated regions
(DMRs) using p <0.05. Using these parameters, we obtained 42,488
totalDMRs, 21,148with greater enrichment in old (FC ≥ 2, p < 0.05) and
21,340 with greater enrichment in young (FC ≤ −2, p < 0.05) (Supple-
mentary Fig. 3B, Supplementary Dataset 3). We emphasize that relax-
ing the statistical thresholdmay lead to some false positive differential
enrichments, and thus, overall 5mC differences between young and
old are modest compared to 5hmC. Nevertheless, verification of the
5mC signal at the center of the hyper DMRs showed reproducibly
higher signal for old compared to young, and vice versa for the hypo
DMRs (Supplementary Fig. 3C, left). Moreover, 5mC signal at the liver
DHMRs (from Fig. 2B) showed that hyper DHMRs had overall higher
5mC signal than hypo DHMRs, indicating that 5mC to 5hmC conver-
sion likely contributed to the higher 5hmC enrichment with age
(Supplementary Fig. 3C, right). Example genome browser views of

hyper and hypo DMRs are shown for individual replicates in Supple-
mentary Fig. 3D. In contrast to the liver DHMRs which were promi-
nently enriched for metabolic terms (Fig. 2E), GO analysis of the liver
DMRs using GREAT revealed terms related to endoplasmic reticulum
stress and neuron differentiation (Supplementary Fig. 3E). Given that
previous work comparing 5mC and 5hmC has shown that 5hmC is a
better marker of tissue-specific genes than 5mC31, it is reasonably
expected that the liver DHMRs would be mostly associated with liver-
specific function (i.e., metabolic function) as opposed to the DMRs.
CpG and genic annotations of the DMRs were comparable with the
DHMRs, wherein most DMRs were associated with interCGIs and gene
bodies, primarily intronic regions (Supplementary Fig. 3F). 5mC signal
at gene bodies of all mm10 genes did not show significant differences
in 5mCwith age (Supplementary Fig. 3G) in contrast to 5hmC (Fig. 2G).
Overall, these results confirm previous reports that 5hmC is a better
marker of tissue-specific genes than 5mC31 and show that age-related
differences in 5hmCoccur without pronounced detectable differences
in 5mC at these locations.

We next assessed whether 5mC also predicted the magnitude of
transcriptional changes with age by tracing 5mC signal at gene bodies
that showminimal andmaximal changes with age (Fig. 3E). In contrast
to what we observed for 5hmC patterns (Fig. 3F), we found no sig-
nificant differences in 5mC signal for either group of genes (Fig. 3G).
Genes that underwent minimal expression changes with age (Fig. 3G,
left), however did trend towards lower 5mC signal in the old, in
agreement with the conversion to 5hmC in the old.

In general, the genes that underwent dramatic transcriptional
changes with age and displayed lower 5hmC signal (Fig. 3F, right),
tended to have significantly shorter 5’ UTRs (untranslated regions), 3’
UTRs, transcript length, CDS (coding sequence) length, and had fewer
number of exons compared to the genes that were transcriptionally
restricted with age (Fig. 3H). This suggests that relatively longer genes
may be more prone to 5hmC accumulation.

Overall, our results show that genes that undergo minimal chan-
ges in expression with age are characterized by a pronounced and
significant accumulation of gene body 5hmC during aging but with a
modest andnon-statistically significant decreaseof 5mC. This suggests
that although 5hmC is catalyzed from 5mC, gene body 5hmC levels are
stably enriched in aged tissues and may possibly exert a greater
influence on age-related transcriptional changes.

Alternative splicing mediates 5hmC’s transcriptionally restric-
tive function through decreased binding of splicing factors
DNA modifications have been shown to influence transcriptional
activity via recruitment of proteins that alter chromatin architecture or
transcription factor binding50. Accordingly, we sought to identify
5hmC-protein interactors as a potentialmechanism through which the
modification might restrict the magnitude of transcriptional changes
with age. We performed oligonucleotide mass spectrometry using
nuclear extracts, prepared from young (~5months) and old
( ~ 20months, n = 4 biological replicates per age group) mouse liver
tissue from both sexes, and three 20 bp DNA oligos that were either
unmodified (C), methylated (5mC), or hydroxymethylated (5hmC) at

Fig. 2 | 5hmCaccumulates at genic regions associatedwithhepaticmetabolism
during aging. A Principal component analysis (PCA) plot using input subtracted
5hmC bigWig files of young and old (n = 4 each) mice liver. B Volcano plot of
differentially hydroxymethylated regions (DHMRs) between old and young (n = 4
each) mouse liver; identified by QSEA with an FDR<0.05. Hypo DHMRs (FC ≤ −2)
are regions with less enrichment in the old and hyper DHMRs (FC ≥ 2) are regions
with higher enrichment in the old.CMetaplots of young and old (n = 4 each)mouse
liver 5hmC signal at the DHMRs identified by QSEA. D Example genome browser
tracks for mouse liver hyper DHMRs (Ppig and an intergenic region) and hypo
DHMRs (Rbm47 and Car5a). E Gene ontology (GO) terms associated with the
DHMRs from (B) using GREAT. The top 5 biological process terms with FDR<0.05

are shown. F Pie charts showing CpG and genic/intergenic annotations of the
DHMRs from (B). G Metaplots of young and old (n = 4 each) mouse liver 5hmC
signal over the gene bodies of all mm10 genes; signal quantifications are shown on
the side. Statistical significance was assessed using two-sided unpaired Welch’s t-
test. For the box plot, the horizontal line within each box represents the 50th, while
the bounds of the box depict the 25th and 75th percentile of the data. The whiskers
extend to the minima (the smallest value within 1.5 times the interquartile range
(IQR) below the first quartile, excluding outliers) and themaxima (the largest value
within 1.5 times the IQR above the third quartile, excluding outliers). Source data
are provided as a Source Data file.
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Fig. 3 | Gene body 5hmC restricts the magnitude of transcriptional changes
during aging. AMetaplots ofmerged young and old (n = 4 each)mouse liver 5hmC
signal over gene bodies with low (n = 6,340), intermediate (n = 6,339), and high
(n = 6,339) average mRNA counts for young (left) and old (right) samples (n = 3
each). B Correlation between average gene body 5hmC signal (100 ranked groups)
and variance inmRNAFC (old vs young) among the genes pergroup for young (left)
and old (right). ρ = Spearman’s correlation coefficient, p-values were derived from
Spearman’s rank correlation. C Box plots showing mRNA FC of old vs young (n = 3
each) for genes downregulated or upregulated with age.DMetaplots of young and
old (n = 4 each) mouse liver 5hmC signal over gene bodies in (C). Quantifications
are depicted below the plot; statistical significance was assessed using two-sided
unpaired Welch’s t-test. E Same as (C) except for genes with minimal or maximal
expression change between old and young (n = 3 each). F Metaplots of young and
old (n = 4each)mouse liver 5hmCsignal over genebodies in (E).Quantifications are

depicted below the plot; statistical significance was assessed using two-sided
unpairedWelch’s t-test.GMetaplots of young and old (n = 4 each)mouse liver 5mC
signal over gene bodies in (E) with minimal (left) and maximal (right) expression
change with age. Quantifications are depicted below the plot; statistical sig-
nificance was assessed using two-sided unpaired Welch’s t-test. H Box plots
showing the distribution of various genic features for the genes with minimal and
maximal expression changes between old vs young (n = 3 each) mice. Statistical
significance was assessed using two-sided unpaired Welch’s t-test. For all box plots
(C–H), the horizontal line within each box represents the 50th, while the bounds of
the box depict the 25th and 75th percentile of the data. The whiskers extend to the
minima (the smallest value within 1.5 times the IQR below the first quartile,
excludingoutliers) and themaxima (the largest valuewithin 1.5 times the IQR above
the third quartile, excluding outliers). Source data are provided as a Source
Data file.
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the cytosine nucleotides (Fig. 4A, Supplementary Dataset 1 and 5). The
oligos were designed using an endogenous DNA sequence within two
hyper DHMRs (Fig. 2B) resulting in 48 pull-down assays with 6 oligos (2
unique regions with 3 modifications) and 8 mouse liver extracts.

Genome browser views of the regions used to design the oligos are
shown in Supplementary Fig. 4A. Following streptavidin capture,
bound peptides from the DNA-pull downs as well as 10% input were
identified by mass spectrometry.
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We identified 221 proteins in the nuclear extract from the old
mouse liver samples that were significantly enriched in the oligo 1
5hmC pull-down and 759 that were depleted (5hmC vs input) (Fig. 4B,
Supplementary Dataset 6). For oligo 2, 245 proteins were enriched in
the 5hmCpull-down and 1027were depleted (Fig. 4C). 49% (154) of the
proteinswere found tobe commonly enriched inbotholigo 1 andoligo
2 5hmCpull-downs (Supplementary Fig. 4B, top), while 53% (619) were
found to be commonly depleted (Supplementary Fig. 4B, bottom). The
common 5hmC-enriched proteins were associated with biological
processes relating to translation, transcription, and chromatin reg-
ulation, while the commonly depleted proteins were associated with
metabolic processes and RNA splicing (Supplementary Fig. 4C).

We next assessed the specificity of protein interactions for 5hmC,
by measuring differences in abundance of these proteins in 5hmC,
5mC, or C pull-downs in the old, as a potential mechanism underlying
the relationship between 5hmC and transcriptional restriction or
propensity for downregulation. For oligo 1, we identified 3 proteins
that were significantly depleted for the 5hmC modification compared
to 5mC and C, which included the NuA4 histone acetyltransferase
complex associated protein, MORF4L2 (Supplementary Fig. 4D, in
red). 12 proteinswere significantly enriched for 5hmC, twoofwhichare
known to be involved in the endoplasmic reticulum stress response
(HYOU151 and TMEM25952, Supplementary Fig. 4D, in red), a condition
previously linked to changes in chromatin architecture53. By contrast,
we found 90 proteins that were significantly enriched in the 5hmC
oligo 1 pull-down and 49 that were depleted compared to 5mC and C
oligos in the young (Supplementary Fig. 4E). GO terms for the proteins
depleted in the 5hmC pull-downs in the old, included RNA splicing,
mRNA processing, and chromatin silencing, while the proteins enri-
ched in the 5hmC pull-down were associated with translation, meta-
bolic and mitochondrial processes (Fig. 4D).

For oligo 2, we identified 3 proteins (PISD, G3BP1, PA2G4) that
were significantly enriched in the 5hmC modification compared to
5mCand C in the old (Supplementary Fig. 4F). Notably, G3BP1 is a DNA
and RNA-binding protein implicated in mRNA decay54 and previously
reported to regulate steady state levels of mRNAs with highly struc-
tured 3’UTRs55. Thus, 5hmC’s binding to G3BP1 would agree with the
correlation observed between 5hmC and age-related transcriptional
restriction (Fig. 3E, F) as well as the modest repressive correlation
observed in Fig. 3C, D. Moreover, GO analysis of the proteins depleted
for 5hmC for oligo 2 were similar to oligo 1 in showing enrichment of
GO terms associated with RNA splicing, mRNA processing, and chro-
matin regulation (Fig. 4D, E). Additionally, comparisons between 5hmC
oligo in the old and 5mC and C in the young revealed that proteins
depleted for 5hmC were involved in mRNA processing and multiple
RNA splicing-related GO terms (Supplementary Fig. 4G and Fig. 4E,
bottom). Altogether, these results show that 5hmC consistently has
decreased affinity for proteins involved in splicing compared to 5mC
and C within aged tissues and during aging.

The prominent depletion of RNA splicing-related proteins in the
aged liver for themajority of the 5hmC oligo pull-downs, coupled with

the pronounced age-related changes in 5hmC at intronic regions
(Fig. 2F) motivated us to investigate alternative splicing during aging.
Using rMATS (Multivariate Analysis of Transcript Splicing)56, we
detected several alternative splicing events between old and young
liver samples in bulk RNA-seq data (Fig. 4F, top, Supplementary
Dataset 7).We found that geneswith relatively higher gene body 5hmC
in the old experienced the most alternative splicing events with age
(Fig. 4F, middle). In agreement, genes that underwent minimal
expression changes with age also experienced the most age-related
alternative splicing events (Fig. 4F, bottom).

Although isolated alternative splicing events can be detected
with short-read sequencing (for example with rMATS), compre-
hensive analysis of splice isoforms is limited. With nanopore
sequencing, where read length is equal to fragment length, entire
transcripts can be sequenced in single reads giving a more detailed
view of isoform diversity. We thus performed direct RNA-seq (dRNA-
seq) with nanopore sequencing (Oxford Nanopore Technologies) on
the MinION platform with livers from young (~2months) and old
(~18months, n = 4 biological replicates per age group) C57BL/6JN
mice of both sexes (Supplementary Dataset 1). dRNA-seq is free from
PCR bias and can provide information on expression, splicing iso-
forms, transcript length and poly A length. PCA plots of normalized
transcript counts clearly segregated the samples by sex in PC1 and
age in PC2 (Supplementary Fig. 4H). A comparison of the differential
isoform usage from long-read data (Supplementary Dataset 8)
showed similar trends to rMATS results (Fig. 4F), thus providing
additional validation of increased alternative splicing events in
genes marked by high 5hmC in old, i.e., genes showing minimal
change with age (Fig. 4G). A few examples of these alternative spli-
cing events are shown in Supplementary Fig. 4I. A survey of the
mean transcript lengths and poly A lengths in these genes showed a
small but significant decrease in overall transcript length (mean
difference = −45.5 bp) but slight increase in poly A length (mean
difference = 13.1) in the old (Fig. 4H, top left and bottom left, Sup-
plementary Dataset 9). The length difference could indicate a pre-
valence of short isoforms or ongoing mRNA decay in old tissue. By
contrast, genes undergoing maximal changes in gene expression
with age showed no evidence of transcript length change (Fig. 4H,
top right plot, Supplementary Dataset 9). The poly A length of this
set of genes however, showed a prominent increase (mean differ-
ence = 48.5) in the old, suggesting that the corresponding tran-
scripts are relatively stabilized. Several studies have shown that
splicing factors can influence transcriptional elongation rates by
modulating pol II elongation, and vice versa57–59. Splicing factors
have also been shown to regulate steady state mRNA levels by
producing alternatively spliced transcripts targeted for degradation
by the nonsense-mediated decay pathway60–63. Together, these
events could help fine-tune homeostatic expression of tissue-
specific genes. Thus, our data suggest a potential role for RNA
splicing inmediating 5hmC’s age-related transcriptionally restrictive
function.

Fig. 4 | Alternative splicing mediates 5hmC’s transcriptionally restrictive
function through decreased binding of splicing factors. A Schematic of oligo
mass-spec experimental procedure.B Volcano plot showing differentially enriched
proteins in old mice for the 5hmC oligo 1 pull-down vs input (n = 4 each). Some
significantly enriched or de-enriched interactors are labeled. C Same as (B) except
for the 5hmC oligo 2 pull-down vs input (n = 4 each) in the old. D GO terms asso-
ciatedwith proteins depleted/de-enrichedor enriched for oligo 1 in theold 5hmCvs
young C and mC (n = 4 each) comparison. E GO terms associated with proteins
depleted/de-enrichedor enriched for oligo 2 in the old 5hmCvs oldC andmC (n = 4
each) comparison (top) and the old 5hmC vs young C and mC (n = 4 each) com-
parison (bottom). F Number of differential splicing events detected in RNA-seq
data between old and young (n = 3 each) samples at p <0.05 using rMATS (top).
Number of events and the unique number of genes are indicated. Number of

differential splicing events grouped by increasing gene body 5hmC signal in old
(middle). Number of differential splicing events grouped by minimal or maximal
expression change with age (bottom). G Bar plots showing differential isoform
usage from dRNA-seq results with young and old (n = 4 each) samples for genes
with minimal and maximal expression changes with age at indicated p-value
thresholds derived from the rMATS statistical model (H) Transcript length (top)
andpolyA length (bottom)distribution for genes that undergominimalormaximal
expression changes between old and young (n = 4 each); statistical significancewas
assessed using Mann–Whitney U test. For (B-E), statistical differences for each
protein were assessed using Welch’s t-test (if the F-test p-value was <0.05); other-
wise, the standard Student’s t-test was used. Source data are provided as a Source
Data file. Illustration credit: Endosymbiont GmbH.
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Quiescence and senescence drive the increase of 5hmCwith age
and impact ATP production
We next sought to address the mechanisms responsible for the
increase of 5hmC in the aged liver. RNA-seq data showed no significant
differences inmRNA levels of 5hmCregulators, i.e.,Tet1,Tet2, andTet3,
between old and young (Fig. 5A). We did, however, detect a significant
age-related decrease in a gene with indirect links to 5hmC, Idh3b
(isocitrate dehydrogenase 3, beta subunit). However, because iso-
citrate dehydrogenases are responsible for converting isocitrate to α-
ketoglutarate, a cofactor for TET enzymes, their age-related decrease

in expression contradicts the increase of 5hmC in the aged liver. We
further investigated whether TET activity was altered in the aged liver
and found no significant differences (Fig. 5B). These results indicate
that the increase of 5hmC with age is not a simple consequence of
cognate enzyme abundances or activity.

Studies have shown that TET proteins have higher enzymatic
activity towards 5mC than 5hmC, and therefore are more prone to
write than erase 5hmC from the genome23. By contrast, DNA replica-
tion has been reported to dilute 5hmC20,21. This led us to hypothesize
that in the aged liver, where cells are not actively dividing and are in
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prolonged quiescence in a nutrient-rich environment (a state that we
have previously called hyper-quiescence47), genomic increases of
5hmC are likely. To test this hypothesis, we induced quiescence in
HepG2 cell lines in two ways: by contact inhibition, a model that
mimics the state of non-dividing organs in two dimensions, and by
serum starvation. We detected a significant increase of 5hmC with
longer times in quiescence induced by contact inhibition (Fig. 5C) but
not serum starvation (Supplementary Fig. 5A), suggesting that the
hyper-quiescent state contributes to the accumulation of 5hmC.

Given that 5hmC marks mitochondrial and metabolic genes in
the aged liver, coupled with the observed correlation between 5hmC
and mRNA downregulation (Fig. 3C, D), we further assessed whether
the increase in 5hmC would influence metabolic function. We
increased 5hmC by contact inhibition-induced quiescence and
observed significantly lower total ATP production compared to
proliferating cells (Fig. 5D). Notably, there were no significant dif-
ferences in the mitochondrial membrane potential of the quiescent
cells compared to proliferating cells (Fig. 5E), suggesting that the
reduced ATP levels with high 5hmC is not due to a loss of mito-
chondrial membrane integrity.

Having observed that cell cycle arrest can drive the increase of
5hmC, we next inquired whether 5hmC levels might also be higher in
senescence, a state of stable cell cycle arrest. Senescent cells are
known to accumulate in aged tissues, contributing to age-related
decline, and thusmay partially contribute to the increase of 5hmCwith
age. We induced senescence in human WI-38 cells by treatment with
etoposide (ETIS), ionizing (γ) radiation (IRIS), or oxidative stress (OSIS)
for 10 days. Cells were confirmed to be in the senescence state by the
level of senescence-associated beta-galactosidase (SA-β-gal) staining
(Supplementary Fig. 5B), increased expression of known senescence-
associated markers p16, p21, and Il-6; downregulation of Lmnb1 (Sup-
plementary Fig. 5C); and reduced BrdU labeling (Supplementary
Fig. 5D). We found that senescent cells, either ETIS, IRIS, or OSIS, had
significantly higher levels of genomic 5hmC compared to proliferating
controls (Fig. 5F). Our results suggest that the accumulation of
senescent cells with agemay contribute to the increase of 5hmC in the
aged liver.

Previous studies have shown that ROS can promote conversion of
5mC to 5hmC17. Consequently, we wondered whether age-related
oxidative stress might also contribute to the accumulation of 5hmC in
aged liver. Indeed, dihydroethidium (DHE) staining of mouse liver
sections revealed significantly higher ROS signal in old liver nuclei
compared to young (Supplementary Fig. 5E and F). To directly assess
whether ROS influences genomic 5hmC, we induced cellular ROS in
HepG2 cells using an acute 2 h treatment with 600 µM hydrogen per-
oxide (H2O2), which was shown to be sufficient to increase ROS levels
(Supplementary Fig. 5G). We also sought to decrease H2O2-induced
ROS by either 24 h sequential or co-treatmentwith a radical scavenger,
N-acetylcysteine amide (NAC), shown to reduce H2O2-induced ROS at

2mM concentration (Supplementary Fig. 5H). We found that acute
H2O2 treatment did not significantly increase 5hmC signal, and redu-
cing ROS, via sequential or co-treatment with NAC, did not influence
genomic 5hmC levels (Supplementary Fig. 5I). Chronic 24 h treatment
with H2O2 also had no effect on 5hmC production (Supplementary
Fig. 5J). Thus, in our hands, ROS itself was not sufficient to increase
global 5hmC levels.

Since quiescence and senescence can influence metabolic and
mitochondrial function independent of changes in 5hmC, we opted to
assess the functional effects of 5hmC using vitamin C (ascorbic acid).
Vitamin C can drive the increase of 5hmC by acting as a co-factor for
the TET proteins and enhancing oxidation of 5mC to 5hmC18,19. Indeed,
we observed a positive association between vitamin C treatment and
5hmC production (Fig. 5G) in HepG2 cells as reported previously in
other models18,19,64. Similar to contact inhibition-induced quiescence
(Fig. 5C–E), increasing 5hmC by vitamin C led to a significant decrease
in ATP production (Fig. 5H) with no significant differences in mito-
chondrial membrane potential (Fig. 5I). Overall, our data suggest that
age-related contexts such as quiescence and senescence, or vitamin C
treatment, but not ROS, can increase 5hmC and downregulate tissue-
specific function.

Altering 5hmC levels affects transcriptional magnitude
To establish a direct link between 5hmC and lower magnitude of
transcriptional changes, we sought to manipulate 5hmC levels and
then assess transcriptional outcomes. Given the increase of 5hmC
associated with quiescence (Fig. 5C) and previous data on DNA
replication-induced reduction of 5hmC levels20–22, we reasoned that
liver regenerationmay dilute 5hmC levels. Accordingly, we performed
70% partial hepatectomy in young (~3–4months) and old
(~20–22months) mice of both sexes (n = 3 biological replicates per
time point, Fig. 6A) and collected liver samples pre-surgery and 48, 72,
96, 120, and 240 h post-surgery, as reported in Yang et al.47. Our pre-
surgery and post-surgery livers were derived from the same animals
(Supplementary Dataset 1). Results from nLC-MS/MS showed a sig-
nificant combined effect of age and regeneration on relative global
5hmC levels (Fig. 6B). Importantly, we observed a progressive dilution
of the age-accumulated 5hmC with liver regeneration. For subsequent
analyses, we used the 240h post-surgery samples as liver regeneration
is deemed complete by that time. Upon regeneration, local 5hmC
levels, measured by hMeDIP-seq, were strongly reduced over gene
bodies (Fig. 6C) and this effect was particularly remarkable for genes
that showed minimal expression changes with age (Fig. 6D, left).
Notably, this gene set had high levels of 5hmC in the old pre-surgery
samples. Interestingly, the dilution of 5hmC after regeneration sig-
nificantly increased themagnitude of transcriptional changes between
old and young in this gene set, consistent with the relationship
observed between 5hmC and transcriptional restriction (Fig. 6E). This
increase of transcriptional magnitude upon regeneration was also

Fig. 5 | Quiescence and senescence drive the increase of 5hmC with age and
impact ATPproduction. ANormalizedmRNA counts in young and old (n = 3 each)
mouse liver for 5hmC-relevant enzymes. Data are presented as mean ± SEM; sta-
tistical significance was assessed usingmultiple two-sided unpaired t-test with FDR
correction (Benjamini, Krieger, and Yekutieli).BTET activity assay in young and old
(n = 4 each) mouse liver lysates. C Dot blot for 5hmC signal using gDNA isolated
from proliferating and contact inhibition-induced quiescent HepG2 cells (n = 3
independent cell cultures sourced from the samevial). + control is 200ngof young
mouse hippocampus gDNA, – control is water. Quantifications are depicted below.
D ATP production assay using proliferating and contact-inhibited quiescent HepG2
cells (n = 3 technical replicates for each of 3 independent cell cultures sourced from
the same vial). E TMRMmitoprobe assay with proliferating and contact-inhibited
quiescent HepG2 cells (n = 3 independent cell cultures sourced from the same vial).
FDot blot of 5hmC using gDNA isolated from proliferating and IRIS, ETIS, andOSIS
WI-38 cells (n = 3 independent cell cultures sourced from a single vial). +control is

50ng of young mouse hippocampus gDNA, – control is water. Quantifications are
shown below. G Dot blot for 5hmC using gDNA isolated from HepG2 cells treated
with vitaminC (n = 2 independent cell cultures sourced froma single vial). + control
is 200 ng of young mouse hippocampus gDNA, – control is water. Quantifications
are depicted below. H ATP production assay using proliferating and vitamin C
treated HepG2 cells (n = 3 technical replicates for each of 3 independent cell cul-
tures sourced from the same vial). I TMRMmitoprobe assay with proliferating and
vitamin C treated HepG2 cells (n = 3 independent cell cultures sourced from the
same vial); statistical significance was assessed using two-sided unpairedWelch’s t-
test. For panels (B–I), data are presented as mean± SD. Statistical significance was
assessed using two-sided unpaired Welch’s t-test, except for dot blots (C, F, G),
which used two-way ANOVA with Tukey’s multiple comparisons post-hoc test. AU
represents arbitrary fluorescence units. Source data are provided as a Source
Data file.
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evident when we ordered genes based on increasing gene body 5hmC
signal in the old samples (Fig. 6F).

To assess the effects of global increase of 5hmCon transcriptional
magnitudes, we mined matched hMeDIP-seq and RNA-seq data from
Peng et al.64, who used untreated and 0.25mM vitamin C treated
human T24 bladder cancer cells (Fig. 6G). We verified that vitamin C

treatment increased 5hmC over bodies of all hg19 genes (Fig. 6H).
Similar to the liver (Fig. 3E, F), we ranked genes by absolute mRNA FC
between vitamin C and control samples to obtain genes that undergo
minimal or maximal expression change with treatment (Fig. 6I, top).
We observed that genes withminimal expression change upon vitamin
C treatment (bottom33%, n = 5605) had higher gene body 5hmC signal
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in the vitamin C treated cells while those with maximal expression
change (top 33%, n = 5604) had relatively lower 5hmC levels (Fig. 6I,
bottom). Consistent with the link between gene body 5hmC and
transcriptional restriction, this relationship was also evident when we
ranked genes by increasing gene body 5hmC levels and we observed a
gradual and significant decrease in transcriptional magnitude (Fig. 6J).

Altogether, these data show that reducing (liver regeneration) or
increasing (vitaminC treatment) 5hmC lead to increases anddecreases
of transcriptionalmagnitudes, respectively. These results indicate that
5hmC plays a pivotal role in regulating transcriptional changes
with age.

5hmC’s transcriptionally restrictive function extends to mouse
cerebellum
5hmC has been previously reported to be highly abundant in brain
tissue65, which was corroborated by our data (Fig. 1A). Therefore, we
wondered whether the transcriptionally restrictive function for 5hmC
observed in the liver (Fig. 3E, F) extended to the brain, even though
brain regions did not show a significant global increase of 5hmC with
age (Fig. 1A). We profiled 5hmC genome-wide using hMeDIP-seq and
generated correspondingRNA-seqdata for the cerebellum fromyoung
(~4–5months) and old (~21–24months) C57BL/6JN mice of both sexes
(n = 4 biological replicates per group, Supplementary Dataset 1, QC
metrics in Supplementary Fig. 6A–G). In PCA, PC1 accounted for 64.8%
of the variation in genome-wide 5hmC signal and clustered the sam-
ples by age (Supplementary Fig. 7A). Differential analysis of old vs
young using QSEA resulted in only 74 genomic windows surviving
FDR <0.05. To enable downstream comparison with the liver hMeDIP-
seq and MeDIP-seq data, we relaxed the threshold for statistical sig-
nificance and classified cerebellum DHMRs using p < 0.05, as per-
formedabove for the liverMeDIP-seqdata.Weemphasize that relaxing
the statistical threshold may lead to some false positive differential
enrichments of 5hmC in the cerebellum. Overall, we conclude that
differences in 5hmC signal in the liver are more prominent than in the
cerebellum. With the relaxed statistical threshold, we obtained 43,153
total DHMRs in the cerebellum, 17,813 with greater enrichment in the
old (FC ≥ 2, p <0.05) and 25,340 with greater enrichment in young
(FC ≤ −2, p <0.05) (Supplementary Fig. 7B, Supplementary Dataset 10).
Verification of the 5hmC signal at the center of the hyper DHMRs
showed reproducibly higher signal for old but not young, and vice
versa for the hypo DHMRs (Supplementary Fig. 7C). Example genome
browser views of hyper and hypo DHMRs in the cerebellum are also
shown for individual replicates in Supplementary Fig. 7D. In accord
with the idea that age-related differences in 5hmC primarily occur at
regions associated with tissue-specific function (Fig. 2E), we observed
that the cerebellum DHMRs were enriched for GO terms relating to
cerebellum and brain function (for example, dendrite extension and
exocytosis of neurotransmitter) (Supplementary Fig. 7E). Annotations
of the cerebellum DHMRs were also comparable with the liver DHMRs

and DMRs, wherein most were associated with interCGIs and gene
bodies, primarily intronic regions (Supplementary Fig. 7F). In contrast
to the liver, we did not observe statistically significant differences in
age-related gene body 5hmC signal of all mm10 genes within the cer-
ebellum, despite a trend indicating a potential increase in 5hmC signal
with age (Supplementary Fig. 7G).

Consistent with our liver data (Fig. 3A) and previous
literature30–33,35, we observed a positive association between 5hmC and
gene expression for both young and old age groups (Supplementary
Fig. 8A). We then traced the gene body 5hmC signal over genes with
minimal and maximal expression changes with age (Supplementary
Dataset 10). We found that genes that remain relatively unchanged in
expression with age had significantly higher 5hmC signal in the old,
whereas genes that underwent dramatic transcriptional changes with
age had no significant differences in 5hmC (Supplementary Fig. 8B).
Similar to the liver, genes that underwent maximal transcriptional
changes with age tended to harbor significantly shorter 5’UTRs,
3’UTRs, transcript length, CDS length, and had fewer exons compared
to the genes that underwent minimal transcriptional changes with age
(Supplementary Fig. 8C).

Collectively, these results reiterate that 5hmCundergoes genome-
wide changes at gene bodies and regions associated with tissue-
specific function and might serve a common transcriptionally restric-
tive function in mouse tissues during aging.

Human tissues also show 5hmC-mediated transcriptional
restriction
We next investigated whether 5hmC’s transcriptionally restrictive
function extended to human tissues—thus indicating a potentially
conserved epigenetic regulation in aging tissues. Accordingly, we
mined publicly available human RNA-seq data from post-mortem
human tissues, brain (cortex), heart (left ventricle), and liver, from the
Genotype-Tissue Expression (GTEx) project66 and two published
human 5hmC datasets (hmC-CATCH-seq31 and 5hmC-Seal30) for the
corresponding tissues (Fig. 7A). Tissue-specific genes were obtained
from the Human Protein Atlas, defined as genes with at least 4-fold
higher expression in the tissue of interest compared to any other tis-
sues (“tissue enriched”) or the average of all other tissues (“tissue
enhanced”)67. We hypothesized that genes that undergo maximal
transcriptional changes with age (regardless of direction) would be
marked by relatively lower levels of 5hmC, whereas tissue-specific
genes (i.e., a combination of tissue enriched and tissue enhanced
genes), which are typically enriched for 5hmC, would undergo rela-
tively lower or no detectable transcriptional changes with age.

To mitigate possibilities of disease-related epigenetic and tran-
scriptional changes,wefilteredoutdonors from theGTExdatasets that
experienced a slow death, defined by death after a long illness with
>1 day of a terminal phase. Sample size distributions by age groups and
sex for the GTEx tissues used in this study are shown in Supplementary

Fig. 6 | Altering 5hmC levels affects transcriptionalmagnitude. A Schematic for
70% partial hepatectomy. B Relative global 5hmC signal for young and old (n = 3
each) mouse liver samples at the indicated times. Data are presented asmean ± SD.
Statistical significance was assessed using two-way ANOVA with Geisser-
Greenhouse correction. CMetaplot of 5hmC signal over bodies of all mm10 genes
for indicated groups. Quantifications are shown on the side. D Metaplot of 5hmC
signal across genes bodies with minimal (left) and maximal (right) expression
changes between old pre-surgery vs young pre-surgery (n = 3 each) mRNA com-
parisons. Quantifications are shown below. For (C-D), statistical significance was
assessed using one-way ANOVA with Tukey’s multiple comparisons post-hoc test.
E Box plots showing transcriptional changes for “genes with minimal change with
age” (fromD, left). Statistical significancewas assessed usingMann–WhitneyU test.
F Box plots showing transcriptional changes for indicated group comparisons.
Statistical significance was assessed using a Mann–Whitney U test with FDR cor-
rection (Benjamini-Hochberg). G Schematic showing vitamin C treatment in T24

bladder cancer cells from Peng et al.64. HMetaplot of 5hmC signal over the bodies
of all hg19 genes in vitamin C-treated T24 cells and untreated controls (n = 1 each).
I Box plots showing absolute mRNA FC distribution of genes with minimal and
maximal expression changes in vitamin C-treated T24 cells vs untreated controls
(n = 2 independent cell cultures)64. Below, metaplot of 5hmC signal across gene
bodies with minimal (left) and maximal (right) expression changes. J Box plots
showing transcriptional changes for all genes in vitamin C-treated T24 cells vs
untreated controls (n = 2 independent cell cultures per group). Statistical sig-
nificance was assessed using one-way ANOVA. For all box plots, the horizontal line
within each box represents the 50th, while the bounds of the box depict the 25th
and 75th percentile of the data. The whiskers extend to the minima (the smallest
value within 1.5 times the IQR below the first quartile, excluding outliers) and the
maxima (the largest value within 1.5 times the IQR above the third quartile,
excluding outliers). Source data are provided as a Source Data file. Illustration
credit: Endosymbiont GmbH.
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differential and brain-specific genes, C heart-differential and heart-specific genes,
and (D) liver-differential and liver-specific genes; statistical significance was
assessed using Mann–Whitney U test. EMetaplots of 5hmC signal from Cui et al.30

over genebodies ofbrain-differential andbrain-specific genes, (F) heart-differential
and heart-specific genes, and (G) liver-differential and liver-specific genes; statis-
tical significance was assessed usingMann–WhitneyU test.HModel illustrating the
transcriptionally restrictive role of 5hmCand its propensity todownregulate tissue-
specific functions with increasing age. Source data are provided as a Source Data
file. Illustration credit: Endosymbiont GmbH.
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Fig. 9A. Overall, we included RNA-seq data from 193 brain donors, 393
heart donors, and 207 liver donors. The sex of most donors for each
tissue type were male.

To identify genes that undergo significant transcriptional changes
during aging, we employed ImpulseDE268, an R Bioconductor package
designed to model longitudinal datasets, i.e., RNA-seq, and capture
permanent and temporal gene expression trajectories. Sex was inclu-
ded as a covariate in all models. For the brain, ImpulseDE2 identified
5,625 genes that underwent significant monotonous expression tra-
jectories with age (5,574 downregulated and 51 upregulated) and one
gene that was transiently upregulated with age (Supplementary
Fig. 9B, left, Supplementary Dataset 11). Given our interest in the
magnitude of transcriptional changes with age, rather than direction,
we classified all the age-related permanently and transiently changing
genes as “brain-differential” genes. In contrast to the brain-differential
genes, “brain-specific” genes did not undergo significant transcrip-
tional changes with age (Supplementary Fig. 9B, middle). As expected,
GO analysis of the brain-specific genes revealed biological processes
associated with nervous system and synaptic transmission, while the
differential genes were enriched for catabolic processes and transport
(Supplementary Fig. 9B, right).

In heart tissue, ImpulseDE2 identified 8,163 genes that underwent
significant monotonic expression changes with age (8,078 down-
regulated, 85 upregulated) and 35 genes with transient expression
changes (33 upregulated, 2 downregulated) (Supplementary Fig. 9C,
left). We detected no significant transcriptional changes in heart-
specific genes with age (Supplementary Fig. 9C, middle). GO analysis
showed that the heart-specific genes were enriched for biological
processes associated with cardiovascular function, while the heart-
differential genes were associated with protein transport, transcrip-
tional and chromatin regulation, and mRNA splicing (Supplementary
Fig. 9C, right).

Lastly, in liver tissue, ImpulseDE2 identified 1,852 genes that
underwent significant monotonous expression changes with age
(1,789 downregulated, 63 upregulated) and 3 genes that underwent
transient expression changes (1 upregulated, 2 downregulated). The
liver-specific genes also showed no significant changes in expression
with age (Supplementary Fig. 9D, middle) and were associated with
metabolic processes, while the liver-differential genes were associated
with cell division,migration, and shape (Supplementary Fig. 9D, right).

We next sought to assess gene body 5hmC levels of the tissue-
specific and tissue-differential genes. Using human 5hmC data
obtained from He et al.31, we observed that genes with significant
transcriptional changes in the brain during aging (brain-differential)
had relatively lower gene body 5hmC signal compared to the brain-
specific genes, with the exception of one sample (Fig. 7B). In heart and
liver tissue, we detected significantly higher 5hmC levels in the tissue-
specific genes compared to the differential genes (Figs. 7C and 6D).
Human 5hmCdata fromCui et al.30 only showed significant differences
between brain-specific and brain-differential genes for two samples
(Fig. 7E). However, all heart and liver samples showed significantly
higher 5hmC levels in the tissue-specific genes compared to the dif-
ferential genes, in agreement with data from He et al.31 (Fig. 7F, G).
Collectively, these results suggest that 5hmC may be a common reg-
ulator of transcriptional restriction in aged mammalian tissues, with
significant differences in the heart and liver, and to a lesser extent, in
the brain.

5hmC is downregulated in response to high-fat diet and
disulfiram
Finally, given the potential implications for 5hmC enrichment at
regions associated with metabolic processes in the aged liver, we
investigated whether levels of this modification were detrimental
under stress conditions known to promote metabolic dysfunctions,
such as high-fat diet (HFD) consumption. Using C57BL/6 Jmice of both

sexes, we assessed the effects of HFD (60% kcal fat, n = 6) compared to
standard diet (SD, 10% kcal fat, n = 6) on global 5hmC levels in the liver
(schematic, Supplementary Fig. 10A). We observed an overall sig-
nificant decreaseof 5hmCsignal inHFD livers (SupplementaryFig. 10B,
C); however, the decrease was strikingly sex-specific. Females on HFD
had significantly lower 5hmC levels compared to SD, whereasmales on
HFD had no significant differences in 5hmC levels (Supplementary
Fig. 10D). Several studies have reported on the sex-specific differences
in metabolic response to HFD69–71. In general, females are typically
more protected, compared to males, from the immediate adverse
effects of HFD. Thus, considering 5hmC’s role in restricting the mag-
nitude of transcriptional changes with age, it is tempting to speculate
that the downregulation of global 5hmC levels in the females might
permit transcriptional flexibility to accommodate the HFD
consumption.

We thus inquired whether treatments known to reduce HFD-
induced metabolic dysfunction would also alter global 5hmC levels.
Disulfiram (DSF), an FDA-approved drug used to treat alcoholism, was
previously shown to harbor metabolic protective effects against HFD
by reducing weight gain, liver steatosis, and promoting insulin
responsiveness72. We assessed global 5hmC levels in liver gDNAof four
different groupsofC57BL/6 Jmiceof both sexes obtained fromBernier
et al.72. Themice were fed either a HFD (3months) then switched to SD
(3 months), HFD for the entire duration of the study (6 months), HFD
with low dosage (100mg/kg body weight/day) of DSF (HFD-L,
6 months), or HFD with high dosage (200mg/kg body weight/day) of
DSF (HFD-H, 6 months) (schematic, Supplementary Fig. 10E). Overall,
we did not observe significant differences in 5hmC between the SD
switch group and the HFD group (Supplementary Fig. 10G), although
the latter tended todecrease 5hmC levels. Interestingly, however,HFD-
L and HFD-H treatment groups had significantly lower 5hmC signal
compared to SD switch and HFD groups. We further assessed whether
these effects were sex-specific and observed a stronger dose-response
relationship for the DSF as well as significantly lower 5hmC in the DSF
groups compared to SD and HFD groups in the males (Supplementary
Fig. 10G, right). Females, however, had comparable levels of 5hmC
among the HFD, HFD-L, and HFD-H treatment groups. Altogether,
these results suggest that altered 5hmC levels may be a potential
mechanism underlying sex-specific response to HFD and that down-
regulation of the modification may have long-term beneficial effects
against HFD, possibly by promoting transcriptional flexibility.

Discussion
We have surveyed global 5mC/5hmC levels and found that 5hmC
accumulates in the aged liver without detectable global differences in
5mC (Fig. 1). We performed genome-wide profiling of 5hmC in mouse
liver and cerebellum and identified specific increases in 5hmC at gene
bodies associated with tissue-specific function (Fig. 2 and Supple-
mentary Fig. 7), in agreementwith previous studies showing that 5hmC
marks tissue-specific genes30,31,35. Surprisingly, we observed that the
age-related accumulation of 5hmC is not driven directly by differences
in expression or enzymatic activity of TET proteins, but rather age-
related contexts such as prolonged quiescence and senescence (Fig. 5
and Supplementary Fig. 5). We further observed that regions gaining
5hmC with age were marked by relatively higher 5mC levels in the
young (Supplementary Fig. 3C, right), consistent with a progressive
conversion of 5mC to 5hmC over time.

It is unclear why age-related differences in 5hmC occur primarily
at tissue-specific genes. A proposed mechanism for 5hmC’s tissue-
specific localization posits that tissue-specific TFs recruit TET proteins
to tissue-specific genes, which then traverse the gene body alongside
transcription elongation complexes to oxidize 5mC to 5hmC73,74.
Indeed, we identified TFs from Lisa analysis (Supplementary Fig. 1H)
that bind genes with high 5hmC signal and are known TET interactors.
For example, PPARγ has been previously shown to interact with TET1
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and direct the local increase of 5hmC levels75. Direct evidence for TET
interactions with the other TFs is currently lacking, however, knock-
down of ZIC2 has been shown to decrease the binding affinity of TET1
in primed epiblast76. Knockdown of Glis2 has also been shown to
decrease 5hmC levels in human embryonic stem cells77, while Tbx3
over-expression results in higher 5hmC levels78. These data suggest
that 5hmC’s enrichment in tissue-specific genes in the livermay be due
to recruitment of TET proteins by TFs. Our data thus provides pre-
liminary evidence for a proposedmodel wherein TET proteins interact
with tissue-specific TFs, resulting in 5hmC localization to tissue-
specific genes73,74 (Supplementary Fig. 1H).

Given that a functional role for 5hmC in aging is largely unknown,
our primary focus in this study was to dissect the role of 5hmC in
transcriptional changes during aging. We found that although 5hmC is
typically enriched in gene bodies of transcriptionally active and tissue-
specific genes, the modification has a conserved function to restrict
the magnitude of transcriptional changes during aging (Figs. 3, 6, 7,
Supplementary Figs. 8 and 9).

5hmC is catalyzed from 5mC and we indeed observed opposing
5mC/5hmC levels at genes with minimal gene expression changes
during aging (Fig. 3F, G), however the changes in 5mC were modest
and not statistically significant, suggesting that changes in 5hmC may
be a better predictor of age-related transcriptional changes. In support
of ourfinding,Tet1/3double-deficientmicehavebeen shown toexhibit
lower transcriptional fidelity in early embryogenesis79. Suggestively,
transcriptional dysregulation is a hallmark of cancer, an age-related
disease with extensively documented TET mutations as well as loss of
5hmC80–82. Perhaps the function of 5hmCmay be primarily protective,
maintaining stable gene expression with age. However, we also spec-
ulate that 5hmC may need to be downregulated to enable proper
transcriptional responses under certain conditions such as HFD and
drug treatment (Supplementary Fig. 10). Therefore, while the mark
promotes transcriptional restriction during aging to preserve tissue
function, it may also hinder the transcriptional flexibility required
during stress.

We recall above that another epigeneticmodification, H3K36me3,
has been previously shown to restrict the magnitude of age-related
transcriptional changes in C. elegans and D. melanogaster, two model
organisms that generally lack (or have undetectable levels of) 5hmC48.
Both H3K36me3 and 5hmC are typically localized at gene bodies,
though H3K36me3 levels have been reported to decline with age83.
Possibly 5hmC may have evolved as an additional regulator of tran-
scriptional restriction in more complex organisms.

We investigated 5hmC-interacting proteins and identified several
factors involved in translation, transcription, and chromatin accessi-
bility (Fig. 4B, C, Supplementary Figs. 4B and 4C). Interestingly, we
observed that 5hmC has lower binding affinity for splicing-associated
factors (Fig. 4D, E) and is positively associatedwith age-related splicing
events (Fig. 4F, G). Similarly, genes with minimal expression changes
with age exhibitedhigher age-related splicing events, as shownbyboth
short-read (Fig. 4F) and long-read (Fig. 4G) sequencing. We speculate
that 5hmCmight exert its transcriptionally restrictive function during
aging through splicing-associated factors; future work aims to test this
notion.

Lastly, we showed that increases in 5hmC are also associated with
lower gene expression in old samples (Fig. 3C, D, Supplementary
Fig. 1I). We demonstrate this by leveraging 5hmC’s tissue-specific
localization and link 5hmC production to downregulation of ATP
production in HepG2 cells (Fig. 5C–E, G–I).

Overall, our work elucidates an important and previously unrec-
ognized function of a relatively understudied epigenetic modification,
5hmC, in aging. Aging is generally associated with global decline of
cellular and organ function and accompanied transcriptional changes.
While 5hmC aids in maintaining homeostasis within an aged environ-
ment by imposing transcriptional restrictions on tissue-specific genes,

prolonged periods of elevated 5hmC levels may potentially down-
regulate tissue-specific functions (Fig. 7H). Additionally, heightened
levels of 5hmC might prove detrimental in the face of stress and
requires a reduction to enable appropriate transcriptional responses in
reaction to environmental cues.

A limitation in our study is the incapacity to explore sex differ-
ences during aging due to a small sample size (n = 2 per sex in each age
group), despite observing some sex-specific variations in 5hmC
(Fig. 2A) andmRNA levels (Supplementary Fig. 4H). These preliminary
observations merit further investigation in future studies.

Methods
Animals
This studywas approvedby theAnimal Care andUseCommittee of the
NIA in Baltimore, MD under Animal Study Protocol number 481-LGG-
2022 (all except DSF experiments) and 444-TGB-2016 (DSF experi-
ments). Young and old inbred C57BL6/JN mice of both sexes were
acquired from the NIA aged rodent colony (https://ros.nia.nih.gov/)
and housed in rooms that were maintained at 22.2 ± 1 °C and 30–70%
humidity. The HFD experiments were performed in Jackson labs. For
DSF experiments, C57BL/6 Jmice (Jackson Laboratory stock#000664)
were single housed under temperature-controlled conditions with 12 h
light/12 h dark cyclewith ad libitumaccess to house chow (2018 Teklad
Global 18% Protein Rodent Diet 2018S, Harlan Teklad) and water.
Routine tests were performed to ensure that mice are pathogen-free
and sentinel cages maintained and tested according to American
Association for Accreditation of Laboratory Animal Care (AAALAC)
criteria. The age and sex information are available in Supplementary
Dataset 1.

Cell lines and culture conditions
HepG2 (ATCC, humanmale) cells were cultured in a 37 °C 5% CO2 and
20%O2 humidified incubatorwithDulbecco’sModified EaglesMedium
(DMEM, Gibco) supplemented with 10% Fetal Bovine Serum (FBS,
Thermo Fisher) and 1% penicillin/streptomycin (Penn/Strep, Thermo
Fisher). WI-38 (Coriell Institute, human female) cells were cultured in a
37 °C 5% CO2 and 20% O2 humidified incubator with DMEM (Gibco)
supplemented with 10% heat-inactivated FBS (Gibco), 0.5% Penn/Strep
(Gibco), sodium pyruvate (Gibco), and non-essential amino acids
(Gibco). We also mined hMeDIP-seq and RNA-seq data from Peng
et al.64 who used T24 (human male) bladder carcinoma cells with and
without vitamin C treatment.

High-fat diet and disulfiram treatment
FormiceonHFD, two regimenswere used. In thefirst regimen, the diet
was applied early in life and for a short duration. C57BL/6 J male and
female mice (n = 3 each, Jackson Laboratory stock #000664) at
6weeks of agewere fedwithResearchDiets, Inc.D12492i (60 kcal% fat)
diet up to 11 weeks of age. An equal number of control mice of the
same genotype and sex were fed with Research Diets, Inc. D12450Bi
(10 kcal% fat) up to 11 weeks of age.Micewere then sacrificed, and their
livers harvested. In the second regimen, diet was applied later and for
longer duration. Beginning at 9months of age, mice were maintained
on a HFD consisting of AIN-93G modified to provide 60% of calories
from fat (HFD; carbohydrate:protein:fat ratio of 16:23:61) for the next
3months, after which animals were randomly divided into four groups
(n = 9, 6 males and 3 females). Group 1, was continued on HFD diet;
Group 2, was switched to standard AIN-93G diet (SD, carbohy-
drate:protein:fat ratio of 64:19:17), Group 3was fedHFD supplemented
with a low dose of DSF (100mg/kg body weight/day DSF; HFDL); and
Group 4 was fed HFD supplemented with a high dose of DSF (200mg/
kg body weight/day DSF; HFDH). All animals were sacrificed after an
additional 3months of treatment and livers were collected for further
analysis. DSF (Sigma-Aldrich, St-Louis, MO) was included in HFD-
modified AIN-93G diet (Dyets, Inc., Bethlehem, PA) at a concentration
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of 2.33 g/kg (low dose, HFDL) and 2.67 g/kg (high dose, HFDH),
respectively.

Partial hepatectomy surgery
70% partial hepatectomy was performed in accordance with the
guidelines fromMitchell et al.84 andpreviously reported in Yang et al.47.
Briefly, liver lobes were removed and labeled as “pre-surgery”. After
indicated post-surgery time, animals were sacrificed by carbon dioxide
asphyxiation and cervical dislocation. The liver was dissected and
frozen in isopentane chilled with liquid nitrogen and stored in −80 °C.

Induction of quiescence
To induce quiescence of HepG2 cells by serum starvation, ~70% con-
fluent plates of HepG2 cells were changed to DMEM without FBS for
1–3 days. To induce quiescence by contact inhibition, cells were
allowed to growuntil they reached 100%confluency. The cultureswere
maintained for 2, 7 or 14 days with media change (with serum) every
two days. Proliferating controls were included for both serum starva-
tion and contact inhibition experiments.

Induction of senescence
WI-38 cells weremaintained at low population doubling (PD) levels for
proliferating conditions. Cellular senescence was triggered by differ-
ent methods. ETIS was achieved by culturing for 10 days in the pre-
sence of etoposide (Selleckchem) at 50 µM, with medium refreshed
every 3 days. IRIS was achieved by exposing cells to 15 Gray (Gy) fol-
lowed by culturing for 10 days. OSIS was achieved by adding 0.75mM
H2O2 directly to cells in complete medium and replacing with fresh
medium 2h later.

RT-qPCR for senescent cells
Cells were lysed in either Tri-Reagent (Invitrogen) or RLT buffer (Qia-
gen), and the lysate was processedwith theQIAcube (Qiagen) to purify
total RNA, which was then reverse-transcribed (RT) to create cDNA
using Maxima reverse transcriptase (Thermo Fisher Scientific) and
random hexamers. Real-time, quantitative (q)PCR analysis was then
performed using SYBR Green mix (Kapa Biosystems), and the relative
expression was determined by the 2-ΔΔCtmethod on a QuantStudio 6
qPCRmachine (Thermo Fisher). The levels of mRNAs were normalized
to human Actb.

BrdU assay
~125,000 cells were seeded in 6-well plates and incubated with BrdU
diluted in DMEM with 10% FBS for 24h. BrdU incorporation was
measured following the manufacturer’s protocol (Cell Signaling
Technology). Briefly, cells were fixed and denatured before the addi-
tion of anti-BrdU mouse monoclonal antibody. BrdU incorporation
was detected by measuring absorbance at 450 nm using a GloMax
plate reader (Promega).

Induction and neutralization of ROS in cell culture
To induce acute ROS, ~1 × 106 HepG2 cells were treated with 600 µM
H2O2 (Sigma) in serum-free DMEM for 2 h then changed into fresh
media (without serum) for 24 h. To neutralize ROS, HepG2 cells were
either co-treated or sequentially treated with H2O2 and
N-acetylcysteine amide (NAC). For co-treatment, cells were first trea-
tedwith 600 µMH2O2 and 2mMNAC in serum-freeDMEMfor 2 h, then
washed twice and incubated with 2mM NAC in serum-free DMEM for
24 h. Sequential treatment was performed by first treating cells with
600 µM H2O2 in serum-free DMEM for 2 h, then washed twice and
incubated with 2mM NAC in serum-free DMEM for 24 h. DHE staining
was also performed in parallel for the ROS neutralization experiments,
using separate wells, as described in the “ROS detection in cells and
tissue sections” below. To induce chronic ROS, ~ 1 × 106 HepG2 cells
were treatedwith 20 µMH2O2 in serum-freeDMEM for 24 h. As control,

cells were kept in serum-free DMEM with DMSO for the duration of
treatment.

Treatment with Vitamin C
To induce production of 5hmC by vitamin C, ~1 × 106 HepG2 cells were
treated with vitamin C (Sodium L-ascorbate, Sigma) at concentrations
of 30, 75, 150, and 300 µM in DMEM with serum for 24 h.

Genomic DNA isolation for dot blots
gDNA was isolated from ~25mg of frozen tissue or ~1 × 106 HepG2 cells
suspended in 200 µL of PBS using the Quick-DNA Miniprep Plus kit
(Zymo Research) following the manufacturer’s protocol with an over-
night (for frozen tissue) or 10min (for cells) proteinase Kdigestion. The
amount and quality of extracted DNA was assessed using Qubit HS
assay kit (Thermo Fisher) and NanoDrop One (Thermo Fisher).

Quantification of cytosine modification by mass spec
gDNA was isolated from ~25mg tissue following instructions on the
Quick-DNA Miniprep Plus Kit using an overnight proteinase K diges-
tion. The amount of DNA was quantified using a Nanodrop and sam-
ples were verified to have a 260/280 of >1.8 and a 260/230 of ≥ 2.
~2.5 ug of DNA in a volume of 130 µL was sheared to ~800 bp using a
S220 focused ultrasonicator (Covaris) and the following parameters:
peak incident power 105, duty factor 5%, cycles per burst 200, treat-
ment time: 50 s. The shearing was verified by phenol-chloroform
purification followed by ethanol precipitation and running on a 1%
agarose gel.

Cytosine methylation and hydroxymethylation were quantified
using a protocol modified from Sun et al.85,86. Briefly, DNA from sam-
ples indicated in (Supplementary Dataset 1) was digested into single
nucleosides by using the Nucleoside Digestion Mix (New England
Biolabs) enzyme cocktail at 37 °C for 2 h. 5mC was identified and
quantified by nLC-MS/MS. Using a Dionex RSLC Ultimate 3000
(Thermo Scientific, San Jose, CA, USA), nLC was configured with a
300 µm ID x0.5 cm C18 trap column (Dionex, Thermo Scientific) and a
75 µm IDx 25 cm Reprosil-Pur C18-AQ (3 µm; Dr. Maisch GmbH, Ger-
many) analytical nano-column were used to identify and quantify the
absolute value of 5mC and 5hmC as shown in Fig. 1A. nLC was con-
figured with a two-column system consisting of a 75 µm ID x 1 cmpoly-
graphitic carbon resin (PGC, HyperCarb, Thermo Scientific) trap col-
umn and a 75 µm IDx 25 cm PGC analytical nano-column for relative
5hmC comparison between young and old (n = 3 each) mice in liver
samples shown in Fig. 6B. Except for the C18 trap column (cartridge
from Thermo Scientific), all other columns were packed in-house. nLC
was coupled online to an Orbitrap Fusion Lumos mass spectrometer
(Thermo Scientific). The spray voltage was set to 2.3 kV and the tem-
perature of the heated capillary was set to 275 °C. PGC columns setup
was used for relative 5mC and 5hmC analysis. The full scan range of
110 − 1200m/z was acquired in the Orbitrap at a resolution 120,000.
Targeted scans were performed for MS/MS fragmentation using an
HCD energy of 30 V and acquired in the Orbitrap at a resolution of
7,500. To accurately quantitate the absolute value, C18 columns are
used, and the instrument was optimized to fragment the protonated
nucleosides deoxycytidine (dC), deoxy-methylcytidine (dmC) and
deoxy- hydroxymethylcytosine (dhmC) into protonated nucleobases
C, 5mC, and 5hmC with m/z at 112.0505, 126.0662, and 142.0611,
respectively. The full scan range was 110 − 600m/z acquired in the
Orbitrap at a resolution 120,000. The source fragmentation energy
was set at 30 V and RF lens % was set at 50, which gives >90% gen-
eration of nucleobases. To accurately quantify 5mC and 5hmC, a cali-
bration curve of 5mC% and 5hmC% were constructed by analyzing
samples with varying amount of 5mC and 5hmC standard in the pre-
sence of constant C standard and were used to correct the observed
5mC% and 5hmC% from the real samples. Quantification was obtained
by extracting the ion chromatograms of C, 5mC and 5hmC using
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Skyline software. 5mCand 5hmC levelswere calculated by dividing the
area under the curve of the given species by the total area of all (un)
modified C quantified.

Immunofluorescence
Fresh liver tissues were fixed with 4% methanol-free formaldehyde at
4 °C overnight and then immersed in 20% sucrose solution at 4 °C
overnight. The tissues were embedded in OCT compound, frozen at
−80 °C, and then cut into 12 µm sections onto positively charged slides
in a cryostat chamber. The sections were permeabilized with 0.2%
Triton X-100 in Tris Buffered Saline (TBS) for 5min at room tem-
perature. Antigen retrieval steps were performed based on previous
publication87. Briefly, sectionswere treatedwith 2Nhydrochloric (HCl)
acid in PBS for 30min in a 37 °C incubator. After denaturation, sections
were neutralized in two successive roundswith 0.1M Tris-HCl (pH: 7.5)
in PBS for 5min. The sections were blocked for 1 h at room tempera-
ture with 2% normal goat serum (Vector Biolabs) then incubated with
2 µg/mL dilution of 5hmC antibody (Active Motif, 39092) overnight at
4 °C in a humidified chamber. After three rounds of washes with TBS
(supplemented with 0.1% Tween-20, TBST; Pierce), the sections were
incubated with a secondary antibody conjugated to a fluorescent dye
(Thermo Fisher, A-11008) for 1 h at room temperature. Lastly, sections
were stainedwith 5 µg/mLDAPI in TBS for 1 h at room temperature in a
humidified chamber. Following washes with TBS, the sections were
mounted with Epredia Lab Vision PermaFluor Aqueous Mounting
Medium (Fisher Scientific) then photographed using a Zeiss LSM 710
confocalmicroscope. Intensitieswere quantifiedusing ImageJ v1.51 g88.

Dot blot
The dot blot assay was adapted from a previous publication15. 2 µL of
gDNA (containing indicated amounts of DNA) was denatured with
0.5 N NaOH for 15min then spotted on a nitrocellulose blotting
membrane (GE Healthcare) and cross-linked at 120,000 microjoules
for 20min using a Stratalinker® UV Crosslinker 1800 (Stratagene). As a
negative control,we included 2 µLofwater. Unless otherwise specified,
2 µL containing indicated amounts of gDNA isolated from a young
mouse hippocampus was used as positive control. Themembrane was
then blocked in 5% skimmed milk in TBS containing 0.1% Tween 20
(TBST) for 1 h at room temperature followed by incubation with
1:10,000 dilution of 5hmC antibody (ActiveMotif, 39069) overnight at
4 °C. After three rounds of washes, the membrane was incubated with
1:10,000 dilution of HRP-conjugated anti-rabbit IgG (BioRad, 1706515)
for 1 h at room temperature. Digital ECL substrate solution (Kindle
Biosciences) was added to the membrane before detection with a
ChemiDoc MP Imaging System (BioRad). The dot blot intensity was
quantified using ImageJ v1.51 g88.

ROS detection in cells and tissue sections
Fresh liver tissues were embedded in OCT compoundwithout fixation,
frozen at −80 °C, then cut into 12 µm sections onto positively charged
microscope slides (Fisher Scientific) in a cryostat chamber. Slides were
rinsed with H2O for 30 s then incubated with 50 µM dihydroethidium
staining solution (DHE, Thermo Fisher) in 1x PBS at 37 °C for 30min in
adarkhumidified chamber. Slideswerewashed twice then stainedwith
5 µg/mL DAPI in 1x PBS for 30min at room temperature. The sections
weremountedwith Epredia LabVision PermaFluor AqueousMounting
Medium (Fisher Scientific) then photographed using a Zeiss LSM 710
confocalmicroscope. Intensitieswere quantifiedusing ImageJ v1.51 g88.

For ROS detection in cells, 70–80% confluent HepG2 cells in µ-
Slides (Ibidi, 80826) were treated with H2O2 (Sigma) in serum-free
DMEM for 2 h at concentrations of 0, 10, 50, 100, 200, and 600 µM.
Cells werewashed twicewith PBS and then incubatedwith 8 µMofDHE
(Thermo Fisher) in serum-free DMEM for 15min at 37 °C. After washes,
cells were incubated with DAPI (1:1000) at 37 °C for 30min and then
photographed using a Zeiss LSM 710 confocal microscope.

ATP assay
Proliferating, quiescent (contact-inhibited for 14 days), or H2O2 treated
HepG2 cells (n = 3 biological replicates)were trypsinized, counted, and
1 × 106 cells were pelleted. The cell pellets were resuspended in 350 µL
DMEMmedium, and 100 µLwasdistributed to 3wells of a 96-well plate
for each sample (technical replicates, n = 3 per biological replicates).
100μL of CellTiter-Glo reagent (Promega)was then added to eachwell
containing cell suspension. The contents were mixed for 2min on an
orbital shaker to induce cell lysis. The plate was then incubated at
room temperature for 10min to stabilize the luminescent signal and
recordings were taken on a GloMax Discover System (Promega).

TMRM assay
After contact inhibition or treatment of HepG2 cells with vitamin C,
cells were resuspended in 1mL PBS at ~1 × 106 cells/mL. TMRM was
added to a final concentration of 20 nM and incubated for 30min at
37 °C, 5% CO2. For CCCP control samples, CCCP was added to a final
concentration of 50nM to the cells, incubated for 5min at 37 °C, 5%
CO2 and then treatedwith 20 nMTMRM reagent for 30min. Cells were
analyzed on a BD Symphony flow cytometer with 561 nm excitation.

Nuclei preparation
Nuclei preparations were performed by douncing frozen liver tissue in
nuclei preparation buffer containing 10mM Tris-HCl (pH 7.4), 10mM
NaCl, 3mMMgCl2, 0.1% Tween 20, 0.1% NP-40, 0.01% digitonin, 1mM
BSA, and supplemented with 1x Halt protease and phosphatase inhi-
bitor cocktail (Thermo Fisher) and 1mM sodium butyrate. The
resulting homogenate was filtered through a 30 µm cell strainer then
washed using wash buffer containing 10mM Tris-HCl (pH 7.4), 10mM
NaCl, 3mMMgCl2, 0.1% Tween 20, 1% BSA, and supplemented with 1x
Halt protease and phosphatase inhibitor cocktail (Thermo Fisher) and
1mM sodium butyrate to stop lysis. After centrifugation, the nuclei
pellet was washed thrice in nuclei suspension buffer containing PBS,
2% BSA, 3mM MgCl2, and supplemented with 1x Halt protease and
phosphatase inhibitor cocktail (Thermo Fisher) and 1mM sodium
butyrate.

TET activity assays
Nuclei preparations weremade asmentioned above. The nuclei pellets
were lysed in nuclei lysis buffer containing 10mM Tris-HCl (pH 7.4),
100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% sodium-deoxycholate,
0.5% N-lauroylsarcosine, and supplemented with 1x Halt protease and
phosphatase inhibitor cocktail (Thermo Fisher) and 1mM sodium
butyrate, and then sheared to <500bp using a Covaris S220 Ultra-
sonicator (peak incident power 140, 200 cycles per burst, duty factor
5%, 10min). The protein was quantified using the Pierce™ BCA Protein
Assay Kit (Thermo Fisher) and ~ 10 µg total protein was used to mea-
sure TET activity using the TET Hydroxylase Activity Quantification Kit
(Abcam) following the manufacturer’s protocol.

DNA oligo pulldown mass spectrometry
Nuclei preparations were made as mentioned above. Following a
published protocol29, the nuclei pellet was then lysed on ice for 90min
in 2 volumes of nuclei lysis buffer containing 420mM NaCl, 20mM
HEPES, 20% v/v glycerol, 2mM MgCl2, 0.2mM EDTA, 0.1% NP40,
0.5mM DTT, and supplemented with 1x Halt protease and phospha-
tase inhibitor cocktail (Thermo Fisher) and 1mM sodium butyrate.
Prior to protein quantification, sampleswere pre-cleared usingwashed
DynabeadsMyOneC-1 beads (ThermoFisher) suspended innuclei lysis
buffer. DNA pull-downs were performed as described in ref. 29 with
10 ug of DNA oligo for each pull-down (unmodified, methylated, and
hydroxymethylated; GenScript) and 400ug of nuclear extract. 10%
lysate was saved as “input”.

Proteins were eluted from beads at room temperature with mix-
ing for 20min and at 65 °C for 10min on a thermomixer (800 RPM) in
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two successive roundsusing 100 µLofbiotin elutionbuffer (12.5mMD-
biotin, 7.5mM HEPES pH 7.5, 75mM NaCl, 1.5mM EDTA, 0.15% SDS,
0.075% sarkosyl, and 0.02% sodium deoxycholate). The two eluents
were pooled and precipitated overnight at 4 °C with chilled tri-
chloroacetic acid (25% v/v). Proteins were pelleted at 16,000g in 4 °C
for 30min. The supernatant was removed, the pellet washed oncewith
ice-cold acetone, then centrifuged again at 16,000 g in 4 °C for 5min
and air dried for 1min. An S-Trap column cleanup was performed by
loading the protein pellet resuspended in 165 µL of added loading
buffer (90%methanol and 10mM sodium bicarbonate pH 8.0) onto an
S-TrapMicro SpinColumn (Protifi). The columnwaswashed twicewith
150 µL of loading buffer and gently centrifuged before overnight
digestion at 37 °C with 0.1 µg/µL of trypsin (Promega) in 50mM
ammonium bicarbonate. After a gentle centrifuge, peptides were first
eluted with 40 µL of 0.2% aqueous formic acid then eluted again with
35 µL of 50% acetonitrile containing 0.2% formic acid. Eluted peptides
were dried in DNA120 SpeedVac (Thermo Fisher) with no heat.

Prior to mass spectrometry analysis, samples were desalted using
a 96-well plate filter (Orochem) packed with 1mg of Oasis HLB C-18
resin (Waters). Briefly, the samples were resuspended in 100 µL of 0.1%
trifluoroacetic acid (TFA) and loaded onto the HLB resin, which was
previously equilibrated using 100 µL of the same buffer. After washing
with 100 µL of 0.1% TFA, the samples were eluted with a buffer con-
taining 70 µL of 60% acetonitrile and 0.1% TFA and then dried in a
vacuum centrifuge.

Samples were resuspended in 10 µL of 0.1% TFA and loaded onto a
Dionex RSLCUltimate 300 (ThermoScientific), coupled online with an
Orbitrap Fusion Lumos (Thermo Scientific). Chromatographic
separation was performed with a two-column system, consisting of a
C-18 trap cartridge (300 µm ID, 5mm length) and a picofrit analytical
column (75 µm ID, 25 cm length) packed in-house with reversed-phase
Repro-Sil Pur C18-AQ 3 µm resin. To analyze the proteome, peptides
were separated using a 60mingradient from4–30% buffer B (buffer A:
0.1% formic acid, buffer B: 80% acetonitrile +0.1% formic acid) at a flow
rate of 300 nL/min. The mass spectrometer was set to acquire spectra
in a data-dependent acquisition (DDA) mode. Briefly, the full MS scan
was set to 300–1200m/z in the orbitrap with a resolution of 120,000
(at 200m/z) and anAGCtarget of 5x10e5.MS/MSwasperformed in the
ion trapusing the top speedmode (2 s), anAGCtarget of 1x10e4 and an
HCD collision energy of 35.

Proteome raw files were searched using Proteome Discoverer
software (v2.4, Thermo Scientific) using SEQUEST search engine and
the SwissProtmouse database. The search for total proteome included
variablemodification of N-terminal acetylation, and fixedmodification
of carbamidomethyl cysteine. Trypsin was specified as the digestive
enzymewith up to 2missed cleavages allowed. Mass tolerance was set
to 10 ppm for precursor ions and 0.2 Da for product ions. Peptide and
protein false discovery rate was set to 1%. Following the search, data
was processed as described previously89. Briefly, protein abundances
were log2 transformed and normalized by the average value of each
sample. Missing values were imputed using a normal distribution set
2 standard deviations below the mean. Statistical differences were
assessedusingWelch’s t-test (if the F-testp-valuewas<0.05), otherwise
the standard Student’s t-test was used.

RNA isolation, RT-qPCR, and RNA-sequencing
Liver RNA-seq data was previously generated and reported in Yang
et al.47. For cerebellum, RNA was isolated from frozen tissue by
homogenization in Trizol followed by isopropanol precipitation. The
RNA was further purified using RNeasy columns (Qiagen). An on-
column DNase I digestion was performed during the purification step
to remove gDNA. The RNA amount and integrity were confirmed using
the Qubit RNA HS Assay Kit and RNA IQ Assay (Thermo Fisher)
respectively. Total RNA (~700ng) was used to make RNA-seq libraries
following the Zymo-Seq Ribo-free Total RNA Library Kit (Zymo

Research) instructions with dual indexing. The RNA-seq libraries were
pooled into equimolar amounts, further quantified using the NEBNext
Library Quant Kit (New England Biolabs), and then subjected to two
rounds of 50bp paired end sequencing on a NextSeq 2000 platform
using a P2 100-cycle kit (Illumina).

Direct RNA-seq with nanopore sequencing
RNA integrity was assessed using Qubit RNA IQ assay kit (Thermo
Fisher) before library preparation. 25–50 µg of total RNA was used to
make libraries using the direct RNA sequencing kit (Oxford Nanopore
Technologies) as previously described with modifications90. Briefly,
after selection of poly(A) RNAs using Oligo d(T)25 Magnetic Beads
(New England Biolabs), 15 pmoles of REL5 adapter (/5Bio/rArA
rUrGrArUrArCrGrGrCrGrArCrCrArCrCrGrArGrArUrCrUrArCrArCrUrC
rUrUrUrCrCrCrUrArCrArCrGrArCrGrCrUrCrUrUrCrCrGrArUrCrU) was
ligated to the 5′ ends of poly(A)-purified RNAs using T4 RNA ligase 1
(New England Biolabs) for 3 h at 37 °C. 750 ng of REL5-ligated poly(A)
RNAs was used for library preparation according to manufacturer’s
protocol (Oxford Nanopore Technologies). Final libraries were quan-
tified using Qubit 1X dsDNA High Sensitivity (HS) assay kit (Thermo
Fisher) and sequenced on a MinION device using R9.4.1 flow cells
(Oxford Nanopore Technologies).

Methyl and hydroxymethyl DNA immunoprecipitation sequen-
cing (MeDIP-seq and hMeDIP-seq)
The liver MeDIP-seq data was previously generated and reported in
Yang et al.47. The hMeDIP assay was performed using the MagMeDIP-
seq Package (Diagenode) following themanufacturer’s protocol with a
mouse antibody against 5hmC (Diagenode, C15200200-50); 1.2 µg of
gDNA was sonicated into ~ 200bp fragments using the S220 focused
ultrasonicator (Covaris). Tomaximize IP yield for the liver hMeDIP-seq,
samples were processed in duplicates then pooled before IPure pur-
ification. Prior to immunoprecipitation, samples were spiked with
hydroxymethylated and unmethylated internal DNA controls. IP effi-
ciency and success was verified by qPCR targeting internal DNA con-
trols. The DNA amount was quantified by Qubit HS DNA kit (Thermo
Fisher) and the fragment size was assessed on a 2100 BioAnalyzer
using a DNA HS kit (Agilent). Individual libraries for immunoprecipi-
tated DNA and 10% input were dual indexed (NEBNext Multiplex Oli-
gos, unique dual indices, New England Biolabs), PCR amplified, and
then pooled into equimolar amounts and further quantified using the
NEBNext Library Quant Kit (New England Biolabs). The pooled library
was subjected to 50 bppaired-end sequencing on the IlluminaNextSeq
2000 platform using a P2 100-cycle kit (Illumina).

Antibodies and oligos
All antibodies and oligos used in this study are listed in Supplementary
Dataset 12.

Bioinformatic analysis
hMeDIP-seq and MeDIP-seq analysis. hMeDIP-seq and MeDIP-seq
sequencing reads were de-multiplexed using bcl2fastq/2.20.0 and
adapter trimmed using trimgalore/0.6.6. FastQ quality was assessed
using FastQC/ 0.11.991. Reads were aligned to the mouse reference
genome (assembly GRCm38/mm10) using bowtie/2-2.4.4 then filtered
for a minimum mapping quality of 10 using samtools/1.992. BAM files
were then sorted and additionally filtered for uniquely mapped and
non-duplicate reads using sambamba/0.7.193. Encyclopedia of DNA
Elements (ENCODE) blacklisted regions (mm10)94 were filtered from
BAM files using bedtools/2.30.0. RPKM (reads per kilobase per million
mapped reads) normalized bigWig files were generated by first
indexing BAM files using samtools/1.9 followed by conversionwith the
bamCoverage function of deeptools/3.5.095. 5hmC samples were input
subtracted using the bigWigCompare function of deepTools/3.5.0. To
identify differentially hydroxymethylated/methylated regions, we
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employed the R Bioconductor package QSEA/1.26.040, using a window
size of 400 bp. Within QSEA, we accounted for CpG density per frag-
ment for each 400bp window using the “blind calibration” method.
Random data was generated (Supplementary Fig. 1I, panel 4) by using
the R seq function with ranges comparable to young and old gene
body 5hmC signal (−24.74 to 58.90, increments of .01) and then ran-
domly sampled with replacement using the R sample function.

RNA-seq analysis. Sequencing reads were processed as reported
elsewhere47. Briefly, reads were de-multiplexed using bcl2fastq/2.20.0,
adapter trimmed using trimmomatic/0.3996, and then quality assessed
using FastQC/0.11.997. Reads were aligned to the mouse reference
genome, GRCm38/mm10, using STAR/2.7.5b98 and the resulting BAM
files were sorted and indexed using samtools/1.10 92. BAM files were
filtered for duplicates and alignments with a minimum mapping
quality of 10 using picard/2.20.8 and samtools/1.10 92, respectively.
Gene counts were estimated using the featureCounts function of the
Rsubread R package/2.6.499. DESeq2/1.30.1100 was used to perform
count normalization anddifferential gene expression analysis between
old and young samples. Genes were ranked and categorized according
to DESeq2 normalized mRNA levels (averaged within groups) or
absolute FC ratio |old vs young| using the ntile function of dplyr/
1.0.7 (Fig. 3B).

To identify age-related alternative splicing events, reads were
aligned to themouse referencegenome (GRCm38/mm10) using STAR/
2.7.5b98 with additional parameters (--outSAMstrandField intronMotif
--outSAMattrIHstart 0 –alignSoftClipAtReferenceEnds No). rmats/
4.1.156 was employed on BAM files with parameters --readLength 37
--variable-read-length and --cstat 0.0001.

Nanopore sequencing data analysis. Nanopore dRNA-seq data were
basecalled using Guppy/6.1.2. Reads were subsequently mapped to
mouse genome GRCm38/mm10 using minimap2/2.24101 with para-
meters -a -x splice -k 12 -u b –secondary = no. Basecalled reads were
also separately aligned against the mouse transcriptome (Ensembl
version 92) using -a -x map-ont -k 12 -u f –secondary = no. FLAIR/
v1.7.0102 wasused to identify and quantify novel transcripts. To create a
unified database of existing and newly identified transcripts all
sequenced samples werepooled at the flair collapse step, as suggested
by the authors. Internally, DESeq2103 and DRIMSeq104 were used for
differential expression and differential isoform usage calculations
respectively. Poly(A) tail lengths were extracted from sequenced reads
using the nanopolish poly(A) package105. Only poly(A) tail lengths that
passed the software quality control scores and that were tagged as
“PASS” were used in our analysis.

To identify transcripts with systematic whole-molecule or poly(A)
length changes across experimental conditions,weemployed in-house
scripts that use linear mixed models to compare replicates using the
library as a random effect (https://github.com/maragkakislab/
nanoplen).

Human data analysis
GTExRNA-seq analysis. Gene readcounts for the brain (cortex), heart
(left ventricle), and liver were obtained from the GTEx portal (V8
release). GTEx donors that experienced a slow death, defined by death
after a long illness with >1 day of a terminal phase (DTHHRDY = 4),
were filtered out. RNA-seq data was filtered for protein-coding genes
with an average mRNA count ≥ 10. ImpulseDE2/0.99/10 68 was
employed in R/4.0.5 to identify transient and monotonous gene
expression changes with age. The “vecConfounders” parameter was
used to account fordonor sex. An FDR-correctedp-value cutoff of 0.05
was used for statistical significance.

Human5hmCdata. Human5hmCdata for corresponding tissueswere
mined from published datasets, He et al.31 and Cui et al.30. Tissue-

specific genes were obtained from the Human Protein Atlas and
defined as genes with at least 4-fold higher expression in the tissue of
interest compared to any other tissues (“tissue enriched”) or the
average of all other tissues (“tissue enhanced”)67. BED files for the
ImpulseDE2 differential genes and tissue-specific genes were gener-
ated using the University of California, Santa Cruz (UCSC) Genome
Browser (Table Browser) with the appropriate genome assembly cor-
responding to the 5hmC data (hg38 for He et al.31 and hg19 for Cui
et al.30).

Peng et al. RNA-seq and hMEDIP-seq data. Matched RNA-seq and
hMeDIP-seq data generated using T24 bladder cancer cells with and
without 0.25mM treatment with vitamin C was mined from Peng
et al.64 and processed similarly to mouse liver data except alignment
was to the GRCh37/hg19 human reference genome.

PCA plots. hMeDIP-seq or MeDIP-seq PCA plots were generated using
the plotPCA function of deepTools/3.5.095 using files obtained from
the multiBigwigSummary function.

Area under the curve (AUC) calculation. To obtain genome coverage
information (AUC) across regions of interest, we used the summary
function of bwtool/1.0106 with additional parameter “-with-sum”.

Annotation. Genomic annotations were performed using annotatr/
1.16.0107 with “mm10_cpgs”, “mm10_basicgenes”, “mm10_genes_inter-
genic”, and “mm10_genes_intronexonboundaries” as annotations.

Gene ontology analysis. GO analysis for the DHMRs and DMRs were
performed using GREAT/4.0.441 with themm10 genome as background
and default association rule settings. The top 5 significant biological
process category terms are reported (ranked according to FDR). For
the oligo mass spec and GTEx data, GO analysis was performed using
DAVID/6.8 with eitherMusmusculus (oligomass spec) orHomo sapiens
(GTEx) genes as background. The top biological process category
terms with p<0.05 are reported (ranked according to p-value).

Genome browser tracks. bigWig files for individual and pooled
(across replicates) samples were used to generate genome browser
tracks via the UCSC Genome Browser using either custom tracks or
track hubs.

Heatmaps. All heatmaps were generated using the ComplexHeatmap/
3.16 package in R with row z-score standardized values.

Motifs. Motif analysis to identify transcription factors was performed
using Lisa (http://lisa.cistrome.org/).

Hypergeometric test. Hypergeometric tests for the venn diagrams
were performed using EVenn108.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All genome-wide datasets generated in this study have been submitted
to the Gene Expression Omnibus portal under GEO: GSE221124. Raw
mass spec data are deposited at chorusproject.org/1795. hMeDIP and
RNA-seq data of Vitamin C-treated T24 cells were obtained from Peng
et al.64 (https://doi.org/10.1186/s13148-018-0527-7). The MeDIP data is
reported in Yang et al.47 underGEO:GSE185708 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE223480]. Source data are provided
with this publication and available at MendeleyData (https://doi.org/
10.17632/mz5hgw2t4f.1). Source data are provided with this paper.

Article https://doi.org/10.1038/s41467-024-50725-y

Nature Communications |         (2024) 15:6357 19

https://github.com/maragkakislab/nanoplen
https://github.com/maragkakislab/nanoplen
http://lisa.cistrome.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221124
https://doi.org/10.1186/s13148-018-0527-7
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223480
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223480
https://doi.org/10.17632/mz5hgw2t4f.1
https://doi.org/10.17632/mz5hgw2t4f.1


Code availability
All code used in this study are available at GitHub (https://github.com/
PSenlab/Occean_2024) and published in Zenodo (https://zenodo.org/
doi/10.5281/zenodo.12167052)109.
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