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Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and
macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neu-
rons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We
theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD)
without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains
to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages.
Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse
HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai)
produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glyco-
protein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic)
strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic
HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments
were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by
12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule
neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein
kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence
neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent
of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play
an important role in HAD neuropathogenesis.

Human immunodeficiency virus type 1 (HIV-1) dementia
(HAD) is a common complication of the late stage(s) of viral
infection, affecting nearly 20% and 50% of infected adults and
children, respectively. The pathological consequences of HAD
are highly variable but often include brain atrophy, reactive
astrocytosis, formation of microglial nodules and multinucle-
ated giant cells, perivascular inflammation, neuronal loss, and
alterations in blood-brain barrier (BBB) permeability produc-
ing myelin pallor (19, 25). Apoptosis of neurons, astrocytes,
and endothelial cells has been demonstrated (48, 54). Interest-
ingly, the best correlate for disease is the number of immune
system-activated mononuclear phagocytes (MPs; brain macro-
phages and microglia), not the levels of virus in brain tissue.
Indeed, MP secretory products, produced as a consequence of
cell activation, predict the progression of cognitive, motor,
and/or behavioral dysfunctions in HAD (19, 20). The MP neu-
rotoxic factors include both viral (HIV-1 gp120 [8], gp41 [1],
and Tat [49]) and cellular products such as arachidonic acid
and its metabolites, platelet-activating factor, proinflammatory
cytokines (for example, tumor necrosis factor alpha [TNF-a]
and interleukin-1b [IL-1b]), quinolinic acid, NTox, oxygen free

radicals, nitric oxide (NO), excitatory amino acids, and others
(reviewed in references 19 and 20). Clearly, how HIV-1 infects
MPs and affects immune system activation remains a most
critical unanswered question in viral neuropathogenesis.

It is now well accepted that HIV-1 productively infects the
brain MPs (most notably the perivascular macrophages) while
maintaining only a restricted infection in select numbers of
astrocytes and endothelial cells (20, 26, 45). MP infection oc-
curs through CD4 and, in part, through CCR5 (19, 23, 29, 42,
63). HIV-1 entry into astrocytes and endothelial cells is CD4
independent (27, 48). Overall, viral infection in the brain is
continued through macrophage recruitment, perhaps medi-
ated through the production of chemokines. Chemokines are
produced in large quantities in both astrocytes and microglia
and affect both the transendothelial migration of macrophages
into the brain and viral infection. For example, macrophage-
inhibitory protein 1a (MIP-1a), MIP-1b, RANTES, and mac-
rophage chemotactic protein 1 are produced by HIV-1-in-
fected and immune-activated MPs and astrocytes in laboratory
assays and are present in affected brain tissue (38, 41, 55).

Macrophage-tropic (M-tropic) HIV-1 strains use chemokine
receptors CCR5 and CCR3 for infection (2, 13, 15, 23, 29),
whereas T-cell-tropic (T-tropic) strains use CXCR4 (17). Im-
portantly, several of these chemokine receptors are expressed
in neural cells. CXCR4, CCR5, and CCR3 are on macrophages
and microglia (23, 29, 43, 67), while astrocytes and neurons
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express CCR3 and/or CXCR4 (19, 43, 53, 67, 71). Although
HIV-1 cannot readily infect cells that lack CD4, the engage-
ment of chemokines or virus with a chemokine receptor could
elicit intracellular signaling events that lead to cell damage.
For example, our previous work and that of others has shown
that CXCR4 can effect neuronal apoptosis by binding to its
ligand, stromal-cell-derived factor 1a (SDF-1a) (31, 32, 71).
SDF-1a is secreted by astrocytes (71) and can induce intracel-
lular signaling and affect cell function in human neurons (31,
32, 71, 72).

One idea for how HIV-1 damages the brain during HAD is
that progeny virions, released from infected MPs, produce
neural damage by binding to CXCR4. Differences in the abil-
ities of viral strains to bind CXCR4 may lead to differential
outcomes with regard to neuronal signaling and apoptosis.
This hypothesis is supported by reports showing that the viral
envelope can bind chemokine receptors independent of CD4
binding and induce intracellular signaling events (14, 34, 71,
72). Although the HIV-1 strains that infect MPs are M-tropic
(CCR5 dependent) (16, 40, 60, 64, 66), these strains have not
been shown to cause brain injury (60, 64). M-tropic viruses that
use CCR5 are present throughout the disease course, while
T-tropic viruses that use CXCR4 emerge later in the course of
infection, during the time period in which HAD is most com-
mon (7, 13, 64). Perhaps T-tropic viruses that penetrate the
brain transiently during the later stages of disease are the most
pathogenic in eliciting brain cell injury and/or apoptosis.

To these ends, we studied the role of progeny virions from
M-tropic, T-tropic, and neurotropic viral strains for eliciting
neural injury. These viruses, recovered from lymphocytes or
monocytes, were previously shown to effect neural apoptosis.
Alpha- and beta-chemokines and progeny virions were com-
pared for their ability to effect intracellular signaling. SDF-1a
induced neuronal but not astrocyte or monocyte-derived mac-
rophage (MDM) apoptosis. Virions recovered from T-tropic
strains (MN, IIIB, and Lai) produced the most significant
alterations in neuronal and astrocyte signaling and apoptosis.
M-tropic strains (ADA, JR-FL, Bal, MS-CSF, and DJV) pro-
duced the least neural cell damage, while 89.6, a dual-tropic
HIV-1 strain, elicited intermediate damage. The intracellular
signaling events that lead to neuronal apoptosis were found to
be multifaceted. These results, in toto, suggest that the high
levels of T-tropic viruses found during advancing disease may
cross the BBB from the periphery into the brain and affect
neuronal function and viability. This may occur independently
of concomitant increases in viral replication within the brain. It
may also help explain the importance of both cellular (as dem-
onstrated elsewhere [72]) and viral factors secreted from mac-
rophages in causing neural cell destruction. Most importantly,
these findings may help explain how some patients, with high
peripheral blood but low brain viral loads, can develop HAD.
Here, T-tropic viruses may penetrate through a disrupted BBB
and affect neural function directly, without ongoing viral rep-
lication in brain macrophages and microglia.

MATERIALS AND METHODS

Isolation and culture of primary monocytes. Human monocytes were recov-
ered from peripheral blood mononuclear cells of HIV- and hepatitis B virus-
seronegative donors after leukopheresis and then purified by countercurrent
centrifugal elutriation (21). Monocytes were .98% pure by HAM56 and CD68
staining. Monocytes were cultured as adherent monolayers (3.3 3 106 cells/well
in a 48-mm-diameter plastic culture plate) in Dulbecco’s modified Eagle medium
(DMEM; Sigma Chemical Co., St. Louis, Mo.) with 10% heat-inactivated pooled
human serum, 50 mg of gentamicin and/or 10 mg of ciprofloxacin (Sigma)/ml, and
1,000-U/ml highly purified recombinant human macrophage colony-stimulating
factor (a generous gift from Genetics Institute, Inc., Cambridge, Mass.). Identi-
fication of chemokine receptors (CCR5, CCR3, and CXCR4) was performed by
double immunocytochemical staining with monoclonal antibodies (MAbs) to

CCR5 (3A9; supplied by LeukoSite Inc., Cambridge, Mass.), CCR3 (7B11;
supplied by LeukoSite Inc.), and CXCR4 (12G5; a generous gift from James
Hoxie), as well as an antibody to a macrophage antigen (HAM56). Expression of
CCR5, CCR3, and CXCR4 was detected on the cell membranes and in the
cytoplasm of HAM56-positive MDM. All tissue reagents were screened and
found to be negative for endotoxin (,10 pg/ml; Associates of Cape Cod, Inc.,
Woods Hole, Mass.) and mycoplasma (Gen-Probe II; Gen-Probe Inc., San Di-
ego, Calif.) contamination.

HIV-1 infection of monocytes and purification of virions. Monocytes and
lymphocytes were prepared from peripheral blood mononuclear cells of normal
donors (HIV-1- and -2-seronegative subjects) by leukopheresis and centrifugal
elutriation. Seven days after being plated, MDM were infected with the M-tropic
viral strains (ADA, MS-CSF, Bal, JR-FL, SF-162, and DJV) or the dual-tropic
viral strain 89.6. Phytohemagglutinin- and IL-2-stimulated peripheral blood lym-
phocytes (lymphoblasts) were infected with T-tropic strains (Lai, MN, and IIIB).
HIV-1 replication was measured by determination of reverse transcriptase (RT)
activity in culture supernatants (37). Under these conditions, peak viral replica-
tion occurred at 7 days following HIV-1 inoculation (data not shown). Seven days
after HIV-1 infection, select culture supernatants from virus-infected MDM and
lymphocytes were collected over a period of 1 to 3 weeks. Supernatant samples
were pooled, clarified, and then concentrated (10-fold) by ultracentrifugation for
2 h at 50,000 3 g and 4°C. Concentrated viral stocks were further washed,
clarified, and concentrated (40-fold) by centrifugation for 2 h at 14,000 3 g and
4°C. The pelleted virions were resuspended in neurobasal medium. RT activity
was measured in triplicate samples of concentrated virus for sample recovery
determination. Virions with similar RT values were prepared and used for
determination of neuronal signal transduction and apoptosis. All virions were
obtained from the National Institutes of Health (NIH) AIDS Research Reagent
Program except ADA and MS-CSF (22). MS-CSF was isolated from a HAD
patient in our center whose dementia was reversed following antiretroviral ther-
apy (22).

Isolation of human neurons. Human fetal brain tissue was obtained from the
products of elective abortions (13 to 16 weeks’ gestation) performed in full
compliance with University of Nebraska Medical Center and NIH ethical guide-
lines. Human neuronal cultures were prepared as previously described (57) with
minor modifications. Briefly, the brain tissue was mechanically dissociated and
incubated with 0.25% trypsin for 30 min, neutralized with 10% fetal bovine
serum (FBS), further dissociated by trituration, washed, and cultured on poly-
D-lysine-coated plates in neurobasal medium containing 0.5 mM glutamine, 25
mM glutamate, 50 mg of penicillin/ml, and 50 mg of streptomycin/ml and supple-
mented with B27 (Life Technologies) and 5% horse serum. Cells were plated
onto poly-D-lysine-coated six-well plates (Becton Dickinson, Franklin Lakes,
N.J.) at a density of 106/well for extraction of RNA and analysis of phosphati-
dylinositol (PI) hydrolysis, in 24-well plates at a density of 5 3 105/well for
analysis of cyclic AMP (cAMP) levels and apoptosis, in eight-well chamber slides
at a density of 8 3 104/well for neuronal staining, in 96-well plates at a density of
2 3 104/well for enzyme-linked immunosorbent assay (ELISA; neuronal cell
quantitation), and in 12-well plates (5 3 105/well) with glass inserts for intracel-
lular calcium determinations. Five days following cell culture, 5-fluorodeoxyuri-
dine was added to the neural cultures at a concentration of 10 mg/ml to inhibit
proliferation of dividing (contaminating) astrocytes and/or fibroblasts. The purity
of the cells was assessed by using antibodies produced against neuron-specific
microtubule-associated protein 2 (MAP-2) (Boehringer Mannheim Corp., Indi-
anapolis, Ind.) and glial fibrillary acidic protein (GFAP) (Dako Corp., Carpin-
teria, Calif.) for identification of neurons and astrocytes, respectively. Antibody
staining for CD68 showed that microglia comprised ,2% of the neural prepa-
rations. Antibodies to neurofilament (NF) (polyclonal; Chemicon International
Inc., Temecula, Calif.) were used to confirm the neuronal purity. At 2 weeks
following cell cultivation, .70% of cells were MAP-2 immunopositive.

Isolation of human fetal astrocytes. Human fetal brain tissue (14 to 20 weeks’
gestation) was procured by following the ethical guidelines of the University of
Nebraska Medical Center and NIH (see above). Tissue was washed with Hanks’
balanced salt solution lacking Ca21 and Mg21 and was dissociated mechanically.
The dissociated tissue was resuspended in DMEM-F12 supplemented with 10%
FBS, 250 mg of Fungizone/ml, and 50 mg each of penicillin, streptomycin, and
neomycin/ml. The tissue was subsequently passed through a Nitex bag (pore size,
250 mm). The resulting single-cell suspension was centrifuged at 1,500 rpm for 10
min (Mistral 3,000 I centrifuge; Sanyo, Itasca, Ill.) and resuspended in fresh
medium. The cells were then centrifuged at 750 rpm. The pelleted cells were
counted and seeded at a density of 2 3 107/150-cm2 flask. The cells were cultured
for 7 days, and the floating debris was removed. The adherent monolayers of
astrocytes were washed once with phosphate-buffered saline (PBS) and then
treated with trypsin-EDTA for 3 min. The detached astrocytes were resuspended
in medium and centrifuged at 1,500 rpm for 10 min. The cells were cultured as
adherent monolayers in 150-cm2 flasks for an additional 7 days and then
trypsinized. The procedure was repeated twice to yield highly pure astrocytes.
Adherent monolayers were treated with trypsin, and cells were cultured in Costar
plates at the following densities: 106/well in 6-well plates for extraction of RNA
and analysis of PI hydrolysis, 2.5 3 105/well in 24-well plates for analysis of
cAMP levels and apoptosis, and 5 3 105/well in 12-well plates with glass inserts
for analysis of intracellular calcium.
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Rat cerebellar granule neuronal cultures. Seven-day-old Sprague Dawley rats
were sacrificed and cerebellar brain tissue was harvested according to the guide-
lines established by the Animal Welfare Act (1987) and NIH policies. Briefly,
cerebellum tissue was collected and washed in cold PBS containing trypsin at
0.25 mg/ml and 0.1% DNase (about a 10-ml volume per cerebellum), then
minced into 2-mm pieces and triturated with a fire-polished pipette; this was
followed by incubation for 20 min at 37°C (28). The tissue was filtered through
a nylon mesh, and the resulting cell suspension was loaded over a two-step
Percoll gradient and centrifuged at 500 3 g and 4°C for 15 min to remove the
glia. The neurons were collected, washed twice in sterile medium without serum,
and then resuspended in fresh DMEM-F12 medium (Sigma) with 10% horse
serum. Cells were gently triturated and plated at a density of 2 3 105/12-mm-
diameter glass coverslip precoated with poly-L-lysine (70,000 to 150,000 molec-
ular weight; Sigma) in 24-well culture dishes or at a density of 3 3 106 in
poly-L-lysine-coated 100-mm-diameter culture dishes. After 1 to 2 days in cul-
ture, 5-fluorodeoxyuridine and uridine were added to the cultures at 20 and 50
mg/ml, respectively, to eliminate proliferative cells (astrocytes), and the purity of
the resulting neuronal population was verified by immunocytochemical staining
for neuronal markers. Neurons were cultured up to 7 days at 37°C in a humidified
atmosphere containing 5% CO2; the medium (serum-free DMEM-F12) was
replaced every 3 days.

Immunocytochemical detection of neural cells. Neural cells were plated on
glass coverslips in 24-well culture plates (or 8-well chamber slides) to assess cell
purity. After removal of the culture medium, the cells were fixed with methanol-
acetone (1:1) for 10 min at 220°C. The cells were incubated with antibodies
against the neuron- and astrocyte-specific antigens MAP-2 and GFAP, respec-
tively, for 1 h. The cells were then washed with PBS and incubated for 1 h with
a fluorescein isothiocyanate-labeled anti-mouse immunoglobulin G (IgG)
F(ab9)2 fragment (Boehringer Mannheim Corp.) for MAP-2 detection or a
rhodamine-conjugated anti-rabbit IgG F(ab9)2 fragment (Boehringer Mannheim
Corp.) for GFAP detection. Histocytochemical preparations were examined with
a Nikon Microphot-FXA microscope. Neuronal purity was confirmed with anti-
bodies to NF or neuron-specific enolase. Identification of chemokine receptors
(CCR5, CCR3, and CXCR4) was performed by double immunocytochemical
staining with antibodies for CCR5 (3A9), CCR3 (7B11), CXCR4 (12G5), and
NF and/or GFAP. Representative cell samples were stained with antibody to
CD68 (Dako Corp.) and/or 1,19-dioctadecyl-3,3,39,39-tetramethylindo-carbocya-
nine perchlorate (DiI)-labeled acetylated low-density-lipoprotein antibodies
(Biomedical Technologies Inc., Stoughton, Mass.) to detect microglia. Astrocyte
cultures were nearly homogeneous (.95% GFAP immunoreactive). CCR3 and
CXCR4 were readily detected on a subset of astrocytes (;20%). Human fetal
brain explant cultures were immunocytochemically identified as neurons
(.70%), astrocytes (,30%), and microglia (,2%). Immunocytochemical stain-
ing of the human fetal brain cells for oligodendrocytes (antigalactocerebroside
antibodies; Boehringer Mannheim Corp.) and for microvascular endothelial cells
(factor VIII antibodies; Dako Corp.) was negative. CXCR4 was detected on
neuronal cell membranes. The proportion of neurons expressing CXCR4 was 20
to 50% (data not shown).

cAMP assay. The assay for cAMP accumulation was performed as described
previously, with minor modifications (36). Neuronal cells plated in 24-well plates
were washed twice with prewarmed serum-free DMEM containing 20 mM
HEPES, pH 7.4, and then loaded with 5 mCi of [3H]adenine (NEN Life Science
Products, Boston, Mass.) in 0.5 ml/well at 37°C for 90 to 120 min. Intracellular
[3H]cAMP was extracted overnight with 1 ml of ice-cold 5% trichloroacetic acid
containing 1 mM unlabeled cAMP (as an internal control). [3H]cAMP was
separated from the tritiated nucleotides by sequential ion-exchange chromatog-
raphy over Dowex and alumina columns (Sigma). The ATP and cAMP fractions
(3 ml each) were collected in scintillation vials to which 14 ml of Econo-Safe
(Research Products International Corp., Mount Prospect, Ill.) was added per
vial. The radioactivity of each sample was determined by liquid scintillation
spectroscopy. Values are expressed as the percentage of conversion of [3H]ATP
to [3H]cAMP. Because forskolin (FSK) directly activates adenyl cyclase, it was
used as a positive control in these assays. No detectable changes in cAMP
production were observed for any of the chemokines, virions, or HIV-1 gp120
tested in the absence of FSK. Therefore, all experiments were performed in the
presence of FSK. Pertussis toxin (PTX) was used to deactivate Gi/Go proteins.
This was performed by utilizing PTX (100 ng/ml) for 12 h prior to the perfor-
mance of the assays in which deactivation of Gi/Go was required. The CXCR4
MAb, 12G5, was kindly provided by James A. Hoxie (University of Pennsylvania)
or purchased from PharMingen (San Diego, Calif.). The recombinant soluble
CD4 was obtained from the NIH AIDS Research Reagent Program.

PI hydrolysis assay. Neuronal cells grown on six-well plates were labeled for
18 to 24 h with 2 mCi of [3H]inositol (Amersham, Arlington Heights, Ill.) in 1 ml
of inositol-free high-glucose DMEM supplemented with 5% FBS. After being
labeled, cells were rinsed once with DMEM plus 20 mM HEPES, pH 7.4
(DMEM-HEPES), and then stimulated for 20 min with various concentrations of
agents in DMEM-HEPES containing 10 mM LiCl. Labeled compounds were
then extracted from the cells with methanol, and chloroform and water were
added as described elsewhere (73). Inositol phosphates in the resulting aqueous
phase were separated on Dowex 1-X8 (formate; Sigma) columns. Total inositol
phosphates were eluted with 8 ml of 1 M ammonium formate–0.1 M formic acid.
The radioactivity in a 3-ml portion of the eluate (fraction a) and a 0.375-ml

portion of the organic phase containing the inositol phospholipids (fraction b)
was determined by liquid scintillation counting. The percentage of conversion of
inositol phospholipids to inositol phosphates was then calculated with the for-
mula a/(a 1 b) 3 100. Replicate cells were pretreated with PTX to deactivate
Gi/Go proteins (as described above for cAMP) as a specificity control for this
assay.

Calcium measurements. Cells cultured on glass coverslips were loaded with 10
mM Fura II-AM (Molecular Probes, Inc., Eugene, Oreg.) for 30 min at 37°C in
Ringer’s solution of the following composition: 148 mM NaCl, 5 mM KCl, 1 mM
MgSO4, 1.6 mM Na2HPO4, 1.5 mM CaCl2, and 5 mM D-glucose. After being
loaded, cells were washed twice and then incubated again for 20 min in Ringer’s
solution to allow for intracellular dye cleavage. The coverslips were placed in the
chamber, and Fura II was excited at wavelengths of 350 and 380 nm, using a PTI
Deltascan system as previously described (73). The values for Ca21 were calcu-
lated as follows: [Ca21] 5 Kd[(R 2 Rmin)/(Rmax 2 R)] 3 (380min/380max), where
Rmin and Rmax are the fluorescence ratios in the absence (with 3 mM EGTA) and
presence of saturating Ca21 (3 mM), respectively, and Kd 5 224 nM.

In situ detection of apoptotic neurons by TUNEL staining. Human and/or rat
neuronal cell cultures were exposed to different virions or chemokines in serum-
free neurobasal medium supplemented with B27 (Life Technologies). After 4
days, apoptotic cells were stained by an in situ terminal deoxynucleotidyltrans-
ferase-mediated digoxigenin-dUTP nick end labeling (TUNEL) assay method
(Oncor, Gaithersburg, Md., or Trevigen, Gaithersburg, Md.) as described else-
where (54). Briefly, neurons stained by the TUNEL assay were fixed in 4%
paraformaldehyde, rinsed with PBS, postfixed with a 100% ethanol–acetic acid
solution (2:1), and rinsed again with PBS. Neurons were pretreated with 2%
H2O2 to quench endogenous peroxidase prior to the addition of terminal de-
oxynucleotidyltransferase. Anti-digoxigenin-peroxidase was then added, and it
reacted catalytically with 0.05% diaminobenzidine–PBS. TUNEL-stained neu-
rons in 15 randomly selected fields were then counted. Each field of at least 100
neurons was examined for the relative numbers of positively stained and nega-
tively stained cells. For double staining of neuronal markers, replicate cultures
were immunostained with antibodies against MAP-2 (Boehringer Mannheim
Corp.) before performance of TUNEL staining.

Image analysis. TUNEL-positive neurons and total unstained neurons were
counted by acquiring TIFF images from immunostained culture fields, using an
Olympus IX-70 microscope. TIFF images were acquired randomly from 203-
magnified fields. Using a macro program to identify labeled and unlabeled
neurons, computerized morphometry (Image ProPlus; Media Cybernetics) was
performed to obtain the number of TUNEL-positive as well as the total neurons
per 203-magnified field. A minimum of 10 fields were counted for each treat-
ment condition.

ELISAs for cellular apoptosis. Human or rat neural cell or MDM cultures
were exposed to different virions or chemokines in serum-free neurobasal me-
dium supplemented with B27 (Life Technologies). After 4 days, mono- and
oligonucleosomes in the cytoplasm of apoptotic cells were detected by ELISA
performed in accordance with the instructions of the manufacturer, Boehringer
Mannheim Corp. Briefly, neurons were treated for 4 days with lysis buffer
(Boehringer Mannheim Corp.), and the lysates were spun down at 1,000 3 g for
5 min. The released mono- and oligonucleosomes of apoptotic cells in the
supernatant were carefully removed. The supernatant was added to a 96-well
ELISA plate fixed with antihistone antibody on the wall of the microtiter plate
module. After the wells were washed three times, anti-DNA-peroxidase, which
reacts with the DNA part of the nucleoside from apoptotic cells, was added.
After removal of unbound peroxidase, the amount of peroxidase retained in the
immunocomplex was determined photometrically with a peroxidase substrate,
ABTS [2,29-azinobis(3-ethylbenzthiazolinesulfonic acid)]. For each condition,
triplicate samples were used, and data are presented in terms of the percent
increase or decrease in cell number compared with the number obtained from
replicate cultures in regular culture medium. Each treatment was repeated at
least three times with cells from three individual donors. The MAb to gp120,
gp41 (gp160), was obtained from the NIH AIDS Research Reagent Program.

Investigations of the signal transduction pathways for neuronal apoptosis.
The investigated drugs inhibitory for the signal transduction pathways included
those that inhibited and/or stimulated cAMP, inositol 1,4,5-trisphosphate (IP3),
protein kinase A (PKA), protein kinase C (PKC), Ca21 release, and/or mitogen-
activated protein (MAP) kinase. For studies of cAMP signaling, the RP isomer
of 8-bromo-cAMP (RP-8-Br-cAMP; a PKA inhibitor) and 8-bromo-cAMP (a
PKA activator) were employed. For studies of IP3, xectospongin C (X-C; a
reversible membrane-permeating inhibitor of IP3-mediated Ca21 release with a
50% inhibitory concentration [IC50] of 358 nM) was used. To assay the role of
PKC, bisindolylmaleimide I (a selective PKC inhibitor; Ki 5 10 nM) and RO-
31-8425 (a calcium-independent PKC inhibitor) were employed. Bisindolylma-
leimide acts as a competitive inhibitor for the PKC ATP-binding site and shows
a high selectivity for the PKC a, bI, bII, g, d, and ε isozymes. For MAP kinase,
PD169316 (a potent, cell-permeating, and selective p38 MAP kinase inhibitor;
IC50 5 89 nM) and PD98059 (a selective and cell-permeating inhibitor of MAP
kinase) were employed. In addition, SKF-86002 (a bicyclic imidazole cytokine-
suppressive anti-inflammatory drug that inhibits osmotic stress and UV-induced
apoptosis through the blockade of p38 MAP kinase activation as well as lipo-
polysaccharide-stimulated IL-1 and TNF-a production; IC50 5 1 mM) was used.
Finally, HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II
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(CaMK-II; Ki 5 13 mM), PKC (Ki 5 40 mM), PKA (Ki 5 2.3 mM), protein kinase
G (Ki 5 1.3 mM), and myosin light chain kinase (Ki 5 150 mM), was utilized to
assess multiple signaling pathways simultaneously. HA1004 is also an intracellu-
lar Ca21 antagonist. All signal transduction inhibitors were purchased from
Calbiochem (La Jolla, Calif.).

Statistical tests. Data were analyzed as means 6 standard deviations of the
means (SD). The data were evaluated statistically by the analysis of variance
followed by either Fisher’s least significant difference test for multiple compar-
isons or Student’s t test for paired observations.

RESULTS

Chemokine receptors expressed on MDM, astrocytes, and
neurons. In previous studies, we tested the expression of che-
mokine receptors on MDM, astrocytes, and neurons (23, 72).
Morphological and immunocytochemical characterization of
MDM, astrocytes, and neurons showed that each of these cell
types expressed chemokine receptors. CXCR4 antigen expres-
sion was common to all cell types. Both CCR3 and CCR5 were
expressed on MDM, and CCR3 was expressed on astrocytes
(data not shown) (reported in references 23 and 72).

Neural cell signaling. MDM, astrocytes, and neurons may be
infected and/or otherwise damaged by HIV-1. Cell damage
could occur through infection or by binding of virus to specific
neural receptors, thereby eliciting alterations to cell signaling
and apoptosis. To investigate the latter, we assayed diverse
strains of HIV-1 for their ability to affect neural cell signaling
through chemokine receptor binding. The first step in proving
that the individual chemokine receptors expressed on MDM,
astrocytes, and neurons were functional involved the assay of
their respective ligands’ abilities to induce alterations in signal
transduction. Each of the three cell types (MDM, astrocytes,
and neurons) was tested in this manner. Since CCR5, CCR3,
and CXCR4 belong to the G-protein-coupled receptor family,
inhibition of FSK-stimulated cAMP production and of IP3 or
intracellular calcium production was determined following ex-
posure of cells to chemokines. MIP-1a (0.5 mg/ml; for CCR5),
eotaxin (ETX; 0.5 mg/ml; for CCR3), and SDF-1a (0.5 mg/ml;
for CXCR4) used individually had no effect on cAMP produc-
tion in MDM, astrocytes, or neurons (data not shown). How-
ever, all three chemokines, when used at identical concentra-
tions with FSK (30 mM), inhibited cAMP production in MDM.
The response was PTX sensitive (100 ng/ml; 12-h pretreat-
ment) (Fig. 1A). In astrocytes, ETX and SDF-1a inhibited
FSK-stimulated cAMP production (Fig. 1B). No effects were
observed for MIP-1a. The astrocyte response to ETX and
SDF-1a was also PTX sensitive (Fig. 1B). In neurons, only
SDF-1a elicited an FSK-stimulated cAMP response (Fig. 1C).
The reduction in cAMP levels observed in neurons exposed to
SDF-1a was .50% and was abolished by PTX (Fig. 1C). To
substantiate and extend these observations, we performed cal-
cium imaging of each of the three cell types following chemo-
kine exposure. Importantly, SDF-1a increased the levels of
intracellular calcium in all cell types (Fig. 2A, D, and G). The
response was blocked by pretreatment with the CXCR4 anti-
body, 12G5 (10 mg/ml) (Fig. 2B, E, and H), or PTX (100 ng/ml;
12-h pretreatment) (Fig. 2C, F, and I). These results suggested
that CCR5, CCR3, and CXCR4 are functional in MDM and
that CCR3 and CXCR4 are active in astrocytes. In contrast,
neurons primarily express CXCR4.

Chemokines and apoptosis in MDM, astrocytes, and neu-
rons. Our previous studies showed that SDF-1a mediated neu-
ronal apoptosis through CXCR4 (72). What remained uncer-
tain was whether SDF-1a and other chemokines could also
induce apoptosis in MDM and astrocytes. Thus, MIP-1a, mac-
rophage chemotactic protein 1 (for CCR2b), RANTES (for
CCR3 and CCR5), ETX, and SDF-1a were tested for their
ability to induce apoptosis in each of the three cell types. Each

of the chemokines (at 0.5 mg/ml) was individually added to
cultures of MDM, astrocytes, and neurons in B27-supple-
mented neurobasal medium for 4 days. Cellular apoptosis was
tested by the apoptosis ELISA (see Materials and Methods).

FIG. 1. Intracellular signal transduction pathways of CCR5, CCR3, and
CXCR4 in MDM, astrocytes, and neurons. MDM (A), astrocytes (B), and neu-
rons (C) were treated with or without PTX (100 ng/ml for 12 h) and then
stimulated with FSK (30 mM) with or without chemokines (0.5 mg/ml) for 10 min.
Intracellular cAMP was measured as outlined in Materials and Methods. FSK
induced a 10- to 20-fold augmentation of cAMP production. The experiments are
representative of three separate assays, each performed in triplicate. Data are
expressed in terms of the percent change in the intracellular cAMP level in
comparison to the level attained with FSK alone and are expressed as means 6
SD. p, P , 0.01 for cAMP levels versus those attained with FSK alone; †, P ,
0.01 for the difference between chemokine-treated cells with and without PTX
pretreatment.
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None of the chemokines tested induced apoptosis in astrocytes
or MDM (data not shown). However, SDF-1a induced neuro-
nal apoptosis (data not shown), which was blocked by 12G5, a
CXCR4 antibody. The specificity of the SDF-1a response of
neurons was confirmed by utilizing rat cerebellar granule neu-
rons (a 95% pure neuronal cell system) (Table 1).

HIV-1 virions induce MDM and astrocyte apoptosis. We
next tested whether similar results could be obtained for prog-
eny virus and whether there was strain variation evident in the
experimental outcome. Importantly, we investigated the effects
that each of the viral strains had on apoptosis of MDM, astro-

cytes, and neurons. To address these issues, we tested purified
virions recovered from T-tropic, M-tropic, and neurotropic
strains for their ability to affect signal transduction and apo-
ptosis in primary human MDM, astrocytes, and neurons. Prog-
eny virions from the M-tropic and/or neurotropic (ADA, Bal,
JR-FL, SF-162, DJV, and MS-CSF) and the dual-tropic (89.6)
viral strains were recovered from infected MDM. The T-tropic
strains IIIB, MN, and Lai were obtained from phytohemagglu-
tinin-stimulated peripheral blood lymphocytes (lymphoblasts).
HIV-1 replication in culture supernatant fluids was determined
by measuring the RT activity. Culture fluids were collected 1 to
3 weeks following HIV-1 inoculation of MDM or lympho-
blasts. Supernatant samples were pooled, clarified, and then
concentrated (10-fold) by ultracentrifugation for 2 h at 5 3 104

3 g and 4°C. Concentrated viral stocks were further washed,
clarified, and concentrated (40-fold) by centrifugation for 2 h
at 1.4 3 104 3 g and 4°C. RT activity was determined in
triplicate samples of concentrated virus for sample recovery
determination (37). Numbers of progeny virions were normal-
ized based on RT levels to ensure standardization among sam-
ples.

T-tropic, M-tropic, and dual-tropic progeny HIV-1 virions
were used to inoculate MDM and astrocyte cultures. Cellular
apoptosis was tested after 4 days with the apoptosis ELISA
system. Apoptosis was observed in MDM after their exposure

FIG. 2. Intracellular calcium levels are affected by SDF-1a in MDM, astrocytes, and neurons. SDF-1a (200 nM) was applied on MDM (A), astrocytes (D), and
neurons (G), and intracellular calcium was measured as outlined in the text. In replicate cultures, MDM (B), astrocytes (E), and neurons (H) were pretreated with
CXCR4 antibody 12G5 (10 mg/ml) for 1 h and then stimulated with SDF-1a (200 nM) in the presence of 12G5 (10 mg/ml). (C, F, and I) Parallel samples were pretreated
with PTX (100 ng/ml, 12 h) and then stimulated with SDF-1a (200 nM). The experiments are representative of three replicate assays performed independently three
times.

TABLE 1. Apoptosis induced by SDF-1a in rodent cerebellar
granule neuron cultures

Condition % of TUNEL-positive
neurons per 203 fielda

Untreated.......................................................................... 7.4 6 2.1
12G5 (10 mg/ml)............................................................... 8.1 6 2.2
SDF-1a (0.5 mg/ml) ......................................................... 17.8 6 2.4p
SDF-1a 1 12G5............................................................... 9.1 6 1.5†

a Data are percentages of total neurons that have undergone apoptosis as
stated in Materials and Methods. Data are expressed as means 6 SD. p, P ,
0.005 compared to control; †, P , 0.005 compared to cells treated with SDF-1a
alone.
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to M-tropic, dual-tropic, or neurotropic virions. ADA, JR-FL,
and 89.6 (Fig. 3A), but not Lai, induced MDM apoptosis. In
contrast, astrocytes showed high levels of apoptosis when ex-
posed to T-tropic virions (Fig. 3B). Indeed, MN, IIIB, and Lai
induced the highest levels of apoptosis in astrocytes. Such
responses were lower with JR-FL, ADA, Bal, and 89.6 (Fig.
3B).

Virion-mediated chemokine receptor signaling in MDM and
astrocytes. Our data showed that progeny HIV-1 virions in-
duce MDM and astrocyte apoptosis. However, the mechanisms
underlying these effects remained unclear. To address this is-
sue, we studied intracellular signaling in MDM and astrocytes.
The effects of the different viral strains on signal transduction
were investigated through measurements of cAMP. The viral
strains tested (as shown above) included Lai, 89.6, ADA, and
SF162. In MDM, the inhibition of FSK-stimulated cAMP was
observed with the T-tropic (Lai), dual-tropic (89.6), and M-
tropic (ADA and SF162) strains tested (Fig. 4A). A small, but
clearly significant, response for inhibition of FSK-stimulated
cAMP by T-tropic strains was also observed in astrocytes (Fig.
4B). However, a reduced effect on cAMP accumulation, com-

pared to that seen with T-tropic strains, was seen following
exposure of astrocytes to M-tropic strains (Fig. 4B).

HIV-1 virions induce neuronal apoptosis. Our initial studies
demonstrated that SDF-1a could induce alterations in neuro-
nal signaling and apoptosis and that the effect is both cell and
chemokine specific (see above). The ability of each of the
progeny virions to induce neuronal apoptosis was determined.
With regard to viral strain differences, neuronal apoptotic re-
sponses were highest with the T-tropic (IIIB, MN, and Lai) and
the dual-tropic (89.6) strains (Fig. 5A). Lesser degrees of ap-
optosis were observed following neuronal culture inoculation
with ADA, JR-FL, MS-CSF, BAL, or DJV (Fig. 5A). The
macrophage tropism (12) correlated inversely with the ability
to induce neuronal apoptosis (R 5 0.934) (Fig. 5B). The spec-
ificity of chemokine receptor utilization in these responses was
next investigated. The CXCR4 antibody, 12G5 (10 mg/ml, 1 h
prior to virion treatment), significantly blocked neuronal (Fig.
5C) and astrocyte (data not shown) apoptosis by the T-tropic
HIV-1 strains. 12G5 only partially blocked the effects of M-
tropic isolates (Fig. 5C). Mouse IgG (10 mg/ml) showed no
inhibition of apoptosis (data not shown). In contrast, MDM

FIG. 3. Virion-induced apoptosis in MDM and astrocytes. A panel of prog-
eny virions from T-tropic (MN, Lai, and IIB), dual-tropic (89.6), and M-tropic
(ADA, JR-FL, and Bal) strains were placed onto MDM (A) and astrocytes (B)
for 4 days. The amount of virus was normalized by performing RT assays.
Apoptosis was measured by ELISA, utilizing antihistone and anti-DNA antibod-
ies (see Materials and Methods). The data are expressed in terms of the percent
change in apoptosis levels in comparison to those of control cells treated with
culture medium alone; the control value is 0%. The experiments represent the
average of three replicate assays, performed three times, using MDM and as-
trocytes from three different donors. Data are expressed as means 6 SD. p, P ,
0.01 for the difference between virion-treated and control cells.

FIG. 4. Virion-induced alterations in chemokine receptor-mediated signal
transduction in MDM and astrocytes. Human MDM (A) and astrocytes (B) were
stimulated with FSK (30 mM) with or without the panel of progeny virions
(outlined in Fig. 5 and normalized via equivalent RT values). After a 10-min
incubation, intracellular cAMP production was measured as described in the
text. FSK alone induced a 10- to 20-fold increase in cAMP production in these
cells compared to the controls. Data are expressed in terms of the percent change
in comparison to cells stimulated with FSK alone. These experiments represent
the average of three replicate assays, performed three times, using MDM and
astrocytes from three different donors. Data are expressed as means 6 SD. p,
P , 0.01 for the difference between virion-treated and control cells (FSK alone).
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apoptosis induced by ADA and JR-FL was not significantly
changed with 12G5 (data not shown). Importantly, neuronal
apoptosis was induced at low levels by 12G5. In this regard, the
baseline value reported in Fig. 5 was normalized by subtracting
the apoptotic effects caused by 12G5 alone (data not shown).
Induction of neuronal apoptosis by T-tropic strains was also
blocked by antibodies to gp120 and gp41 (2 mg/ml each; 1-h
pretreatment prior to virion treatment) (Fig. 5C). To substan-
tiate these results, the effect of purified gp120 on neuronal
apoptosis was next tested. Not surprisingly, gp120MN (20 nM)
also induced neuronal apoptosis, which can be blocked by
12G5 and antibody to gp120 and gp41 (Fig. 5C). Interestingly,
the neuronal response induced by intact virions was much
higher (129% increase) than that induced by purified gp120
(35% increase). Different forms of gp120, such as gp120SF-2,
gp120MN, gp120CM, and gp120IIIB, were tested at various con-
centrations (from 0.05 to 50 nM), and similar results were
obtained (data not shown). These results, taken together, dem-
onstrate the importance of strain variation in neural cell apo-
ptosis. Such observations underscore the importance of T-
tropic strains in HIV-1 neurovirulence.

Virion-chemokine receptor signaling in neurons. The mech-
anism for CXCR4-mediated neuronal apoptosis remains in
question. Such work could provide evidence of the intracellular
events that may lead to the induction of neuronal apoptosis by
progeny virions. This might also provide evidence that HIV-1
could influence neuronal function independent of binding to
CD4 and infection of neurons. The effects of the different viral
strains on signal transduction were investigated through mea-
surements of cAMP and IP3 production. The inhibition of
FSK-stimulated cAMP production was observed for many in-
dividual viral strains in neurons. The relative levels of inhibi-
tion, as a function of the viral strain, were as follows: Lai .
89.6 . ADA $ SF162 (Fig. 6A). Importantly, the effects of Lai
and 89.6 on neurons were blocked by 12G5 (10 mg/ml) while
the effects of ADA were only partially blocked (Fig. 6A). In
all three cell types (MDM, astrocytes, and neurons), a small,
but not significant, inhibition was observed with gp120CM,
gp120SF-2, and gp120MN (administered at concentrations of
from 0.2 to 20 nM) (data not shown). In subsequent experi-
ments, we investigated the effects on IP3 signal transduction
mediated by the panel of progeny virions. Lai, 89.6, ADA,
MS-CSF, DJV, Bal, and JR-FL were tested. Interestingly, all of
the viral strains tested activated IP3 in neurons. Lai and 89.6
induced higher levels of IP3 in neurons. Lower levels were
observed with the M-tropic strains of virus (Fig. 6B). The effect
induced by Lai was blocked by 12G5 and PTX pretreatment,
while the effect induced by ADA was only partially blocked
(Fig. 6C). SDF-1a, in conjunction with the CXCR4 antibody,
served as the positive control for these assays (Fig. 6C).

Linkages between virion-induced signal transduction and
neuronal apoptosis. Our previous work demonstrated that
progeny HIV-1 virions could inhibit FSK-stimulated cAMP
production and increase the level of IP3, which in turn could
induce functional changes in PKA, PKC, and/or CaMK, lead-
ing to alterations in calcium homeostasis and neuronal apo-
ptosis. Certainly, any or all of these kinases may affect neuronal
function. Therefore, to explore the relationships between vi-
rus-induced neuronal signal transduction and apoptosis, we
employed a panel of kinase activators and inhibitors. First, a
pair of cAMP analogs, RP-8-Br-cAMP and 8-bromo-cAMP,
was tested. Both drugs are cell permeating and have greater
resistance to phosphodiesterases than cAMP. RP-8-Br-cAMP
is a potent inhibitor of PKA, and 8-bromo-cAMP activates
PKA. After treatment of human neurons with RP-8-Br-cAMP
(0.1 mM to 0.1 mM), a 15 to 30% increase in apoptosis was

FIG. 5. Virion-induced apoptosis in neurons. (A) A panel of progeny virions
of T-tropic (MN, Lai, or IIB), dual-tropic (89.6), or M-tropic (JR-FL, Bal,
MS-CSF, ADA, or DJV) strains was placed on neuron-enriched cultures for 4
days. Apoptosis was measured by ELISA utilizing antihistone and anti-DNA
antibodies (see Materials and Methods). The amount of virus was normalized by
performing RT assays, and the data were expressed in terms of the percent
change in comparison to control cells treated with culture medium alone; the
control value is 0%. (B) A correlation exists between neuronal apoptosis and the
macrophage tropism indexes (TI) (12) of the panel of HIV-1 strains used. (C)
Apoptosis induced by virions in the presence of the CXCR4 antibody 12G5 (1-h
pretreatment at 10 mg/ml) or the anti-gp120 antibody 41 (1-h pretreatment at 2
mg/ml) was also analyzed. In this assay, gp120MN (20 nM) was used as a positive
control. These experiments represent the average of three replicate assays, per-
formed three times, using neurons from three different donors. Data are ex-
pressed as means 6 SD. p, P , 0.01 for differences between virions-treated and
control cells; †, P , 0.01 for differences between cells treated with virions in the
presence and in the absence of antibody (Ab) 41; #, P , 0.01 for differences
between virions treated in the presence and in the absence of 12G5.
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demonstrated (Fig. 7A). Surprisingly, 8-bromo-cAMP also in-
creased neuronal apoptosis (40 to 55%) when administered at
the same dose as RP-8-Br-cAMP (Fig. 7A). An additional
cAMP analog, dibutyryl cAMP (a PKA activator), also induced
similar levels of neuronal apoptosis (data not shown). More-
over, both PKA activators failed to block Lai- or ADA-induced
neuronal death. However, 1 mM RP-8-Br-cAMP modestly in-
hibited virion- and SDF-1a-induced apoptosis. These data,
taken together, suggested that the activation, more than the
inhibition, of PKA induced neuronal apoptosis. However, both
mechanisms were operative.

Second, we employed an inhibitor of IP3-mediated Ca21

release, X-C, to test its role in the apoptotic process. X-C is a
potent, reversible, membrane-permeating inhibitor of IP3-me-
diated Ca21 release. Nonetheless, X-C does not directly inter-
act with the IP3-binding site. X-C at 0.1 to 10 mM did not
induce neuronal apoptosis. At 1 mM, X-C minimally inhibited
HIV-1IIIB-induced neuronal apoptosis (Fig. 7B). This sug-
gested that inhibiting IP3-induced calcium release was not suf-
ficient to block virion-induced neuronal apoptosis.

Third, we tested the PKC inhibitor bisindolylmaleimide I.
Bisindolylmaleimide I is a highly selective cell-permeating
PKC inhibitor. It competitively inhibits the ATP-binding site of
PKC and shows a high level of selectivity for the PKC isozymes
a, bI, bII, g, d, and ε. Bisindolylmaleimide I at 1 mM induced
a 40 to 70% increase in neuronal apoptosis. The drug failed to
inhibit virion- or SDF-1a-induced neuronal apoptosis. RO-31-
8425, a calcium-independent PKC inhibitor, also did not in-
hibit the virus-induced neuronal apoptosis (data not shown).

Fourth, we tested inhibitors of MAP kinase. This was based
on our previous work suggesting that virions could act through
P42/P44 MAP kinase phosphorylation (74). Since three major
types of MAP kinases have been reported in mammalian cells
(ERK1/ERK2 [p42/p44], c-Jun kinase/stress-activated protein
kinase, and p38-reactivating kinase), three inhibitors of MAP
kinase were tested. These included PD169316 (a potent cell-
permeating and selective p38 MAP kinase inhibitor), PD98059
(which acts by inhibiting the activation of MAP kinase and
subsequent phosphorylation of the MAP kinase substrate), and
SKF-86002 (a bicyclic imidazole cytokine-suppressive anti-in-
flammatory drug that inhibits osmotic stress- and UV-induced
apoptosis by blocking p38 MAP kinase activation). All of these
drugs, when administered to neurons at a concentration of 1
mM, induced a 30 to 50% increase in neuronal apoptosis (data
not shown). None of these drugs inhibited virion-induced neu-
ronal apoptosis at a 1 mM concentration (data not shown).
These data suggested that the intracellular signaling pathways
involved in neuronal apoptosis are complex and likely involve
multiple mechanisms.

To investigate the possibility that HIV-1 virions affect mul-
tiple neuronal signal transduction pathways, we utilized a drug
that inhibits multiple signal transduction pathways. For this
reason, HA1004 was selected as our next candidate for testing.
HA1004 is a cell-permeating inhibitor of CaMK-II (Ki 5 13
mM), PKC (Ki 5 40 mM), PKA (Ki 5 2.3 mM), protein kinase
G (Ki 5 1.3 mM), and myosin light chain kinase (Ki 5 150 mM).
It is also an intracellular Ca21 antagonist. HA1004, when ad-
ministered at a concentration of 0.1 to 10 mM, did not induce
neuronal apoptosis. Importantly, it blocked neuronal apoptosis

between virion-treated and control cells (treated with culture medium); †, P ,
0.01 for differences between cells treated with virions in the presence and in the
absence of 12G5; #, P , 0.01 for differences between virion-treated cells with
and without PTX pretreatment.

FIG. 6. Virion-induced alterations in chemokine receptor-mediated signal
transduction in neurons. Neurons were pretreated with or without 12G5 (10
mg/ml) for 1 h and stimulated with FSK (30 mM) with or without the panel of
progeny virions (outlined in Fig. 7 and normalized via equivalent RT values).
After a 10-min incubation, intracellular cAMP was measured as described in the
text. FSK alone induced a 10- to 20-fold increase in cAMP production in these
cells compared to the control. (A) Data are expressed in terms of the percent
change in comparison to cells stimulated with FSK alone. (B and C) Data are
expressed in terms of the percent change in comparison to control cells treated
with culture medium alone; the control value is 0%. For the IP3 assay, neurons
were pretreated with or without 12G5 (10 mg/ml, 1 h), or with or without PTX
(100 ng/ml, 12 h), and stimulated with different virions. (C) SDF-1a (100 nM) in
conjunction with the CXCR4 antibody (Ab) served as the positive control for the
assays shown. Intracellular IP3 production was measured as stated in Materials
and Methods. (B and C) Data are expressed in terms of the percent change in
comparison to control cells. The experiments are representative of three repli-
cate assays. Data are expressed as means 6 SD. p, P , 0.01 for differences
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induced by all lymphotropic viruses tested, Lai, MN, and IIIB,
at a 3 mM concentration (Fig. 7C). It also partially blocked
ADA-induced apoptosis (Fig. 7C).

Role of CD4 in virion-induced neuronal apoptosis. Previous
work demonstrated that CD4 might potentiate gp120 binding
to chemokine receptors such as CCR5 (42, 47, 69, 70). There-
fore, we explored whether virion-induced neuronal apoptosis
could be altered by the binding of virion-associated gp120 to
CD4. Since neurons do not express CD4, soluble CD4 was
utilized for these experiments. Neuronal apoptosis induced by
purified gp120 and individual virions of strains such as Lai,

89.6, ADA, JR-FL, and MS-CSF (with or without soluble
CD4) was tested. CD4 alone (5 mg/ml) did not affect neuronal
apoptosis. The neuronal apoptosis induced by strains Lai, 89.6,
ADA, JR-FL, and MS-CSF was not potentiated by CD4, while
some inhibitory effect was observed with CD4 (5 mg/ml) (data
not shown). A dose escalation of CD4 (from 1 to 10 mg/ml) was
utilized but did not change the experimental outcome (data
not shown). To confirm these results, we performed signal
transduction assays using the panel of virions (with or without
soluble CD4). The assay for cAMP was performed in neurons.
As predicted, Lai, 89.6, and ADA inhibited FSK-stimulated
cAMP production. However, this inhibition was not signifi-
cantly altered in the presence of CD4 (data not shown). Similar
results were obtained for IP3 induction by Lai, 89.6, and ADA
(data not shown). These results suggested that virions signal
through CXCR4 by binding to CXCR4, independent of bind-
ing of CD4.

DISCUSSION

In this study, we investigated the relationships between virus,
chemokines and their receptors, and neural apoptosis. Our
data demonstrate that apoptosis is induced by progeny HIV-1
virions interacting with chemokine receptors. Importantly, this
can occur not only in neurons but also in astrocytes and mac-
rophages. The importance of these results rests in the finding
that HAD-related apoptosis involves all three of the cell types
investigated. This also implies that neuronal apoptosis in HAD
may occur both as a consequence of accessory cell loss in the
brain and by damage mediated more directly through macro-
phage and glial secretory factors. Importantly, the work under-
scores the roles of both T-tropic and M-tropic strains in HIV-1
neuropathogenesis. Clearly, virus in the peripheral blood may
traverse the BBB and affect neuronal function by binding to
CXCR4 and eliciting subsequent neuronal damage. M-tropic
viruses may be important in inducing the large numbers of
cellular neurotoxic factors, produced by virus-infected and im-
mune-competent macrophages, that lead to significant neuro-
nal damage (72). This hypothesis for neuronal loss (which
bridges the importance of both viral and cellular factors in
HAD pathogenesis) is supported by the results presented in
this paper and those to be described elsewhere (72).

Interestingly, CXCR4 can mediate virion-induced apoptosis
independently of CD4 binding. The other chemokine receptors
used as receptors for M-tropic HIV-1 strains (including CCR5
and CCR3) may not be involved in inducing astrocyte or MDM
apoptosis. Indeed, virions recovered from T-tropic viral strains
(MN, IIIB, and Lai), which produced the most significant ef-
fects in neuronal and astrocyte signaling and apoptosis, oc-
curred through CXCR4. Moreover, the M-tropic strains
(ADA, JR-FL, Bal, MS-CSF, DJV, and SF-162) produced the
least neural cell damage while 89.6, a dual-tropic HIV-1 strain,
elicited an intermediate level of neural damage. Antibodies to
CXCR4 blocked the effects mediated by T-tropic strains in
neurons and astrocytes. Virion-induced alterations in cell sig-
naling events through CXCR4 included inhibition of cAMP,
activation of PI hydrolysis, and apoptosis. Neuronal apoptosis
induced by progeny HIV-1 virions was also blocked by anti-
bodies to gp120 and gp41. Virion-induced neuronal apoptosis
can be blocked by a less selective CaMK-II, PKA, and PKC
inhibitor, HA1004. Finally, neuronal apoptosis was confirmed
in rat cerebellar granule neurons, a cell system of nearly 95%
purity. These data, taken together, demonstrate the impor-
tance of CXCR4 in mediating neural cell apoptosis by virions
and highlight the likely role of T-tropic virus strains in disease
pathogenesis.

FIG. 7. Effects of signal transduction inhibitors and activators on virion-
induced neuronal apoptosis. Neuronal apoptosis was measured as stated in
Materials and Methods. Cells were treated with different drugs alone or with
virions in the presence or absence of 1 mM RP-8-Br-cAMP, 8-Br-cAMP, or X-C
or 3 mM HA1004. Data are expressed in terms of the percent change in com-
parison to control (Ctrl) cells treated with culture medium alone; the control
value is 0%. The experiments are representative of three replicate assays. Data
are expressed as means 6 SD. p, P , 0.01 for differences between virion-treated
and control cells; †, P , 0.01 for differences between cellular responses with and
without drug.
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Neuronal, astrocyte, and MP apoptosis is a major feature of
HAD (3, 5, 19, 29, 49, 59, 62). The major cause of this cellular
loss now appears, at least in part, to be mediated by virion
binding to chemokine receptors present on the cell membrane
surface. Alternatively, and perhaps more importantly, cell de-
struction may be mediated through cellular inflammatory
products produced as a consequence of viral infection and
immune system activation of MPs (19, 20, 45, 72). Clearly,
virus-infected and immune system-activated macrophages se-
crete both viral and cellular factors that play pivotal roles in
disease (72). Past studies have supported the notion that mul-
tiple viral and cellular factors are involved in disease patho-
genesis, perhaps through overlapping mechanisms. Indeed,
brain cell apoptosis can potentially occur through TNF-a (6),
gp120 (8), and tat (49), as well as via c-kit activation (30).
Apoptosis in brain cells may also be induced by activation of
the transcription factor NF-kB (6). However, the actual signal
transduction pathways involved in HIV-1-associated neural
cell apoptosis remain undefined.

Previous work demonstrated that overactivation of the GTP-
binding protein (G protein)-linked signaling pathways leads to
aberrant neuronal function. Second messengers, including
cAMP, diacylglycerol, IP3, and calcium, may mediate such
events. The production of cAMP, in turn, activates PKA. Fol-
lowing activation, PKA phosphorylates proteins within the cell,
leading to modification of enzymes, ion channels, and tran-
scriptional regulators (33). Diacylglycerol activates PKC, an
enzyme involved in regulating cell growth, differentiation,
learning, and memory (51). IP3 can bind to IP3 receptors on
the endoplasmic reticulum and trigger the release of intracel-
lular calcium, which may act as a third messenger, exerting its
own biochemical effects on the cell. Increased intracellular
calcium levels activate CaMK-II, and CaMK-IV increases cal-
cium influx and, hence, cell death. Although a linkage between
intracellular signaling and neuronal apoptosis was observed in
our work, the specific mechanisms of such events were not
uncovered. First, our work demonstrated that the interaction
of chemokines and progeny virions with a neuronal receptor(s)
could lead to both cell signaling and apoptosis. Second, since
chemokine receptors are G protein coupled and affect cAMP
levels, the activation of phospholipase C, and/or the produc-
tion of IP3, they can effect alterations in intracellular calcium
levels, a prelude to cellular dysfunction. Excess levels of cal-
cium can disrupt mitochondrial function or activate lipases,
proteases, and endonucleases, which can lead to neuronal
death (2, 15, 17, 46). Third, previous reports demonstrated that
activation of IP3, PKA, and/or intracellular calcium can induce
apoptosis (9, 18, 24, 35, 39, 44, 52). In our study, RP-8-Br-
cAMP (1 mM) modestly inhibited virion-induced neuronal ap-
optosis. Chronic engagement of the G-protein-coupled a2 ad-
renergic, m2/m4 muscarinic, or opioid receptors can lead to an
increase in cAMP, while acute activation leads to inhibition of
cAMP production (4). This phenomenon is referred to as ad-
enylate cyclase superactivation. If virions or SDF-1a induces
such superactivation, this could explain why virion-mediated
neuronal apoptosis was partially blocked by inhibitors, but not
activators, of PKA. Fourth, virion-induced neuronal apoptosis
was blocked by the broad CaMK-II, PKC, and PKA inhibitor
HA1004. This demonstrated, at some level, a correlation be-
tween neuronal apoptosis and signal transduction.

CXCR4 is expressed on neurons, astrocytes, and MDM.
Why SDF-1a selectively mediates apoptosis, through CXCR4,
in neurons but not in astrocytes or MDM is unclear. Although
CCR3 has been reported to be expressed on neurons (61), it
has not been shown to be functionally important in this work.
Moreover, the virion-induced apoptosis occurs principally in

neurons, even though virions could induce signal transduction
in both astrocytes and MDM. The observation that T-tropic
strains of HIV-1 may play an important role in viral neuro-
pathogenesis has also recently been documented by others.
Indeed, similar results were shown by Ohagen et al. (50). These
experiments demonstrate that T-tropic viral strains effect neu-
ronal apoptosis to a greater degree than do M-tropic variants.
HAD occurs late in the course of HIV-1 infection, during the
development of significant immunosuppression and the emer-
gence of predominantly T-tropic strains.

Interestingly, CXCR4 may not be the only functional neu-
ronal receptor intimately involved in HAD pathogenesis. In-
deed, other chemokine receptors appear to be operatively ex-
pressed on neurons. Recent work in our laboratory (74)
demonstrated that CX3CR1 and CXCR2 are functional in
neurons. This could explain not only the complexity of the
signal transduction pathways but also why the CXCR4 anti-
body could not completely abrogate virion-induced apoptosis
or neuronal signal transduction.

It is now well accepted that the MP plays a pivotal role in
HIV-1 neuropathogenesis. However, what is not known is the
composition of the viral strain or strains that are neurovirulent.
A pivotal question in this regard is whether M-tropic virus is
sufficient to cause central nervous system (CNS) injury (60,
64). HIV-1 infection (seeding) of the CNS likely occurs early in
the course of disease with M-tropic viruses. These same viruses
are present throughout much of what is considered subclinical
disease. T-tropic viruses or dual-tropic viruses that use CXCR4
emerge later in the course of infection, at the time that HAD
becomes prevalent (7, 13, 65). T-tropic HIV-1 strains may play
a role in HAD for several reasons. First, the V3 region of the
HIV-1 envelope, characteristic of T-tropic strains, is detected
in brain tissue of patients with HAD (11, 40). Second, T cells
are detected in the brains of demented patients with HIV
infection (68). Third, infected T cells can gain access to the
CNS through a disrupted BBB (56, 58), through the choroid
plexus, or by direct infection of brain microvascular endothelial
cells (10, 25, 48). In addition, M-tropic virions can also induce
alterations in neuronal signal transduction and apoptosis
through the CXCR4 receptor (14, 17). Taken together, our
data suggest the following: (i) that HIV-1 virions can bind to
and signal through chemokine receptors (principally CXCR4)
in neurons, thereby inducing alterations in neuronal function
which lead to apoptosis; (ii) the process is independent of
binding to CD4 and productive viral replication in neurons;
(iii) whole progeny virions induce increased levels of cell injury
compared to purified gp120; and (iv) signal transduction path-
ways induced by virions, such as inhibition of cAMP and acti-
vation of IP3, may be linked to apoptosis. These data support
the notion that highly active antiretroviral medicines with high-
level BBB penetration, combined with anti-inflammatory drugs
and neuroprotective compounds, can effectively treat HAD.
Clearly, the data presented in this report demonstrate the
interplay between the immune system, virus replication, and
neurodegeneration in the neuropathogenesis of HIV-1 brain
infection.
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