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Abstract

Cognitive control allows behavior to be guided according to environmental contexts and internal 

goals. During cognitive control tasks, fMRI analyses typically reveal increased activation in frontal 

and parietal networks, and EEG analyses reveal increased amplitude of neural oscillations in the 

delta/theta band (2–3, 4–7 Hz) in frontal electrodes. Previous studies proposed that theta-band 

activity reflects the maintenance of rules associating stimuli to appropriate actions (i.e., the rule 

set), whereas delta synchrony is specifically associated with the control over the context for when 

to apply a set of rules (i.e., the rule abstraction). We tested these predictions using EEG and fMRI 

data collected during the performance of a hierarchical cognitive control task that manipulated 

the level of abstraction of task rules and their set-size. Our results show a clear separation of 

delta and theta oscillations in the control of rule abstraction and of stimulus–action associations, 

respectively, in distinct frontoparietal association networks. These findings support a model by 

which fronto-parietal networks operate through dynamic, multiplexed neural processes.

INTRODUCTION

Voluntary goal-directed behavior, called “cognitive control,” allows us to flexibly adjust 

our plans and quickly select actions, based on the context of our environment and our 

internal goals (Badre & D’Esposito, 2007; Koechlin, Ody, & Kouneiher, 2003; Miller & 

Cohen, 2001). The environmental context can be considered to provide rules, at various 

levels of abstraction, which are used to guide our actions (Bunge, 2004; Wallis, Anderson, 

& Miller, 2001). Such rules are thought to be represented in the lateral prefrontal cortex 
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(LPFC; Badre & Nee, 2018; Bunge, 2004; Miller & Cohen, 2001). Previous studies of the 

role of LPFC in cognitive control have shown that it is involved in maintaining relevant 

information about abstract rules (D’Esposito & Postle, 2015; Curtis & D’Esposito, 2003) 

and integrating such information with inputs from posterior association and sensory cortices, 

which maintain lower-level sensory and stimulus information (Lorenc & Sreenivasan, 2021; 

Scimeca, Kiyonaga, & D’Esposito, 2018; Sreenivasan, Curtis, & D’Esposito, 2014; Fuster, 

2001).

The LPFC, however, does not simply behave as a unitary controller. Rather, networks in 

LPFC are presumed to operate as a collective of specialized functional units, each with 

its own connections with parietal, temporal, and occipital regions, which flexibly interact 

to implement cognitive control (Menon & D’Esposito, 2022; Nee, 2021; Badre & Nee, 

2018; Goldman-Rakic, 1988). Observations of patients with focal lesions and fMRI studies 

of healthy individuals have provided evidence of a caudal (posterior) to rostral (anterior) 

hierarchical organization of the representation of task-relevant information within LPFC, 

in which more abstract representations recruit more rostral areas (Szczepanski & Knight, 

2014; Badre & D’Esposito, 2007, 2009; Badre, 2008; Koechlin & Summerfield, 2007; 

Koechlin et al., 2003). In contrast, in the posterior parietal cortices, representations become 

more abstract from rostral to caudal regions (Nee, 2021; Choi, Drayna, & Badre, 2018). 

Furthermore, these cortical gradients in LPFC and posterior parietal cortices are maintained 

in connectivity patterns with the dorsal striatum (Choi et al., 2018) and in thalamocortical 

projections from the thalamus (THA; Shine, Lewis, Garrett, & Hwang, 2023; Hwang & 

D’Esposito, 2022). The dynamics of neural activity within and between regions in these 

parallel functional cortical–subcortical networks to support hierarchical cognitive control 

remains underspecified and is the focus of this study.

The coordination of activity between a distributed network of areas may be enabled 

by neural oscillations (Buzsáki, 2006; Buzsáki & Draguhn, 2004). In particular, neural 

oscillations in the delta/theta band (~0.5–7 Hz) may serve as a mechanism for synchronizing 

distributed regions within functional networks, to support cognitive control processing 

(Helfrich, Breska, & Knight, 2019; Breska & Deouell, 2017; Helfrich & Knight, 2016). 

Time–frequency decoding procedures have shown that neural signals at frequencies between 

the delta and theta frequency range (1–8 Hz) carry information about task-relevant contexts, 

features, and response-rule representations (Cellier, Petersen, & Hwang, 2022). With 

increasing cognitive control, theta oscillations (~4–7 Hz) are typically generated over the 

medial frontal cortex (MFC), a phenomenon that is often referred to as “frontal-midline 

theta” (Cooper et al., 2019; Sauseng, Tschentscher, & Biel, 2019; Cavanagh & Frank, 2014; 

M. X. Cohen & Donner, 2013). The control of increasingly more complex rules seems to 

elicit neural oscillations that are even slower, in the delta-to-low theta frequency range (~1–5 

Hz), and appear to be located more dorsolaterally compared with the frontal-midline theta 

(Formica, González-García, Senoussi, & Brass, 2021; Riddle, Vogelsang, Hwang, Cellier, 

& D’Esposito, 2020; de Vries, van Driel, Karacaoglu, & Olivers, 2018; Szczepanski et al., 

2014).

In the current study, we tested the hypothesis that oscillations in the delta and theta 

band underlie different components of hierarchical cognitive control, mapping to distinct 
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frontoparietal association networks. In a previous EEG study, we found power differences 

in frontal midline electrodes in the delta and theta band, distinctively associated with the 

level of abstraction of rules and the number of competing associations and rules (“set-size”), 

respectively (Riddle et al., 2020). Furthermore, the functional specificity of delta and theta 

oscillations for each component was confirmed by the results of a transcranial alternating 

current stimulation study, showing modulations of task performance in the cognitive 

control component (abstraction/set-size) expected to be associated with each low-frequency 

component of the noninvasive stimulation (Riddle, McFerren, & Frohlich, 2021). However, 

although these results were consistent with a “hierarchical account” for delta and theta 

oscillations, they did not characterize the temporal separability of these oscillations, nor 

their localization within separable functional brain networks, to support distinct levels of 

processing of hierarchical cognitive control.

To address these gaps, in the current study, we collected fMRI data during a hierarchical 

control task that manipulated both the level of task rules abstraction and their set-size (Badre 

& D’Esposito, 2007), as well as performed new analyses on the EEG data set we previously 

collected using the same task (Riddle et al., 2020). In the task, the abstraction manipulation 

served to capture changes in the neural dynamics associated with the level of abstraction 

of the task rules. On the other hand, the set-size manipulation served to characterize 

the neural dynamics associated with the control and selection between competing rules. 

In laboratory experiments like ours, these rules typically entail an association between 

certain characteristics or information of the stimulus and a corresponding correct behavioral 

response. Thus, we used the abstraction and set-size manipulations to respectively assess 

the “control of rule abstraction” and the “control of stimulus–action associations.” These 

two levels of control are proposed to be carried out in two distinct functional networks, one 

comprising brain areas that are more dorsolateral and distant from the sensory-motor cortex, 

and the other comprising areas that are more dorsomedial and closer to the sensory-motor 

cortex (sensorimotor-proximal).

The fMRI data set was used to define cortical ROIs, which were then used to perform 

EEG spectral analyses in these regions, as well as cortico–cortical connectivity analysis. 

Specifically, these analyses assessed delta/theta separability for the distinct levels of 

processing of hierarchical cognitive control and whether the functional networks underlying 

the control of rule abstraction and the control of stimulus–action associations are 

anatomically separable, or overlap. The fMRI data also allowed us to determine the 

involvement of subcortical structures in mediating cortico–cortical interactions at each level 

of cognitive control.

METHODS

Participants

We recruited in total 61 healthy human participants with normal or corrected-to-normal 

vision, and with no history of neurological or psychiatric conditions, to participate in two 

different studies at the University of California, Berkeley. The fMRI data were collected 

from 30 participants (aged 19–31 years, M = 22.1 years; 22/8 female/male). The EEG data 

were the same used in our previous study (Riddle et al., 2020) and were obtained from a 
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different group of 31 participants (aged 18–34 years, M = 24.0 years; 18/13 female/male). 

The sample sizes were based on our previous work (Riddle et al., 2020). All participants 

gave written informed consent before the experimental session and received monetary 

compensation for their participation in the study. The study was approved by the Committee 

for the Protection of Human Subjects at the University of California, Berkeley.

Experimental Design

Within the hierarchical cognitive control task, we employed two behavioral subtasks named 

“response task” and “dimension task” (Badre & D’Esposito, 2007, 2009; Badre, 2008). The 

response task is a low abstraction task, in which participants have to respond based on a 

previously learned association between a visual stimulus (colored square) and an action 

(button response; Figure 1A). In the dimension task, which is characterized by a higher 

level of abstraction, participants have to decide whether two visual objects (shown inside a 

colored square) matched or not along one dimension (texture/shape; Figure 1B). Here, the 

relevant dimension of the objects is determined by the color of the square (context). In both 

the response and dimension tasks, we manipulated the number of competing associations 

(set-size) to match the performance in terms of accuracy between these two tasks (Riddle 

et al., 2020). The response task had either four (R4; low abstraction, low set-size) or eight 

(R8; low abstraction, high set-size) stimulus–response associations, whereas the dimension 

task had either one (D1; high abstraction, low set-size) or two (D2; high abstraction, high 

set-size) contextual representations.

In the response task, participants used their index and middle fingers on both hands for 

the low set-size condition (R4), and in addition, they used their ring and little fingers on 

both hands for the high set-size condition (R8; Figure 1A and C). In the dimension task, 

participants used their index finger on both hands (Figure 1B and C). In both the fMRI and 

EEG experiments, participants learned the specific sets of stimulus–action associations and 

contexts (Figure 1C) during a training session, performed before data acquisition. In the 

training session, practice blocks comprising 16 trials (using the same parameters as in the 

actual experiment; see below) were repeated until performance was above 70% accuracy. 

In the following experimental session, the participants performed eight blocks of trials 

(two blocks for each task), each block comprising 48 trials for 384 trials per experimental 

session. In each trial, the stimulus presentation lasted 2000 msec and the participants were 

instructed to provide their response while the stimuli were still on the screen (Figure 1D 

and E). A fixation cross was presented at the center of the screen during the ISI, which 

varied exponentially in duration within the range 3–10 sec. Twelve colored squares stimuli 

were used in the response task (four in R4 and eight in R8). Thirty-two stimuli, resulting 

from combining four colored squares with eight possible combinations of shape/texture 

of the two objects, were used in the dimension task. For each participant, a specific rule 

set was randomly selected from a predefined set of four mappings for the response task 

and two mappings for the dimension task, counterbalanced across participants, and it was 

kept the same for the two blocks of that task in the experimental session. The order of 

tasks over blocks was randomized in such a way that the first four and last four blocks 

contained all task conditions, and the same task was never performed back-to-back. For the 

D1 task, participants completed one block with texture and one block with shape as the 
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relevant dimension of the objects, whose order was counterbalanced across participants. At 

the beginning of each block, a schematic instruction depicting the mapping reminded the 

participant of the relevant rule set for the upcoming block.

Data Acquisition and Preprocessing

fMRI—We collected the MRI data at the Henry H. Wheeler Jr. Brain Imaging Center 

(University of California, Berkeley) with a Siemens 3 T MAGNETOM Trio. We used a 

Siemens 32-channel head coil for data acquisition, using foam padding inside the head 

coil to reduce the participants’ head movements. The functional data were acquired with 

a T2*-weighted, gradient echo, EPI sequence (46 slices; voxel size = 3.0 mm isotropic; 

repetition time [TR] = 1500 msec; echo time [TE] = 25.8 msec; flip angle [FA] = 40°; 

Sensitivity Encoding–SENSE algorithm, multiband acceleration factor = 2). Functional data 

were acquired while the participants performed the tasks depicted in Figure 1, and their 

behavioral responses were collected using MRI-compatible four-button pads by Current 

Designs. The visual stimuli were presented using a modified MRI-compatible projector from 

Avotec, which was positioned at the rear of the scanner. The stimuli were projected onto 

a plexiglass screen with a nondispersing optical coating, and the participants viewed them 

through a custom-built mirror system, mounted on top of the head coil. We also acquired 

an anatomical whole-head image of the participants with a T1-weighted, magnetization 

prepared rapid acquisition gradient echo sequence (160 slices; voxel size = 1.0 mm 

isotropic; TR = 2300 msec; TE = 2.98 msec; inversion time = 900 msec; FA = 9°; parallel 

imaging via GeneRalized Autocalibrating Partially Parallel Acquisition, acceleration factor 

= 2). Both functional and structural MRI images were preprocessed using the Statistical 

Parametric Mapping (SPM12) toolbox (Penny, Friston, Ashburner, Kiebel, & Nichols, 

2011). The functional images were first aligned to the mean of each session using a two-pass 

realignment procedure for motion correction. After realignment, the mean functional image 

was co-registered to the anatomical image using the normalized mutual information as the 

cost function. The standard segmentation procedure in SPM12 was employed to obtain 

individual masks for the cerebrospinal fluid (CSF) and white matter (WM), which were used 

to extract subject-specific time courses of CSF and WM signals. Finally, the images were 

normalized to the Montreal Neurological Institute-Hospital (MNI) stereotaxic space using a 

fourth-order B-spline interpolation, and the preprocessed data were spatially smoothed using 

a Gaussian filter (8-mm FWHM kernel).

EEG—We acquired the EEG data with a 64-channel BioSemi ActiveTwo EEG system, 

using a sampling rate of 1024 Hz. Four additional EOG electrodes were used to record 

the eye movements, and two more electrodes were used to record from the mastoids. 

Continuous EEG signals were first re-referenced to the mastoid electrodes average and 

then bandpass filtered 0.1–100 Hz using a two-way least-squares finite impulse response 

filter, implemented in EEGLab14 (Delorme & Makeig, 2004). Three-second epochs were 

extracted using the time window −1000 to 2000 msec around stimulus onset, for the 

stimulus-locked analyses, whereas the window −2000 to 1000 msec around RT was used to 

define epochs for the response-locked analyses. Epochs contaminated by excessive muscular 

activity artifacts were rejected by visual inspection (4.5% of trials, on average, across 

participants). Noisy EEG channels were also identified by visual inspection and interpolated 
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using the average of the nearest neighbors electrodes. The number of interpolated channels 

was 0.48, on average, across participants (SD = 1.00, range = 0–3). An independent 

component analysis using EEGLab-extended infomax algorithm was employed to identify 

and remove eye blinks and other ocular activity artifacts. As a final step, a rereferencing to 

the common average reference was applied.

Univariate fMRI Analyses

We used two contrasts of interest, one for “abstraction” (high vs. low) and the other 

for “set-size” (high vs. low) to assess the control of rule abstraction and the control of 

stimulus–action associations, respectively. The comparisons were carried out exclusively on 

correct response trials. The statistical models for each participant were constructed using 

SPM12, under the general linear model assumptions (Friston et al., 1994). The first-level 

analysis was implemented using an event-related design, in which each event was modeled 

as a boxcar function whose duration was determined by the participant’s RT for that trial 

(variable epoch model; Grinband, Wager, Lindquist, Ferrera, & Hirsch, 2008). Regressors 

of interest were defined to model the correct response trials and incorrect trials in each 

task condition (R4, R8, D1, and D2), and a baseline (BL; pre-experiment rest period). The 

general linear model also included eight nuisance regressors that modeled the six motion 

realignment parameters generated by SPM12 (three for translations and three for rotations), 

as well as the mean signals of CSF and WM. The abstraction and set-size contrasts were 

used at the first-level individual analysis (two-tailed test). An additional set of contrasts 

was based on the difference between each task condition and BL (one-tailed test). In the 

second-level group analysis, the participants were modeled as random effects and statistical 

significance was assessed using voxel-wise t test comparison across participants (p < .001 

uncorrected; minimum cluster-size of 50 voxels). The results of the abstraction and set-size 

contrasts were used to identify cortical ROIs (Table 1) for source-space reconstruction 

in EEG (see section Source reconstruction and power analyses in source-space, in the 

Methods section). The results of the contrasts between tasks and baseline were used 

to identify subcortical ROIs in the caudate nucleus (CN), putamen (PUT), and THA, 

which were successively used for fMRI connectivity analysis (see section Generalized 

psychophysiological interaction (fMRI), in the Methods section).

EEG Analyses

Statistics—As in the fMRI, only correct response trials were included in the EEG 

analyses. Taking into account also the trials removed during preprocessing, the number 

of trials used for analysis, on average, across participants was 92.4 in R4 (SD = 4.8, range 

= 76–96), 88.1 in R8 (SD = 8.0, range = 56–96), 91.8 in D1 (SD = 6.8, range = 68–96), 

and 87.1 in D2 (SD = 7.4, range = 68–96). Statistical comparisons between high and 

low abstraction and between high and low set-size were performed using a cluster-based 

permutation approach, as implemented in FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 

2011). The approach was based on a two-tailed dependent t test (df = 30; p < .05; number 

of permutations = 1000; p < .05 for the permutation test; multiple-comparisons correction 

by calculating the so-called, cluster-based test statistic and its significance probability via 

the Monte Carlo method; Maris & Oostenveld, 2007). The same settings were used in every 

statistical comparison, unless specified otherwise.
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The space for clustering is specified in the description of each analysis (see below). 

A cluster-based permutation test accounts only for a difference between probability 

distributions in the two conditions overall; it does not allow for a precise inference on 

where in time, frequency, or space effects occur, but rather it only provides approximations 

of their extent (Sassenhagen & Draschkow, 2019; Maris & Oostenveld, 2007). Thus, in the 

results, we report the clusters in the observed data as descriptive statistics. The effect sizes of 

between-conditions differences were estimated using Cohen’s d (Cohen, 1992).

Time-varying Power Analysis and Irregular Resampling Auto-spectral 
Analysis—We performed a time-varying power analysis on sensor-space signals (on the 

scalp) separately for stimulus-locked and response-locked epochs. Time–frequency power 

estimation was performed using the Morlet wavelet transform with central frequency 

parameter equal to 6, at frequencies between 1 and 50 Hz (in unit increments). Zero-padding 

was used to solve the edge effects problem (Torrence & Compo, 1998). Spectral amplitudes 

from each contrast of interest were compared with the cluster-based permutation approach 

over time frames (in the 3-sec epoch), frequencies (1–50 Hz), and electrodes. Neighboring 

electrodes were defined using the “triangulation” algorithm implemented in FieldTrip, based 

on the 64-channel BioSemi cap.

To confirm the presence of distinct oscillatory peaks, in particular in the delta and theta 

band, we used the Irregular Resampling Auto-Spectral Analysis (IRASA; Wen & Liu, 

2016), as implemented in FieldTrip. This analysis is of critical importance for removing the 

aperiodic component of the signal to isolate neural oscillatory activity. Specifically, IRASA 

was used to remove the 1/f component (aperiodic) from the power spectrum and derive 

power spectral estimates of rhythmic, periodic content, in the stimulus-locked 2 sec interval 

(0–2000 msec). Here, the power estimation was performed at frequencies between 1 and 50 

Hz (in 0.5-Hz increments). To test for an effect of abstraction/set-size on the periodic power 

spectrum, we selected a priori frequency ranges in our data (delta: 2–4 Hz; theta: 5–8 Hz), 

based on the peaks identified by visual inspection of the periodic power spectra, and used 

a cluster-based permutation test over all electrodes (neighbors defined using “triangulation” 

algorithm, as before). We applied Bonferroni correction by taking the observed pperm-values 

and multiplying them by the number of comparisons made (m = 2, frequency ranges).

Source Reconstruction and Power Analyses in Source-space—The MNI 

template anatomical MRI was used to create a model of volume conduction for the forward 

problem. The template anatomy was first segmented to obtain border surfaces between 

scalp, skull, and brain (smoothing with 5 voxels FWHM Gaussian kernel); the volume 

conduction model was then created from these surfaces, using the boundary element method. 

The 3-D coordinates of the 64-channel BioSemi cap were aligned to the template head 

model to provide a model of the sensors. The template grid of regularly spaced points based 

on the MNI template anatomical MRI (number of solution points = 20173; spacing = 5 

mm), provided in FieldTrip, was employed to define the grid of solution points for source 

reconstruction. The forward operator with unconstrained orientation (i.e., each solution point 

is modeled as three orthogonal equivalent current dipoles) was used to compute the leadfield 

matrix (solution of the forward problem). The solution of the inverse problem was obtained 
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using the linearly constrained minimum variance beam-former (Van Veen, van Drongelen, 

Yuchtman, & Suzuki, 1997). The representative time series of each ROI were extracted 

using a singular value decomposition-based method (Rubega et al., 2019).

We used 12 cortical ROIs for source reconstruction, which were defined from the spatially 

segregated cluster-peaks previously obtained from the fMRI statistical analyses (see Table 

1). Each cluster-peak was used as the center of a sphere (radius = 20 mm). All the solution 

points of the template grid falling inside the sphere were selected, and their tissue type 

was checked for consistency based on the automated anatomical labeling atlas parcellations 

defined in MNI space. This allowed us to keep only the solution points that belonged to 

the tissue-type of the atlas region and remove those belonging to other regions, uniquely 

identifying each ROI (i.e., no solution points were shared across ROIs). After extracting 

the source-reconstructed time series of each ROI, we repeated the wavelet-based, time–

frequency power analysis. Here, the two contrasts of interest (abstraction/set-size) were 

assessed in source-space ROIs rather than scalp sensors; hence, clustering was performed 

over time frames, frequencies (1–50 Hz), and ROIs. Neighboring ROIs were defined based 

on the distance between their centroids in MNI space (maximum distance of 70 mm for 

defining neighbors).

In each ROI, IRASA was used to remove the 1/f component (aperiodic) from the power 

spectrum and derive power spectral estimates of rhythmic, periodic content. This analysis 

was performed in two stimulus-locked time intervals (“early” interval 200–900 msec; “late” 

interval 1000–1700 msec) and one “response-locked” interval (−600 to 100 msec). These 

time intervals of interest were defined based on the results of the previous time-varying 

power analysis in source-space. Specifically, the choice of the stimulus-locked late interval 

(1000–1700 msec) was motivated by the results showing increased power with abstraction 

in the delta band, and increased power with set-size in the theta band after ~1000 msec 

poststimulus; the FWHM of the time-collapsed frequency distribution of these between-

conditions differences was 1088–1708 msec (see Figure 2D, in the Results section) and 

980–1610 msec (see Figure 5E, in the Results section), respectively. A response-locked 

interval (−600 to 100 msec), matching in length with the previous one, was defined based 

on the results of the response-locked analysis showing alpha/beta-band power reduction 

with abstraction pre-response (FWHM −557 to 144 msec; see Figure 7B, in the Results 

section), where sustained negative differences in alpha/beta-band power were also observed 

between high and low set-size (see Figure 8). Despite the source-space results did not show 

low-frequency power differences at early latencies poststimulus, these were observed in 

sensor-space, in particular in the abstraction contrast (FWHM = 287–1990 msec; see Figure 

2B, in the Results section); thus, a third interval, non-overlapping but matching in length 

with the other two, was employed to capture possible task-specific modulations in the power 

spectrum periodic components at early latencies poststimulus (200–900 msec). Similarly to 

the IRASA analysis in sensor-space (see previous section), in each interval, we tested for 

an effect of abstraction/set-size on the periodic power spectrum in the two frequency bands 

of interest, a priori selected, using a cluster-based permutation test over all ROIs (neighbors 

defined based on centroids’ distance of 70 mm), Bonferroni-corrected for m = 6 multiple 

comparisons (frequency ranges-by-time intervals).
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Connectivity Analyses

Nonparametric Granger–Geweke Causality (EEG)—We performed an EEG 

connectivity analysis in the early (200 to 900 msec, stimulus-locked), late (1000 to 1700 

msec, stimulus-locked), and response-locked (−600 to 100 msec) time intervals of interest. 

In each interval, frequency domain measures of Granger–Geweke causality (Geweke, 1982) 

were derived from the spectral estimates of that interval, by using a multivariate method 

based on nonparametric spectral factorization (Pagnotta, Dhamala, & Plomp, 2018; Wen, 

Rangarajan, & Ding, 2013; Dhamala, Rangarajan, & Ding, 2008a, 2008b). This approach 

allowed us to derive the directed functional connections between ROIs from their source-

reconstructed time series. Greater differences from the source-space power analyses were 

found in the right hemisphere (see Results section); thus, we analyzed only the connections 

between ROIs in that hemisphere. Statistical tests were performed on the graph measures 

of out-degree (sum of outgoing connections, i.e., each ROI as sender) and in-degree (sum 

of incoming connections, i.e., each ROI as receiver) over cortical ROIs, respectively in the 

delta (2–3 Hz) and theta (4–6 Hz) bands for the abstraction and set-size contrasts. Post 

hoc analysis for which specific connections served as the primary drivers for the significant 

roles of functional senders (higher out-degree) and receivers (higher in-degree) was carried 

out using a one-tailed dependent t test in the direction of interest (out for sender or in for 

receiver; p < .05 uncorrected).

Generalized Psychophysiological Interaction (fMRI)—We performed a functional 

connectivity analysis using fMRI data to assess the involvement in cognitive control of 

subcortical structures like the dorsal striatum (CN, PUT) and THA, and of subcortical and 

cortical–subcortical connectivity, which cannot be reliably evaluated using EEG. The fMRI 

connectivity analysis was performed only on right hemisphere ROIs (eight cortical and three 

sub-cortical), where the majority of abstraction and set-size modulations were observed 

in EEG analyses (see Results section). The data from each ROI were extracted using the 

spherical ROI approach, in which a sphere (radius = 5 mm) was centered at the xyz MNI 

coordinates specified by the centroid of each ROI in Table 1. The ROI-to-ROI connectivity 

was measured using the generalized psycho-physiological interactions (gPPI; McLaren, 

Ries, Xu, & Johnson, 2012), as implemented in the CONN toolbox (Nieto-Castanon, 2020; 

Whitfield-Gabrieli & Nieto-Castanon, 2012), by using the two contrasts of interest for 

abstraction and set-size. Each analysis was restricted in a data-driven manner to the subset 

of ROIs that showed significant functional interactions from the previous EEG connectivity 

analysis (see Results section), and statistical testing was based on a one-tailed dependent t 
test (p < .05 uncorrected). The CONN toolbox was also used to make the plots of the results.

RESULTS

Behavioral Data Analyses

We manipulated the level of abstraction of the task rules, as well as their set-size, and 

investigated the impact of these task demands on performance accuracy. For the participants 

who completed the fMRI session (Figure 1F), the mean accuracy was equal to 98.47% 

in R4 (SD = 2.38%), 96.75% in R8 (SD = 3.90%), 98.05% in D1 (SD = 2.44%), and 

96.80% in D2 (SD = 3.18%). Here, a two-way, repeated-measures ANOVA (df = 29) with 
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factors Abstraction (high/low) and Set-size (high/low) revealed a main effect of Set-size on 

the percentage of correct responses (accuracy; F = 9.27, p = .005), but did not reveal a 

significant main effect of Abstraction (F = 0.11, p = .74) or an interaction (F = 0.27, p = 

.61). When the same analysis was performed in the EEG data set (df = 30), we also found 

a main effect of Set-size on accuracy (F = 10.23, p = .003), with no significant main effect 

of Abstraction (F = 0.11, p = .75) nor an interaction (F = 0.05, p = .82). In the EEG data 

set (Figure 1G), the mean accuracy was equal to 97.72% in R4 (SD = 3.03%), 94.94% in 

R8 (SD = 7.43%), 97.60% in D1 (SD = 4.65%), and 94.45% in D2 (SD = 5.05%). These 

results show that, in each data set, the behavioral performance was matched between levels 

of rule abstraction, but increased set-size resulted in decreased accuracy. This allowed us to 

reduce the possible confounding effects of task difficulty in isolating the control processing 

of abstract rules. Thus, we employed the abstraction contrast to capture the neural dynamics 

associated with the control of rule abstraction, within the context of hierarchical control, 

and the set-size contrast to characterize the dynamics underlying the control of the stimulus–

action association.

For the RT, in the participants who completed the fMRI session, the ANOVA revealed a 

main effect of Set-size (F = 273.89, p < .001), a significant main effect of Abstraction (F 
= 52.33, p < .001), but no significant interaction (F = 3.14, p = .087). In the fMRI data set 

(Figure 1F), the mean RT was equal to 890.37 msec in R4 (SD = 110.19 msec), 1111.92 

msec in R8 (SD = 107.98 msec), 1003.50 msec in D1 (SD = 112.85 msec), and 1262.29 

in D2 (SD = 103.67 msec). For the participants who completed the EEG experiment, the 

ANOVA revealed a significant main effect of Set-size on RT (F = 398.32, p < .001), as 

well as of Abstraction (F = 92.11, p < .001), and an interaction (F = 53.10, p < .001). In 

the EEG data set (Figure 1G), the mean RT was equal to 898.08 msec in R4 (SD = 111.84 

msec), 1050.14 msec in R8 (SD = 98.03 msec), 962.16 msec in D1 (SD = 113.70 msec), and 

1301.78 in D2 (SD = 122.54 msec).

Abstraction: Univariate fMRI and EEG Power Analyses

First, we investigated which brain areas increased in activation to the high abstraction 

task conditions relative to the low abstraction conditions. Univariate fMRI analysis 

revealed increased activations for high compared with low abstraction in LPFC (in both 

hemispheres), right medial portion of the superior frontal gyrus (SFGm), M1 (in both 

hemispheres), and right inferior parietal lobule (IPL) (Figure 2A, Table 1). The single 

condition contrasts versus baseline revealed that activations in LPFC and IPL were driven 

by the high abstraction conditions (D1 and D2; Figure 3). More specifically, although 

each task condition showed increased activation compared with baseline in sensorimotor-

proximal areas (SMA, dorsal premotor [PMd], superior parietal lobule [SPL]), only the high 

abstraction conditions showed increased activation in sensorimotor-distal areas like LPFC 

(Figure 3B).

We performed a time-varying power analysis on EEG sensor-space signals for the 

abstraction contrast (Figure 2B) and found a positive cluster in the observed data (higher 

power in high abstraction compared with low abstraction) in the delta band (~2–3 Hz) 

anda negative cluster (vice versa) in the alpha/beta band (~12–23 Hz). The first cluster 
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extended approximately over frequencies 1–5 Hz and latencies 0–2000 msec (FWHM of 

the time-collapsed frequency distribution and of frequency-collapsed time distribution of 

differences 2–3 Hz and 287–1990 msec, respectively), whereas the second cluster extended 

approximately over 5–30 Hz and 0–2000 msec (FWHM = 8–22 Hz, 670–1601 msec). 

In the ranges considered, positive differences were predominantly distributed over lateral 

frontal and parietal electrodes at early latencies poststimulus (200–900 msec), with effect 

sizes peaking in the right frontal and anterior frontal electrodes (d = 0.386–0.502). At 

longer latencies (1000–1700 msec poststimulus), positive differences were most pronounced 

over the medial frontal electrodes (effect sizes ranging between d = 0.504–0.613). The 

scalp distribution of the negative differences was similar to the distribution of the positive 

differences at early latencies, with peak effect sizes in medial frontal electrodes (d = 

0.405–0.418; 12–23 Hz, 600–1700 msec poststimulus). The cluster-based permutation test 

indicated that there was a significant difference between the high abstraction and low 

abstraction conditions (pperm = 0.007). These results extend to the whole scalp and replicate 

those obtained in our previous study, which focused on the frontal midline group of 

electrodes (Riddle et al., 2020).

After using IRASA to separate aperiodic (1/f) and periodic component of the power 

spectrum (see Methods section for more details), the estimates for the periodic components 

showed separability of the oscillatory peaks in the delta band (3 Hz) and theta band 

(6.5. Hz), in the group of medial frontal electrodes (Figure 2C). In the group of right 

lateral frontal electrodes instead, a theta peak was absent but the delta-band peak was 

still present (Figure 2C). Testing for an abstraction effect in a priori selected delta and 

theta frequency ranges, the cluster-based permutation test revealed a significant difference 

between conditions in the former (Bonferroni-adjusted pperm < 0.001), but not in the latter 

(Bonferroni-adjusted pperm = 0.14).

In EEG source-space (Figure 2D), we also found increased delta power for high abstraction 

relative to low abstraction and decreased power in the alpha/beta band. A positive cluster 

was found in the observed data, extending approximately over 1–5 Hz and 710–2000 msec 

(FWHM = 2–4 Hz, 1088–1708 msec), as well as a negative cluster that extended over 

frequencies and latencies in the ranges 5–40 Hz and 440–2000 msec (FWHM = 9–21 

Hz, 806–1403 msec). The increase in delta power was most pronounced in seven right 

hemisphere cortical ROIs, including SMA (d = 0.351), IPL (d = 0.289), LPFC (d = 0.287), 

PMd (d = 0.235), SPL (d = 0.222), superior frontal gyrus (SFG; d = 0.207), and M1 (d = 

0.186). By comparison, decreased alpha/beta power was more spread out and effect sizes 

peaked bilaterally in LPFC (left: d = 0.477; right: d = 0.288) and in left PMd (d = 0.309). 

The cluster-based permutation test revealed a significant difference between task conditions 

(high compared with low abstraction; pperm = 0.020).

To ensure that these effects were not driven by the back-ground electrical activity of 

the brain, we separated the aperiodic from periodic components of the electrical spectra 

using the IRASA method. We found oscillatory peaks in the delta band (~3 Hz), in the 

right hemisphere ROIs showing abstraction-related delta power differences (Figure 2E). In 

particular in LPFC, the delta-band peak was clearly distinguishable from a peak in the theta 

band (~6 Hz). In the observed data in the late interval (Figure 2E), an increase in periodic 
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delta power with abstraction was most prominent in the right hemisphere, over SMA (d = 

0.419), LPFC (d = 0.398), IPL (d = 0.368), PMd (d = 0.336), M1 (d = 0.333), SFG (d = 

0.219), and PMd in the left hemisphere (d = 0.132). After selecting a priori frequency ranges 

in our data, the cluster-based permutation test revealed a significant difference between high 

abstraction and low abstraction conditions in the delta (Bonferroni-adjusted pperm = 0.001) 

but not in the theta band (Bonferroni-adjusted pperm = 0.63). No significant differences 

were found in the early (Bonferroni-adjusted pperm = 0.28) and response-locked intervals 

(Bonferroni-adjusted pperm = 0.30), in either frequency band.

Abstraction: Connectivity Analyses

Because we found distinctively stronger delta synchronization with increased abstraction, we 

investigated the delta- and-directed functional connectivity in the source-space ROIs of the 

EEG data, as a function of the level of abstraction. The results of this EEG connectivity 

analysis showed significant positive differences between high and low abstraction, in both 

the early and late stimulus-locked time intervals, but not in the response-locked interval. In 

the early interval, the results showed increased in-degree for high abstraction compared with 

low abstraction, in M1 (d = 0.367) and IPL (d = 0.408); the post hoc analysis revealed that 

these effects were driven by higher connectivity in high compared with low abstraction in 

the directed connections from LPFC to M1 (d = 0.367), and M1 to IPL (d = 0.527; Figure 

4A). In the late interval, the results showed increased out-degree for high compared with low 

abstraction in LPFC (d = 0.351), and increased in-degree in IPL (d = 0.480) and PMd (d = 

0.281); these effects were driven by the directed connections from LPFC to IPL (d = 0.335), 

SFGm to IPL (d = 0.524), and SPL to PMd (d = 0.406; Figure 4A).

We also conducted an analysis of fMRI connectivity for the abstraction contrast. The spatial 

resolution of fMRI allowed us to investigate whether subcortical regions in the dorsal 

striatum or THA contributed to task-driven changes in functional connectivity. We found 

increased functional connectivity with task abstraction between the CN and two cortical 

regions, LPFC (puncorr = 0.019) and IPL (puncorr = 0.032; Figure 4B).

Set-size: Univariate fMRI and EEG Power Analyses

Next, we investigated which regions were activated for task conditions with a high set-size 

versus a low set-size. Univariate fMRI analysis revealed increased activations for high 

compared with low set-size in right LPFC, SMA, PMd (in both hemispheres), and SPL 

(Figure 5A, Table 1). The results of the univariate fMRI analyses comparing each task 

condition to baseline showed significant activation in PMd, SMA, and SPL, for every task 

condition (Figure 3).

In a time-varying, stimulus-locked power analysis on EEG sensor-space signals (Figure 

5B), we found increased power with set-size in the theta band, predominantly in frontal 

midline electrodes (peak effect size in FCz: d = 0.375). Here, a positive cluster extended 

approximately over frequencies 2–7 Hz and latencies 110–2000 msec (FWHM = 3–6 Hz, 

815–1550 msec). The results further showed decreased power with set-size in the alpha/beta 

band, with a negative cluster found in the observed data (7–30 Hz, 225–2000 msec; FWHM 

= 9–18 Hz, 600–1480 msec), most pronounced in central and parietal electrodes, bilaterally 
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(peak effect size in C3: d = 0.309). Similar patterns were obtained from the response-locked 

analysis (Figure 5C). Here, a positive cluster in the observed data was found in the theta 

band (1–8 Hz, −2000–1000 msec; FWHM = 2–5 Hz, −1525 to −742 msec) and a negative 

cluster in the alpha band (5–37 Hz, −1360–1000 msec; FWHM = 9–13 Hz, −987 to −496 

msec). In these ranges, power differences were most pronounced in medial frontal (peak 

effect size in FCz: d = 0.426) and posterior parietal electrodes (peak effect size in P4: 

d = 0.379), respectively. Cluster-based permutation tests revealed a significant difference 

between high set-size and low set-size conditions, in both stimulus-locked (pperm = 0.020) 

and response-locked analysis (pperm = 0.013).

IRASA demonstrated that the periodic oscillatory component in the theta band (peak at 6.5 

Hz) is separable from delta band oscillatory peak (3 Hz) in the group of medial frontal 

electrodes, and demonstrated the presence of alpha-band oscillatory components (peak at 

10 Hz) in central-parietal electrodes (Figure 5D). Testing for an effect in a priori selected 

delta and theta frequency ranges, cluster-based permutation tests identified that there was 

a significant difference between high set-size and low set-size only in the theta band 

(Bonferroni-adjusted pperm = 0.002) and not in the delta band (Bonferroni-adjusted pperm 

= 0.17).

In EEG source-space, the stimulus-locked analysis confirmed the patterns found in sensor-

space. We found decreased power with set-size in the alpha/beta-band (negative cluster 

in the observed data, extending over frequencies 7–34 Hz and latencies 440–2000 msec; 

FWHM = 9–21 Hz, 805–1400 msec), over a distributed group of ROIs (Figure 5E). 

Between-conditions differences were most pronounced in the alpha-band (8–13 Hz, 600–

1700 msec poststimulus), in PMd (d = 0.527), SMA (d = 0.406), IPL (d = 0.405), and SPL 

(d = 0.360) in the right hemisphere. We also observed a trend toward theta band power 

increase with increased set-size in medial frontal regions, in particular SMA, with a positive 

cluster extending over 3–7 Hz and 830–2000 msec (FWHM = 4–6 Hz, 980–1610 msec). The 

cluster-based permutation test indicated that there was a significant difference between high 

and low set-size (pperm = 0.020).

When we separated the periodic component of the theta band from the aperiodic background 

activity of the brain using IRASA (Figure 5F), we identified separable peaks in the delta 

(~3 Hz) and theta (~6 Hz) band. For the power spectrum periodic components, in the 

late interval, an increase in theta power with set-size was most prominent in SMA (d = 

0.589), SFG (d = 0.317), and PMd (d = 0.275) in the right hemisphere, whereas in the 

response-locked interval, the power increase was most pronounced in the right hemisphere 

in LPFC (d = 0.485), PMd (d = 0.362), SMA (d = 0.266), SFGm (d = 0.225), and SFG 

(d = 0.145), and in the left hemisphere in PMd (d = 0.496), LPFC (d = 0.387), and M1 (d 
= 0.218). In each latency interval, the cluster-based permutation tests revealed a significant 

difference between task conditions in the theta frequency range (Bonferroni-adjusted pperm < 

0.001 and pperm = 0.001, respectively, in the late and response-locked interval). We did not 

find any significant differences in the delta range (Bonferroni-adjusted pperm = 0.16 in the 

late interval; Bonferroni-adjusted pperm = 1.0 in the response-locked interval).
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Set-size: Connectivity Analyses

With increasing set-size, we found stronger synchronization in the theta rather than the delta 

band. Thus, we investigated the changes in theta-band directed functional connectivity in 

source-space EEG, driven by increased set-size. This analysis revealed a significant increase 

in theta-band connectivity as a function of the set-size, in all three time intervals analyzed. 

In the early interval, the results showed increased out-degree for high compared with low 

set-size in SFGm (d = 0.578); a post hoc analysis revealed that this effect was driven by 

increased connectivity with set-size in the directed connections from SFGm to LPFC (d = 

0.379) and PMd (d = 0.400; Figure 6A). In the late interval, we found increased out-degree 

with set-size in SFGm (d = 0.453), and increased in-degree in LPFC (d = 0.376), PMd (d = 

0.517), and SPL (d = 0.474); these effects were driven by increased theta connectivity with 

set-size in the connections from SFGm to LPFC (d = 0.458) and PMd (d = 0.775), SMA to 

PMd (d = 0.330), LPFC to SPL (d = 0.550), and SFG to SPL (d = 0.630; Figure 6A). In 

the response-locked interval, we found that out-degree was higher for high set-size than low 

set-size in LPFC (d = 0.364), whereas in-degree was higher in PMd (d = 0.546); the post hoc 

comparison showed increased theta connectivity with set-size in the connections from LPFC 

to SPL (d = 0.513) and M1 (d = 0.544; Figure 6A).

We further performed a connectivity analysis of the fMRI data for the set-size contrast. This 

analysis revealed increased functional connectivity with set-size between PMd–SPL (puncorr 

= 0.032) and LPFC–SPL (puncorr = 0.006), and in the connections between SMA–PUT 

(puncorr = 0.040), PUT–THA (puncorr = 0.042), and CN–THA (puncorr = 0.040; Figure 6B).

Response-locked Power Analyses

Although our hypothesis focused on the role of low-frequency neural oscillations in the delta 

and theta bands to coordinate large-scale network activity, our analyses assessed a broader 

range of frequencies up to 50 Hz, and we also found power modulations in the alpha/beta 

band for both the abstraction and set-size contrasts. We used response-locked analyses to 

further investigate whether these modulations coincided with the same regions exhibiting 

modulations in the delta and theta bands. For the abstraction contrast, the power analyses 

were repeated using the response-locked epochs (−2000 to 1000 msec). The results of these 

response-locked analyses, both in sensor-space and source-space, confirmed that alpha/beta 

power is reduced with abstraction (Figure 7). In the observed data in sensor-space, a negative 

cluster extended approximately over frequencies 5–25 Hz and latencies −1350 to 1000 msec 

(FWHM = 7–17 Hz, −287 to 210 msec). In source-space, a negative cluster was found in 

our data, extending over 6–29 Hz and − 850 to 582 msec (FWHM = 11–18 Hz, −557 to 144 

msec). Here, the decrease in power was most pronounced at ~15 Hz, in LPFC bilaterally 

(left: d = 0.402; right: d = 0.342). The cluster-based permutation tests identified that 

there was a significant difference between high and low abstraction, in both sensor-space 

(pperm = 0.039) and source-space (pperm = 0.013). These results suggest that the previously 

observed beta-band power effects (Figure 2B–D) are not simply driven by timing differences 

in the motor-related processes between conditions, because of differences in RT; rather, 

the beta-band effects are specifically associated with the control of rule abstraction, with 

high abstraction conditions showing stronger beta-band desynchronization, predominantly in 

lateral areas.
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In the response-locked interval, the source-space results revealed specifically stronger alpha-

band (as opposed to beta-band) desynchronization with increased set-size (Figure 8), in line 

with the sensor-space results (Figure 5C). A negative cluster in the observed data extended 

from approximately 5 to 38 Hz, over latencies between −1245 and 1000 msec (FWHM = 8–

17 Hz, −1044 to −411 msec). The decrease in power was most prominent at ~11 Hz, in the 

right hemisphere in PMd (d = 0.482), SPL (d = 0.353), and LPFC (d = 0.345), and in the left 

hemisphere in SPL (d = 0.365), M1 (d = 0.314), and LPFC (d = 0.306). The cluster-based 

per-mutation test revealed a significant difference between high set-size and low set-size 

conditions (pperm = 0.007). Together, the results of the response-locked analyses suggest 

that the observed alpha/beta-band desynchronization effects, both abstraction-dependent and 

set-size-dependent, do not simply reflect motor preparation because of the difference in RTs 

between task conditions, but rather they may have a specific role for each level of control.

DISCUSSION

In this study, we analyzed an fMRI and EEG data set with the same task to characterize 

the neural dynamics of control signals that underlie different components of hierarchical 

cognitive control. Our results show that distinct neural oscillations underlie the inter-areal 

synchronization within distributed functional networks, to support two distinct levels of 

processing of cognitive control, one related to the control of rule abstraction and the other 

to the control of stimulus–action associations. A frontal–parietal synchronization between 

LPFC and IPL underlies the control of the relevant abstract rule via top–down delta 

oscillations (~2–3 Hz). By comparison, theta oscillations (~4–7 Hz) act as control signals 

for the integration of information relative to stimulus–action associations, in more caudal 

and midline regions of the frontal cortex. This level of control unfolds slightly later in time, 

with more prominent response-locked dynamics, whereas the control of rule abstraction was 

most prominent in stimulus-locked dynamics. These findings support a model of dynamic 

cognitive control processing via multiplexed synchronization mechanisms.

The neural dynamics of hierarchical cognitive control were first tested in four participants 

undergoing intracranial electrocorticography monitoring for epileptic seizures (Voytek et 

al., 2015) using response and dimension tasks similar to the ones used here (Badre & 

D’Esposito, 2007, 2009; Badre, 2008). This seminal intracranial work provided evidence 

that pFC exerts greater influence on the processing in primary motor and premotor cortices 

(M1), than vice versa, through control signals in the theta band (4–8 Hz; Voytek et al., 

2015). However, in this study, behavioral performance was not matched between the two 

tasks, which could introduce possible confounding effects of task difficulty in isolating the 

control processing of abstract rules. Here and in previous work, we matched participants’ 

performance across levels of rule abstraction (Riddle, McFerren, & Frohlich, 2021; Riddle 

et al., 2020), which allowed us to dissociate delta and theta oscillations in the frontal 

areas involved in hierarchical cognitive control. We further demonstrated that each rhythm 

is associated with a specific level of control processing. These findings support a model 

by which there is a separation of signals within frontoparietal networks for different 

levels of hierarchical control, via “frequency-division multiplexing” between delta and 

theta oscillations. This multiplexing scheme, implemented by segregating the signals by 

frequency bands of oscillations, makes it possible for neural activity to carry multiple 
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independently accessible information channels (Akam & Kullmann, 2014), which allows for 

multiple levels of hierarchical cognitive control to be processed in parallel, rather than in 

a strictly serial fashion. Our results demonstrate that the two levels of control processing 

we studied are characterized by overlapping temporal dynamics, which is consistent with 

previous behavioral results, where participants tend to exhibit parallel (rather than serial) 

decision-making dynamics in tasks with hierarchically structured rules (Ranti, Chatham, 

& Badre, 2015). Such parallel processing through delta and theta neural oscillations may 

provide a time-efficient way to perform complex tasks.

Other studies have advanced the hypothesis that theta oscillations, specifically, support the 

implementation of cognitive control (Cooper et al., 2019; Sauseng et al., 2019; Cavanagh 

& Frank, 2014; Cohen & Donner, 2013). Furthermore, theta oscillations might adaptively 

change (or “shift”) their peak frequency within the ~4–7 Hz range, depending on task 

demands. A recent study has provided supporting evidence for this adaptive mechanism 

using behavioral and EEG data with a computational modeling approach (Senoussi et al., 

2022). By manipulating task difficulty, Senoussi and colleagues showed that theta-band 

oscillations over middle frontal gyrus change their peak frequency according to task 

demands, with difficult tasks showing a lower peak frequency in the theta band compared 

with easy tasks. A computational model, in which an MFC unit generated theta oscillations 

that orchestrated biased competition between rule nodes in a LPFC unit, achieved optimal 

accuracy at a slower theta frequency (lower peak frequency) for difficult rules, whereas a 

faster theta (higher peak frequency) was optimal for easier rules. Based on these findings, it 

was proposed that more abstract task rules (known to recruit more rostral areas) could elicit 

a slowing of the neural oscillations generated by MFC even toward the delta range (Senoussi 

et al., 2022). Our current findings suggest, instead, that a frontoparietal control system 

operates through multiplexed neural processes, leveraging distinct neural oscillations for 

large-scale synchronization, which is not consistent with the existence of a (simply) unitary, 

adaptive control system in middle frontal gyrus. Although we did not observe any shifts in 

leading frequencies across task conditions, our results do not entirely exclude the possibility 

that there might also be shifts in the leading frequency of theta oscillations. If a frequency 

shift were to occur, we speculate that it would take place within the level of control for 

stimulus–action associations, in the theta band (~4–7 Hz). Furthermore, our findings are in 

line with the predictions of the model by Senoussi and colleagues, in that theta-mediated 

interactions from MFC to LPFC orchestrate the competition between task rules (Senoussi et 

al., 2022), for which our results of increased theta band directed connectivity from medial 

frontal areas to LPFC in the control of stimulus–action associations provide supporting 

evidence.

We also found that, in addition to low-frequency synchronization in the delta/theta band, 

higher levels of control processing are associated with stronger desynchronization of alpha/

beta oscillations (~8–23 Hz). This desynchronization peaked in the beta band for the 

abstraction contrast and in the alpha band for the set-size contrast. We previously observed 

that different motifs of cross-frequency coupling underlie the two components of cognitive 

control, in the form of coupling between the phase of slow oscillations and the amplitude 

of higher frequency oscillations (phase-amplitude coupling [PAC]; Canolty & Knight, 2010). 

Specifically, we found increased delta–beta PAC during high abstraction and high set-size 
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and increased theta–gamma PAC during low abstraction conditions (Riddle et al., 2020). 

Furthermore, using transcranial alternating current stimulation in healthy individuals, we 

found causal evidence that distinct cross-frequency coupling motifs underlie these two 

components of control (Riddle et al., 2021). In the current study, we did not explicitly 

investigate cross-frequency coupling mechanisms with gamma oscillations, because of the 

intrinsic limitations of noninvasive EEG in examining source-localized, high-frequency 

activity. Nonetheless, based on these previous findings and the current results, it is possible 

to distinguish two main groups of neural rhythms, one including delta–beta oscillations 

and the other including theta–alpha (–gamma) oscillations, each specifically associated 

either with the control of rule abstraction (predominantly in lateral areas) or the control 

of stimulus–action associations (predominantly in dorsal midline areas). We speculate 

that the mid-frequency, beta, and alpha oscillations serve as inhibitory control signals for 

maintaining task-relevant representations. Working memory studies, for example, indicate 

that there is an interplay between gamma and beta in pFC (Lundqvist et al., 2016, 2023), 

whereas alpha dynamics are typically observed during working memory maintenance in 

parietal and visual cortices (Sreenivasan & D’Esposito, 2019; van Ede, 2018; Klimesch, 

2012). Beta and alpha oscillations may thus accomplish the control of stored representations, 

separately for abstract rules and for stimulus information. Conversely, the desynchronization 

of alpha/beta oscillations may reflect a mechanism of disinhibition from these inhibitory 

control signals, which allows reading out relevant information from working memory 

(Buschman & Miller, 2022; Miller, Lundqvist, & Bastos, 2018).

We showed that delta and theta oscillations are engaged in two distributed association 

networks to support different levels of control processing. This idea that there are 

multiple, distributed association networks is supported by observations in monkey studies 

demonstrating parallel anatomical projections between sensory association areas and pFC 

(Goldman-Rakic, 1988), as well as by rest and task-based fMRI studies in humans (Nee, 

2021; Choi et al., 2018; Braga & Buckner, 2017; Farooqui, Mitchell, Thompson, & Duncan, 

2012; Yeo et al., 2011). These distributed association networks include both corticocortical 

and corticostriatal connections (Haber, 2003). Our results suggest that the control of rule 

abstraction is associated with an increase in the functional connectivity of two cortical 

regions, LPFC and IPL, with the caudate nucleus in the dorsal striatum, which is part 

of the basal ganglia (BG). This is in line with previous studies indicating that the rostral 

dorsal caudate serves as a connector hub for IPL and pFC projections, whereas only smaller 

projection patches are observed in the putamen (Choi et al., 2018; Choi, Tanimura, Vage, 

Yates, & Haber, 2017). In contrast, the posterior and dorsolateral anterior putamen receives 

projections predominantly from the primary motor and supplementary motor cortices (Choi, 

Yeo, & Buckner, 2012; Draganski et al., 2008). Although we found that increased functional 

connectivity between the supplementary motor cortex and putamen, as well as within 

BG–thalamus connections, underlies the control of stimulus–action associations, we did 

not find significant effects on any of the thalamocortical connections with either the 

abstraction or set-size manipulation. However, thalamocortical projections are known to 

link the cortico–subcortical circuits with the BG back to the cortex, creating cortical–BG–

thalamocortical loops (Hwang & D’Esposito, 2022; Haber, Adler, & Bergman, 2012). These 

parallel loops through the thalamus may update in working memory the different contextual 
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representations (Badre & Frank, 2012; Frank & Badre, 2012), as well as enhance functional 

cortical connectivity and support the distinct corticocortical synchronization mechanisms 

that we outlined here for the different levels of hierarchical control processing (Shine et 

al., 2023; Schmitt et al., 2017). Future work could attempt to dissociate the two cortical–

subcortical loops hypothesized to underlie the control of rule abstraction and stimulus–

action associations, by using TMS, as previous work demonstrated that at rest targeting 

rostral regions spreads activation to the caudate nucleus whereas stimulation of caudal 

frontal cortex activates the putamen (Riddle et al., 2022).

Our results contribute to previous work on hierarchical cognitive control, by characterizing 

the neural dynamics of distinct cognitive control signals and showing that, although there 

is a significant overlap in time between the dynamics of the two control processes, 

the control of rule abstraction (delta oscillations-mediated) appears to slightly precede 

the control of stimulus–action associations (theta oscillations-mediated). The observed 

separability of these control signals is in line with the predictions of the “cascade model” 

of cognitive control, in that separable top–down control signals resolve the competition 

among alternative action representations, at different levels of the rostro–caudal axis of pFC 

(Koechlin & Summerfield, 2007; Koechlin et al., 2003). A central prediction of the cascade 

model is that control signals integrate information from superordinate to subordinate levels, 

progressing from sensorimotor-distal to sensorimotor-proximal areas, that is, from farthest 

to nearest to the sensory-motor cortex. Revising this model, recent findings suggest that, 

although there exists an axis of functional differentiation in pFC, the most rostral part of 

pFC (sensorimotor-distal) is likely not to be the apex of the hierarchy of control processing; 

rather, an adaptive nexus for the functional integration of information seems situated in 

areas in the middle of the LPFC (Pitts & Nee, 2022; Nee, 2021). We showed within both 

control levels significant modulations of the functional connections through the “LPFC” 

ROI, which worked primarily as functional sender in the control of rule abstraction and 

as functional receiver in the control of stimulus–action associations; however, we did not 

provide any direct evidence of whether this area, which sits in the mid-portion of pFC, 

works as an integrative hub. Furthermore, we only assessed two levels of cognitive control 

processing, which correspond to the levels of “sensorimotor control” (associating stimuli 

to appropriate actions) and “contextual control” (stimulus–action associations dependence 

on environmental context) in hierarchical control experiments (Badre & Nee, 2018), but 

other levels of control have been proposed, see Pitts and Nee (2022), Nee (2021), Nee and 

D’Esposito (2016, 2017). Future work should consider these further levels to expand the 

findings presented in this study.
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Figure 1. 
Experimental design. (A–B) Schematic representations of the rule sets in the response 

task (A) and dimension task (B). (C) Example of stimulus–response associations from one 

participant. (D–E) Schematic representation of example trial sequences in the response task 

R4 (D) and in the dimension task D1 (E). Quoted numbers represent the correct participant’s 

responses for the example mappings shown in A–B. Durations of stimulus presentation and 

ISI are reported in seconds. (F–G) Behavioral results for accuracy (%) and RT (msec) in the 

fMRI (D) and EEG (E) data set. Error bars indicate SEM.
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Figure 2. 
Univariate analyses for the abstraction contrast. (A) Results of the univariate fMRI analysis 

comparing high abstraction and low abstraction. (B) Results of the EEG power analyses 

comparing high abstraction and low abstraction (stimulus-locked) in sensor-space. The top 

figure shows the time–frequency distribution of the sum of between-conditions differences 

across electrodes, from the clusters found in the observed data, and the marginal plots 

on top and on the right represent, respectively, the time distribution (frequency-collapsed) 

and frequency distribution (time-collapsed) of those differences. The bottom figures show 
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the scalp distribution of the effect sizes of the power differences. (C) Results of IRASA 

in sensor-space, in the groups of medial frontal electrodes (left), and right lateral frontal 

electrodes (right). (D) Results of the EEG power analyses comparing high abstraction and 

low abstraction (stimulus-locked) in source-space. The left figure shows the time–frequency 

distribution of the sum of between-conditions differences across ROIs, from the clusters 

found in the observed data, and the marginal plots on top and on the right represent, 

respectively, the time distribution (frequency-collapsed) and frequency distribution (time-

collapsed) of those differences. The middle and right figures show the effect sizes of the 

differences in ROIs, superimposed over the MNI template anatomy. (E) Results of IRASA in 

source-space, in the right LPFC (left), M1 (middle), and IPL (right).
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Figure 3. 
Univariate fMRI analyses for the baseline contrasts. (A–B) The results of the univariate 

fMRI analyses comparing each task condition to baseline (BL; pre-experiment rest period) 

are shown for the low-abstraction response tasks (A) and for the high abstraction dimension 

tasks (B).
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Figure 4. 
Connectivity analyses for the abstraction contrast. (A) Results of the nonparametric 

Granger–Geweke causality analysis for early interval (stimulus-locked: SL), late interval 

(stimulus-locked: SL), and response interval (response-locked: RL). (B) Results of the gPPI 

analysis comparing high abstraction and low abstraction.
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Figure 5. 
Univariate analyses for the set-size contrast. (A) Results of the univariate fMRI analysis 

comparing high set-size and low set-size conditions. (B–C) Results of the stimulus-locked 

(B) and response-locked (C) EEG sensor-space power analyses comparing high set-size 

and low set-size. In C, the top figure shows the time–frequency distribution of the 

sum of between-conditions differences across electrodes, from the clusters found in the 

observed data, and the marginal plots on top and on the right represent, respectively, the 

time distribution (frequency-collapsed) and frequency distribution (time-collapsed) of those 
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differences. The other figures show the scalp distribution of the effect sizes of the power 

differences. (D) Results of IRASA in sensor-space, in the groups of medial frontal electrodes 

(left) and central-parietal electrodes (right). (E) Results of the EEG source-space power 

analyses comparing high set-size and low set-size. The left figure shows the time–frequency 

distribution of the sum of between-conditions differences across electrodes, from the clusters 

found in the observed data, and the marginal plots on top and on the right represent, 

respectively, the time distribution (frequency-collapsed) and frequency distribution (time-

collapsed) of those differences. The middle and left figures show the effect sizes of the 

differences in ROIs from the positive cluster in the theta band (left) and the negative 

cluster in the alpha-band (right), superimposed over the MNI template anatomy. The positive 

cluster did not reach statistical significance in the cluster-based permutations testing (pperm = 

0.079). (F) Results of IRASA in source-space, in the right SFGm (left), SMA (middle), and 

LPFC (right).

Pagnotta et al. Page 30

J Cogn Neurosci. Author manuscript; available in PMC 2024 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Connectivity analyses for the set-size contrast. (A) Results of the nonparametric Granger–

Geweke causality analysis for early interval (stimulus-locked: SL), late interval (stimulus-

locked: SL), and response interval (response-locked: RL). (B) Results of the gPPI analysis 

comparing high set-size and low set-size.
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Figure 7. 
Response-locked analyses for the abstraction contrast. (A–B) Results of the EEG power 

analyses comparing high abstraction and low abstraction (response-locked) in sensor-space 

(A) and source-space (B). In each panel, the top figure shows the time–frequency 

distribution of the sum of between-conditions differences, from the clusters found in the 

observed data, and the marginal plots on top and on the right represent, respectively, the 

time distribution (frequency-collapsed) and frequency distribution (time-collapsed) of those 

differences. The bottom figures show the distribution of the effect sizes of the differences 

(either on the scalp or in ROIs).
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Figure 8. 
Response-locked analyses for the set-size contrast. Results of the EEG power analyses 

comparing high set-size and low set-size (response-locked) in source-space. The top 

figure shows the time–frequency distribution of the sum of between-conditions differences, 

from the clusters found in the observed data, and the marginal plots on top and on 

the right represent, respectively, the time distribution (frequency-collapsed) and frequency 

distribution (time-collapsed) of those differences. The bottom figures show the distribution 

of the effect sizes of the differences (in ROIs).
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