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ABSTRACT
Objective  Hepatocellular carcinoma (HCC) poses a 
significant clinical challenge because the long-term 
benefits of immune checkpoint blockade therapy 
are limited. A comprehensive understanding of the 
mechanisms underlying immunotherapy resistance in HCC 
is imperative for improving patient prognosis.
Design  In this study, to systematically investigate the 
characteristics of cancer-associated fibroblast (CAF) 
subsets and the dynamic communication among the 
tumor microenvironment (TME) components regulated 
by CAF subsets, we generated an HCC atlas by compiling 
single-cell RNA sequencing (scRNA-seq) datasets on 
220 samples from six datasets. We combined spatial 
transcriptomics with scRNA-seq and multiplexed 
immunofluorescence to identify the specific CAF subsets in 
the TME that determine the efficacy of immunotherapy in 
HCC patients.
Results  Our findings highlight the pivotal role of POSTN+ 
CAFs as potent immune response barriers at specific 
tumor locations, as they hinder effective T-cell infiltration 
and decrease the efficacy of immunotherapy. Additionally, 
we elucidated the interplay between POSTN+ CAFs and 
SPP1+ macrophages, whereby the former recruits the 
latter and triggers increased SPP1 expression via the IL-6/
STAT3 signaling pathway. Moreover, we demonstrated 
a spatial correlation between POSTN+ CAFs and SPP1+ 
macrophages, revealing an immunosuppressive 
microenvironment that limits the immunotherapy 
response. Notably, we found that patients with elevated 
expression levels of both POSTN+ CAFs and SPP1+ 
macrophages achieved less therapeutic benefit in an 
immunotherapy cohort.
Conclusion  Our research elucidates light on the role of 
a particular subset of CAFs in immunotherapy resistance, 
emphasizing the potential benefits of targeting specific 
CAF subpopulations to improve clinical responses to 
immunotherapy.

INTRODUCTION
Hepatocellular carcinoma (HCC) is a preva-
lent and deadly malignancy that is diagnosed 
at an advanced stage and has a poor 5-year 
survival rate.1 2 Recurrence or metastasis 
still occurs within 5 years in the majority of 
patients even after surgical resection.3 The 

application of immune checkpoint blockade 
(ICB), such as PD-1/L1 inhibitors and 
CTLA4 inhibitors, has led to breakthroughs 
in the treatment of liver cancer patients.4–6 
However, only a small proportion of patients 
can benefit from these treatments, indicating 
significant challenges in the field of immuno-
therapy for HCC.7 8 Cancer-associated fibro-
blasts (CAFs), which are critical components 
of the tumor microenvironment (TME), 
promote immune evasion, tumor metastasis, 
and therapy resistance by remodeling the 
extracellular matrix (ECM), secreting growth 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Among the various components of the tumor micro-
environment (TME), cancer-associated fibroblasts 
(CAFs) have emerged as key players. However, there 
is still much uncertainty surrounding their origin 
and their specific roles in regulating the response 
to immunotherapy, primarily due to their significant 
heterogeneity.

WHAT THIS STUDY ADDS
	⇒ Here we discovered that POSTN+ CAFs play a crucial 
role as potent immune response barriers at specific 
tumor sites, facilitating remodeling of the stromal 
microenvironment. This ultimately suppresses ef-
fector T-cell infiltration and decreases the efficacy 
of immunotherapy. Furthermore, we revealed that 
the interaction between POSTN+ CAFs and SPP1+ 
macrophages within the TME promotes the devel-
opment of an immunosuppressive milieu that limits 
the immunotherapy response by activating the IL-6/
STAT3 signaling pathway.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our study revealed that POSTN+ CAFs were associ-
ated with adverse clinical outcomes, including poor 
overall survival and decreased response to immu-
notherapy in hepatocellular carcinoma patients. This 
finding underscores the significance of devising ap-
proaches aimed at targeting POSTN+ CAFs to im-
prove the tumor response to immunotherapy.
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factor and cytokines.9 10 Genetic depletion or pharma-
cological targeting of distinct CAF populations leads to 
different outcomes,11 12 highlighting the CAFs are highly 
heterogeneous in types and functions affecting cancer 
progression and immunomodulation.

CAF populations are diverse and dynamic and origi-
nate from various cell sources, which contributes to their 
functional diversity.13 Understanding the heterogeneity 
and subpopulation characteristics of CAFs is essential 
for targeting protumorigenic CAFs or interference with 
their activity as potential strategies in anticancer therapy. 
Recent advancements in techniques such as single-cell 
sequencing and flow cytometry have enabled precise 
analysis of CAF subtypes and their biological functions in 
different cancer types.13–16 These studies provide evidence 
supporting the presence of two distinct functional popu-
lations of CAFs: procancer CAFs and anticancer CAFs. 
Procancer CAFs orchestrate ECM remodeling and tumor-
promoting inflammation, and modulate the immune 
microenvironment toward immunosuppression,17 such 
as myofibroblastic CAFs and inflammatory CAFs (iCAFs). 
Conversely, anticancer CAFs are able to stimulate T-cell 
activation associated with MHC class II expressing to 
improve immunotherapeutic strategies, such as antigen-
presenting CAFs (apCAFs).18 CAFs are highly interre-
lated with sensitivity to anticancer therapies. Neoadjuvant 
chemotherapy can remodel CAFs to enhance immune 
activation and inhibit tumor progression.11 However, 
CAFs can also remodel the ECM, making it denser and 
potentially forming a physical barrier that impedes the 
delivery of chemotherapy and immunotherapy drugs.19 
Overall, various CAF subtypes may activate distinct molec-
ular pathways to influence the TME and resistance to 
immunotherapy and chemotherapy.

However, the intricate crosstalk between CAFs, HCC 
cells, and immune cells, particularly within different 
CAF subtypes, remains unclear. A comprehensive under-
standing of the multidimensional interactions between 
CAFs and infiltrating immune cells in the TME would 
help us elucidate the mechanisms through which CAFs 
induce immunosuppression. Further exploration of these 
interactions may reveal potential molecular targets for 
CAF-targeted therapy, providing new strategies for subse-
quent immunotherapy.

We integrated single-cell RNA sequencing (scRNA-seq) 
datasets for HCC tumors. Our analysis led to the identifi-
cation of six common subtypes of CAFs in HCC tumors: 
STMN1+ CAFs, CXCL12+ CAFs, MYH11+ CAFs, SEPT7+ 
CAFs, POSTN+ CAFs, and CD36+ CAFs. Among these 
subtypes, we specifically focused on the newly discovered 
POSTN+ CAF subpopulation. POSTN+ CAFs play a crucial 
role in promoting the progression of HCC through 
the activation of the ECM, hypoxia and transforming 
growth factor beta (TGF-β) signaling pathways. Further-
more, they contribute to the formation of an immune 
barrier that suppresses the infiltration of CD8+ T cells 
into the TME. Additionally, POSTN+ CAFs interact with 
SPP1+ macrophages via the IL-6/STAT3 axis. Our study 

revealed that the abundance of POSTN+ CAFs can serve 
as a reliable predictor of the response to immunotherapy 
in HCC patients. This indicates that targeting POSTN+ 
CAFs could enhance the effectiveness of immunother-
apeutic approaches for treating HCC. In summary, our 
study elucidated the novel intercellular communication 
network between POSTN+ CAFs and SPP1+ macrophages 
and between POSTN+ CAFs and CD8+ T cells. These find-
ings suggest that POSTN+ CAFs play a significant role in 
promoting the development of an immunosuppressive 
TME.

MATERIAL AND METHODS
Human liver samples
Liver samples were obtained from patients who under-
went hepatectomy or percutaneous liver biopsy. Clinical 
information is summarized in online supplemental table 
1.

Cell culture
The human myeloid leukemia mononuclear cell line 
(THP-1) was obtained from the Cell Resource Center at 
the Chinese Academy of Medical Sciences and authen-
ticated by the same. THP-1 cells were cultured in 
RPMI1640 supplemented with 10% FBS (Gibco) and 1% 
penicillin-streptomycin (Invitrogen, USA). To conduct 
differentiation assays, THP-1 cells were differentiated into 
macrophages through 24-hour culturing with 100 ng/mL 
phorbol myristate acetate (Sigma). CAFs transfected with 
si-CREB3L1 or si-NC for 48 hours were seeded in six-well 
plates and cultured under hypoxia or normoxia for 24 
hours. siRNAs targeting CREB3L1 are listed in online 
supplemental table 2.

Plasmid transfections
The pcDNA3-based plasmid encoding human POSTN 
was acquired from Gentlegen (Suzhou, China). CAFs 
were seeded and allowed to grow in 24-well culture plates 
for 48 hours before transfection with the plasmids using 
Lipofectamine 3000 (Invitrogen).

Chemotaxis assay
Macrophages at a concentration of 4×104 cells per well 
were plated in the upper chamber with 0.1% gelatin-
coated membranes, while CAFs were plated in the lower 
chamber at a concentration of 1×105 cells per well. Tocili-
zumab (200 µg/mL) was added to the upper chamber. 
After incubating for 24 hours at 37°C, the cells were 
washed with 1x PBS, fixed in 10% paraformaldehyde for 
30 min, and stained with 0.05% crystal violet for another 
30 min. Finally, the number of cells that had migrated to 
the bottom of the membrane was assessed by counting 
them in four different regions.

Protein extraction and western blot
The cells were lysed using RIPA solution (Beyotime 
Biotechnology, China) supplemented with protease 
and phosphatase inhibitors (Beyotime Biotechnology). 
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Western blot analysis was conducted following previ-
ously described protocols.20 The protein concentration 
in cell lysates was determined using a BCA assay (Beyo-
time Biotechnology). Subsequently, the cell lysates were 
subjected to 10% SDS-polyacrylamide gel electrophoresis 
and transferred onto a polyvinylidene fluoride membrane 
(Bio-Rad, Hercules, CA) for antibody incubation.

Antibodies
Primary antibodies used in this study were as follows: 
rabbit anti-POSTN mAb (ab215199, Abcam); rabbit anti-
CD8 mAb (245118, Abcam); rabbit anti-MYH11 mAb 
(ab133567, Abcam); rabbit anti-STMN1 mAb (ab52630, 
Abcam); rabbit anti-CD36 mAb (ab252923, Abcam); rabbit 
anti-α-SMA mAb (19 245S, Cell Signaling Technology); 
rabbit anti-STAT3 mAb (A1192, abclonal Technology); 
rabbit anti-IL-6 mAb (A1570, abclonal Technology); rabbit 
anti-SPP1 mAb (8242S, Cell Signaling Technology); rabbit 
anti-p-STAT3 mAb (9145S, Cell Signaling Technology); 
rabbit anti-Osteopontin mAb (A1499, abclonal Tech-
nology); rat anti-CD68 mAb (ab53444, Abcam); rabbit 
anti-Osteopontin mAb (ab214050, Abcam); rabbit anti-
α-SMA mAb (19 245S, Cell Signaling Technology); rabbit 
anti-CREB3L1 mAb (11 235–2-AP, Proteintech); mouse 
anti-β-actin mAb (3700S, Cell Signaling Technology).

Secondary antibodies used in this study were as 
follows: HRP-conjugated goat anti-rabbit IgG (ab205718, 
Abcam); HRP-conjugated goat anti-rat IgG (ab205720, 
Abcam); Alexa Fluor 488-conjugated goat anti-rabbit IgG 
(A-11008, Invitrogen); Alexa Fluor 594-conjugated goat 
anti-mouse IgG (A-11005, Invitrogen).

Quantitative real-time PCR
Total RNA was extracted from the samples using 
TRIzol reagent (Invitrogen) and then precipitated with 
isopropyl alcohol. The concentration and quality of the 
RNA were assessed using a NanoDrop system. Comple-
mentary DNA was synthesized using a commercially 
available kit (Vazyme, Nanjing, China) following the 
manufacturer’s instructions. Real-time quantitative PCR 
was performed using SYBR-green-based kits (Vazyme) 
to quantify mRNA levels. The relative expression of the 
target gene was normalized to β-actin in each sample. 
The following primer sequences were used: β-actin 
(forward, 5′-CTCGCCTTTGCCGATCC-3′; reverse, 
5′-ATCCTTCTGACCCATGCCC-3′), POSTN (forward, 
5′-​CTCA​TAGT​CGTA​TCAG​GGGTCG-3′; reverse, 5′-​
ACAC​AGTC​GTTT​TCTG​TCCAC-3′), IL-6 (forward, 5′-​
TGAG​GAGA​CTTG​CCTG​GTGAA-3′; reverse, 5′-​CAGC​
TCTG​GCTT​GTTC​CTCAC-3′), CREB3L1 (forward, 
5′-GGAGAATGCCAACAGGACC-3′; reverse, 5′-​GCAC-
CAGAACAAAGCACAAG-3′), COL1A1 (forward, 5′-​
CCCC​TGGA​AAGA​ATGG​AGATG-3′; reverse, 5′-​TCCA​
AACC​ACTG​AAAC​CTCTG-3′), COL3A1 (forward, 5′-​
AGGAAATGATGGTGCTCCTG-3′; reverse, 5′-​GTTC-
CCCAGGTTTTCCATTT-3′), COL5A1 (forward, 5′-​TCGC​
TTAC​AGAG​TCAC​CAAAG-3′; reverse, 5′-​GTTG​TAGA​
TGGA​GACC​AGGAAG-3′).

Animal studies
All mice were housed in an SPF level animal facility with 
controlled temperature and humidity on a 12–12 hours 
light-dark cycle with food and water supplied ad libitum.

Adeno-associated virus (AAV)-mediated gene transfer 
for knockdown POSTN in vivo, the following AAV was 
used in this study: AAV8-control and AAV-shPOSTN 
(Shanghai Genechem). AAV8-shPOSTN was injected 
into 6 weeks old male C57BL/6 mice via the tail vein at 
a dose of 1×1099 infectious units (IFU) per 200 µL per 
mouse 2 weeks before orthotopic tumor transplantation. 
For orthotopic implantation, 3×106 Hepa1-6 cells were 
injected into the left lobes of the livers of C57BL/6 mice. 
Mice were treated with either 10 mg/kg anti‐mouse PD‐1 
(BE0146, BioXCell) or isotype IgG control (BE0089, 
BioXCell) through intraperitoneal injection twice weekly 
starting on day 7. Mice were sacrificed on day 21. shRNAs 
targeting POSTN are listed in online supplemental table 
2.

Tissue processing and fibroblast isolation
Primary HCC tissues were minced using a scalpel in a 
tissue culture dish. Subsequently, the minced tissues were 
enzymatically dissociated in 10 mL of PBS containing 0.1% 
collagenase I at 37°C for 1 hour with gentle agitation. The 
resulting suspension was neutralized with a complete 
medium and then centrifuged at 300×g for 5 min. The 
collected cells were plated in culture dishes and allowed 
to grow. After 48 hours, the non-adherent cells and tissue 
debris were removed by washing the dishes twice with 
PBS. The adherent fibroblasts were further incubated for 
6–10 days until they reached 80%–90% confluence.

Flow cytometry
Briefly, the cells were resuspended in the staining buffer 
and incubated with the following antibodies on ice for 
30 min: anti-CD45 (368521, Biolegend, USA), anti-
EMCAM (324221, Biolegend), Live/Dead blue fluores-
cent dye (L34963, Thermo Scientific) and anti-CD29 
(303023, Biolegend). Among live cells, EpCAM and 
CD45 were used among live cells to eliminate epithelial 
and immune cells, respectively, while CD29 was indicative 
of stromal cells. For intracellular staining, the cells were 
fixed with fixation buffer (Biolegend) on ice for 15 min 
and then washed twice with an Intracellular Staining 
Permeabilization Wash Buffer. Antibodies against POSTN 
(sc-398631, Santa Cruz) were added and incubated for 
1 hour on ice.

Multiplex immunohistochemistry staining
Multiplex immunohistochemistry (mIHC) staining was 
employed to visualize the expression of α-SMA, STMN1, 
MYH11, CD36, POSTN, CD8, and CD68 in tumor tissues. 
Paraffin blocks were used to obtain three consecutive 
sections, each 3 µm thick, with one section designated 
for H&E staining. The remaining two FFPE tumor slides, 
also 3 µm thick, underwent a 3-hour dehydration process 
at 70°C. Subsequently, the paraffin sections were then 
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de-paraffinized using xylene and rehydrated with alcohol. 
Heat-induced antigen retrieval was performed in EDTA 
buffer at pH 9.0 using a microwave oven. The sections 
were then blocked with a commercially available blocking 
buffer for 10 min. Following this, the slides were sequen-
tially incubated with primary antibodies and horseradish 
peroxidase-conjugated secondary antibodies, followed 
by tyramide signal amplification (TSA). After each TSA 
round, the slides underwent antigen retrieval and anti-
body stripping. Finally, nuclei were stained with DAPI. 
This comprehensive procedure facilitated the visualiza-
tion of multiple antigens in the tumor tissues, thereby 
enabling the assessment of expression patterns for the 
targeted proteins.

Data collection
The public scRNA-seq datasets used in this research were 
obtained from various sources. Specifically, the datasets 
GSE149614,21 GSE151530,22 GSE156625,23 GSE189903,24 
and GSE20264225 were retrieved from the Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.​
nih.gov/geo/). Additionally, dataset HRA00174826 was 
obtained from the Genome Sequence Archive (https://​
ngdc.cncb.ac.cn/gsa-human/browse/HRA001748). 
For the analysis of normalized gene expression data 
and microarray datasets of HCC samples, publicly avail-
able data from The Cancer Genome Atlas (TCGA) data 
portal (http://gdac.broadinstitute.org/) and GEO 
were employed. The specific datasets accessed from 
GEO include GSE10143,27 GSE192912,28 GSE109211,29 
GSE10186,30 and GSE54236.31 To acquire the expres-
sion matrix and clinical information of the TCGA-LIHC 
dataset and GSE14520,32 the GEO database (https://www.​
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse14520) was 
accessed. Furthermore, expression profile and clinical 
information from the Fudan HBV-HCC cohort33 were 
collected and collated from the biosino NODE database 
(OEP000321,33 https://www.biosino.org/node/project/​
detail/OEP000321).

Spatial transcriptome sequencing data of 13 samples 
including HCC tumors, normal tissues, and leading 
tissues were acquired from the study conducted by Wu et 
al34 (http://lifeome.net/supp/livercancer-st/data.htm). 
Furthermore, spatial transcriptome data from tumor 
sections of eight HCC patients who underwent anti-PD-1 
treatment (five non-responders and three responders) 
were downloaded from the study conducted by Liu et al35 
(https://data.mendeley.com/datasets/skrx2fz79n/1).

Single-cell transcriptome analysis and differential expression 
analysis
CellRanger (V.6.0.2) was used for read mapping and gene 
expression quantification. Seurat package (V.4.1.1) was 
employed for downstream analysis. Cells with fewer than 
1000 UMIs or greater than 15% mitochondria genes were 
excluded from the analysis. Doublets were assessed using 
the DoubletFinder (V.2.0.3) algorithm each sample. To 
address batch effects and prevent the analysis from being 

dominated by individual patient characteristics, the 
Harmony algorithm was applied to remove batch effects 
between samples in the single-cell data. To perform 
dimensionality reduction and identify cell subtypes, the 
top 4000 most variable genes were selected using the 
FindVariableFeatures function and the data were scaled 
accordingly. Principal component analysis (PCA) was 
conducted using these variable genes. Nearest neigh-
bors for graph clustering based on the top 50 principal 
components were determined using the FindNeighbors 
function. The resulting clusters were obtained using the 
FindCluster function, and cell visualization was achieved 
using the uniform manifold approximation and projec-
tion (UMAP) algorithm. Furthermore, gene signatures 
specific to various cell types were scored in the identified 
clusters. These gene signatures included markers for B 
cells (CD79A and CD79B), endothelial cells (PECAM1 
and VWF), hepatocytes (ALB and APOA2), fibroblasts 
(COL1A1 and COL1A2), myeloid cells (CSF3R, C1QB, 
CD1C, and CLEC9A), plasma cells (MZB1 and IGHG1), 
and T/NK cells (CD3D, CD3E, KLRD1, and KLRC1). 
Differential gene expression analysis between clusters 
was performed using the “FindAllMarkers” function. 
The parameters used for this analysis were ​min.​pct=​0.​15, 
logfc.threshold=0.15, and ​only.​pos=​TRUE. The Wilcox-
on’s rank-sum test with the Benjamini-Hochberg method 
was employed to obtain p values and adjusted p values for 
the comparisons.

Gene sets level analysis for scRNA-seq data
Single-cell signature scoring was conducted employing 
the RunAUCell function in pochi R package (V.0.1.0). 
Differential signature score enrichment between groups 
was determined using a two-sided Wilcoxon rank-sum 
test with Benjamini-Hochberg FDR correction. The gene 
sets used for this analysis were provided in online supple-
mental table 3.

Pathway and cytokine signaling signatures analysis
We performed pathway and cytokine signaling anal-
yses on CAF subgroups using PROGENy and CytoSig, 
respectively. Scores were computed using the run_aucell 
function from decoupleR package (V.2.2.2) based on 
PROGENy network model and Cytosig python packages 
with default parameters. The top 1000 target genes of the 
progeny model were used, as recommended for single-
cell data.

Function enrichment and gene set enrichment analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment and gene set enrichment analysis (GSEA) of 
differentially expressed gene sets were implemented in 
the clusterProfiler R package (V.4.7.1.2). Enriched path-
ways with adjusted p value below 0.05 were considered as 
significantly enriched by DEGs.

Trajectory analysis
To better understand the cellular differentiation among 
various subtypes of CAFs, we used the Monocle 2 algorithm 
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V.2.24.1. Initially, we honed in on the top 100 differen-
tially expressed genes distinguishing between the CAF 
subtypes. Employing the reduceDimension function with 
the DDRtree method and limiting it to a maximum of two 
components facilitated dimensionality reduction. Subse-
quently, we used the “differentialGeneTest” function to 
identify genes exhibiting significant differential expres-
sion correlated with pseudotime values. Additionally, we 
used branch expression analysis modeling (BEAM) to 
unravel gene expression patterns influenced by branch 
fate. For visualizing the expression dynamics of branch-
specific genes along the differentiation trajectories, we 
employed the plot_genes_branched_pseudotime func-
tion, generating curves that depicted the Loess-smoothed 
expression profiles of genes along each trajectory.

Transcription factor regulon analysis
We used pySCENIC for the analysis of the regulatory 
network and regulon activity. Through pySCENIC anal-
ysis, we identified subgroup specific transcription factors 
(TFs) using the Wilcoxon rank-sum test. Additionally, we 
generated regulons-associated specific score (RSS) within 
each specific cell type by computing Jensen-Shannon 
divergence, facilitated by philentropy (V.0.6.0) package.

Cell–cell communications
To explore potential interactions among different cell 
types within the HCC TME, we conducted cell–cell 
communication analysis using the CellPhoneDB Python 
package (V.2.1.1). This approach relies on a publicly 
available repository of curated receptors and ligands 
along with their interactions. Enriched receptor-ligand 
pairs between two cell types were predicted based on the 
expression of a receptor by one cell type and the corre-
sponding ligand by another. By default, we considered 
only ligands and receptors expressed in at least 10% of 
cells within a given cell type. Additionally, we selected 
significant pairs with a p value <0.05 and a mean value ≥1 
for subsequent analyses.

To further identify the key mediators of two cell 
subgroups, we applied Nichenet package to infer the inter-
action between POSTN+ CAFs and SPP1+ macrophages 
(Mphs). For ligands and receptor interactions, genes 
which are expressed in larger than 10% cells of clusters 
were considered. Top 20 ligands and top 100 targets of 
differential expressed genes of “sender cells” and “receive 
cells,” were extracted for paired ligand-receptor activity 
analysis. We used the active_ligand_target_links function 
to compute the potential intensity of regulation between 
the ligand and target. Activity scores ranged from 0 to 
1. The expression of differential expressed ligands and 
receptors were also shown in heatmap by calculating 
the average genes expression in indicated cell types and 
scaled across indicated subtypes.

Cell types deconvolution for RNA-seq datasets
To assess the function of cell types in larger compendiums 
of samples, we applied the online tool CIBERSORTx to 

generate a reference signature matrix from our single-cell 
RNA-seq dataset and estimate cell-type proportions from 
the public bulk RNA-seq and microarray datasets based 
constructed cell-type reference. For creating signature 
matrices, CIBERSORTx was run with quartile normaliza-
tion was disabled for RNA-seq datasets and was enabled for 
microarray datasets, and all other parameters with their 
default settings. For the imputation of cell fractions, the 
quartile normalization was disabled for RNA-seq datasets 
and was enabled for microarray datasets, the permutation 
parameter was set to 500 times, and all other parameters 
were kept at their default settings. Spearman’s correlation 
analysis was performed to assess the relationship among 
the proportions of cell-type infiltration and was plotted by 
corrplot package (V.0.92).

Survival analysis
Survival analysis was performed by R package survival. 
HR was calculated by Cox proportional hazards model 
and 95% CI was reported, and Kaplan-Meier survival 
curve was modeled by the survfit function. The two-sided 
long-rank test was used to compare Kaplan-Meier survival 
curves. The comparison of the percentage of patients 
who respond to ICB treatment between different groups 
was determined by the χ2 test.

Spatial transcriptomics analysis
The gene-spot matrices generated after ST data processing 
from ST and Visium samples were analyzed with the 
Seurat package (V.4.1.1) in R. Spots were filtered for 
minimum detected gene count of 200 genes while genes 
with fewer than 10 read counts or expressed in fewer than 
three spots were removed. Normalization across spots was 
performed with the LogVMR function. Dimensionality 
reduction and clustering were performed with indepen-
dent component analysis (PCA) with the first 30 PCs. To 
better exhibit spatial expression of features, the spots 
were enhanced using the “spatialEnhance” function of 
the BayesSpace package (V.1.6.0), the expression features 
were enhanced with the “enhanceFeatures” function. 
The signature score derived from the scRNA-seq dataset 
was added to the “metadata” of the ST dataset with the 
“AddModulScore” function with default parameters in 
Seurat. Spatial feature expression plots were generated 
with the “SpatialFeaturePlot” function in the Seurat 
package. We applied the SpaGene method to identify 
ten spatial gene expression patterns for each sample and 
assessed the similarity between patterns based on the 
Jaccard index. The result was shown using the Complex-
Heatmap package (V.2.12.1).

Statistical analysis
Statistical analyses were performed as described in Seurat 
(V.4.1.1) in R (V.4.2.0) software. Spearman correlation 
was used to estimate correlations. Survival analysis was 
measured using the Kaplan-Meier method. Statistical 
significance was determined by the Kruskal-Wallis test and 
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Figure 1  Panoramic scRNA-seq analysis of liver samples of hepatocellular carcinoma patients. (A) Schematic representation 
of the data collection process. (B) Uniform manifold approximation and projection (UMAP) plot showing the seven major 
cell types. Dots represent individual cells, and colors represent different cell populations. (C) Dot plot showing the top two 
differentially expressed genes of major cell types. (D) UMAP plots showing the expression of classical molecular markers of 
corresponding cell types; the color represents the marker expression value. (E) Proportion of the sample types in seven major 
cell types shown in bar plots (left panel) and the total cell number of each cell type (right panel) are shown.
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Wilcoxon’s rank-sum test with the Benjamini-Hochberg 
method for multiple comparison correction.

RESULTS
Generation of an HCC single-cell transcriptomic atlas
To systematically investigate the cellular composition of 
HCC, we compiled an HCC atlas by compiling scRNA-seq 
datasets from six datasets for a total of 220 samples 
(figure  1A and online supplemental figure S1B–C). 
This comprehensive scRNA-seq atlas of HCC incorpo-
rates quality-controlled and preanalyzed transcriptomic 
data from publicly available datasets on tumor samples 
and adjacent normal tissues. We employed the Harmony 
algorithm to correct for batch effects in scRNA-seq data-
sets from tumor and adjacent normal tissues. Overall, 
we retained nearly 1.1 million cell transcriptomes for 
subsequent analysis, and the cells were clustered into 32 
distinct clusters representing seven major cell subtypes. 
These subtypes were identified based on classical single-
cell marker expression. Specifically, we identified 25,946 
B cells marked by CD79A and CD79B, 90,809 endothelial 
cells marked by PECAM1 and VWF, 137,809 hepatocytes 
marked by ALB and APOA2, 39,230 fibroblasts marked by 
COL1A1 and COL1A2, 212,308 myeloid cells marked by 
LYZ and C1QB, 15,986 plasma cells marked by MZB1 and 
IGHG1, and 579,944 T/NK cells marked by CD3D and 
CD3E (figure 1B–E and online supplemental figure S1A). 
Additionally, a subset of myeloid cells expressed CSF3R 
(neutrophil marker), CD1C (cDC2 marker), and CLEC9A 
(cDC1 marker), while a subset of T/NK cells expressed 
KLRD1 and KLRC1 (NK cell markers) (figure  1D). 
Although all seven major cell types were present in both 
tumor and adjacent normal tissues, their infiltration 
levels varied, possibly reflecting different stages of HCC 
progression. Remarkably, in addition to hepatocytes, a 
greater proportion of fibroblasts originated from tumor 
tissue to other liver cells (figure 1E), suggesting a poten-
tial role for CAFs in the progression of HCC.

Identification and distinct features of six CAF subtypes in 
human HCC
The heterogeneity and plasticity of CAFs play pivotal 
roles in tumor progression. In our study, we identified 
six subpopulations of CAFs based on their gene expres-
sion profiles: CD36+ CAFs, CXC12+ CAFs, MYH11+ 
CAFs, POSTN+ CAFs, SEPT7+ CAFs, and STMN1+ CAFs 
(figure  2A,D and online supplemental figure S2A). 
CD36+ CAFs, POSTN+ CAFs, and STMN1+ CAFs were 
significantly more abundant in tumors than in non-tumor 
tissues, while the opposite trend was observed for CXC12+ 
CAFs, MYH11+ CAFs, and SEPT7+ CAFs (figure 2B,C and 
online supplemental figure S2B). In addition to changes 
in cell abundance, scRNA-seq revealed distinct cellular 
characteristics of different CAF subtypes. According to 
the literature, we reclassified CAFs from HCC patients 
into iCAFs, myofibroblast-like CAFs (myCAFs), apCAFs, 
vascular CAFs (vCAFs), lipid process-associated CAFs 

(lpCAFs), and proliferative CAFs (pCAFs) based on their 
molecular features. POSTN+ CAFs exhibited characteris-
tics of iCAFs and myCAFs, as they expressed inflamma-
tory signature genes (CXCL9, CXC10, and CXCL11) 
and ECM-associated signature genes (POSTN, MMP14, 
and MMP11). Notably, POSTN+ CAFs in tumor tissues 
expressed higher levels of inflammatory and ECM 
signatures than those in normal tissues. MYH11+ CAFs 
were identified as vCAFs due to their high expression 
of vascular-related signatures (MYH11, MUSTN1, and 
DSTN). CXCL12+ CAFs were designated apCAFs and 
exhibited high levels of antigen presentation signature 
genes (CD74, CXCL12, and HLA-DRB1). Interestingly, 
CXCL12+ CAFs in tumor tissues showed lower levels 
of antigen presentation signature genes than those in 
normal tissues, suggesting a potential tumor-suppressive 
phenotype. CD36+ CAFs and SEPT7+ CAFs were cate-
gorized as lpCAFs due to their high expression of lipid 
metabolism-related genes (APOC3, APOC1, and FABP1). 
In tumor tissues, these CAF subtypes showed even higher 
levels of lipid process signature genes than did normal 
tissues. Finally, the STMN1+ CAFs were classified as 
pCAFs because they exhibited high expression of genes 
associated with cell proliferation (STMN1, TOP2A, and 
MKI67). This finding was consistent with the results of 
the cell cycle analysis (figure  2E,F and online supple-
mental figure S2B–D).

To investigate the functionality of different CAF 
subpopulations, we conducted KEGG functional enrich-
ment analysis on each subpopulation. Notably, KEGG 
analyses revealed significant enrichment of the PPAR 
signaling pathway and cholesterol metabolism pathway 
in CD36+ CAFs and SEPT7+ CAFs, consistent with the 
findings of the lpCAF signature. Moreover, pathways 
related to ECM-receptor interactions, focal adhesion, 
and PI3K-Akt signaling were found to be significantly 
enriched in POSTN+ CAFs. In line with the vCAF signa-
ture, MYH11+ CAFs were significantly enriched in path-
ways associated with vascular smooth muscle contraction, 
calcium signaling, and cardiac muscle contraction. 
CXCL12+ CAFs exhibited significant enrichment in 
pathways related to cytokine–cytokine receptor interac-
tions, complement and coagulation cascades, and viral 
protein interaction with cytokines and cytokine recep-
tors. Furthermore, STMN1+ CAFs, referred to as pCAFs, 
were found to be significantly enriched in the cell cycle 
and DNA replication pathways based on KEGG pathway 
enrichment analysis (figure 2G and online supplemental 
figure S2E).

Interestingly, the TGF-β pathway, which has been impli-
cated in CAF-mediated cancer progression involving cell 
proliferation, invasion, and metastasis, was significantly 
upregulated in POSTN+ CAFs (figure 2H). Consistently, 
the CytoSig tool revealed significant upregulation of 
the TGF-β1 cytokine signature in POSTN+ CAFs, and 
genes in this signature are known to stimulate growth 
and ECM production in fibroblasts (figure  2H). This 
finding suggested that POSTN+ CAFs may play a crucial 
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Figure 2  Heterogeneity and plasticity analysis of cancer-associated fibroblasts in hepatocellular carcinoma (HCC). (A) Uniform 
manifold approximation and projection plot showing the classification of cancer-associated fibroblasts (CAFs), with different 
colors representing different subtypes. (B) Proportion of the sample types in six CAF subtypes shown in bar plots, with different 
colors representing different sample types. (C) Sankey plot showing variation in the proportions of different CAF subtypes 
between the sample types, with different colors representing different CAF subtypes. (D) Dot plot showing the expression of 
the top three different expressed genes in the six CAF subtypes. The color depth represents the average expression value 
and the size of the point represents the percentage of the gene expression. The Wilcoxon rank-sum test was used to assess 
differences. (E) Radar plot showing the mean expression of six CAF subgroup signatures calculated by the AUCell algorithm in 
the reclassified CAF subtypes. (F) Heatmap showing the mean expression of associated gene signatures in each CAF subtype. 
(G) Kyoto Encyclopedia of Genes and Genomes terms of differentially expressed genes significantly enriched in each CAF 
subtype. The colors represent the scaled value of the −log10 p value. (H) Differential activation of (up) PROGENy pathways and 
(bottom) CytoSig cytokine signaling signatures in each CAF subtype. The heatmap colors indicate the deviation from the overall 
mean. The black dots indicate significance at different p value thresholds. Only cytokine signatures with a p value ≤0.05 in at 
least one group are shown. (I) Representative IF staining of human HCC tissue. The levels of α-SMA (red), STMN1 (silver), CD36 
(purple), POSTN (green), and MYH11 (yellow) in individual and merged channels are shown. Bar, 100 µm. (J) Box plots showing 
the absolute infiltration of each CAF subtype in tumor and normal samples in GSE10143. (K) Box plots showing the ssGSEA 
score of each CAF subtype in paired CAFs (n=9) and para-cancer fibroblasts (PAFs, n=9) in GSE192912. apCAFs, antigen-
presenting CAFs; ECM, extracellular matrix; iCAFs, inflammatory CAFs; lpCAFs, lipid process-associated CAFs; myCAFs, 
myofibroblast-like CAFs; pCAFs, proliferative CAFs; vCAFs, vascular CAFs.
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role in tumor progression and fibrosis through TGF-β 
signaling. To validate the presence of major CAF subsets 
in human HCC samples, we performed mIHC staining 
(figure 2I). Remarkably, POSTN+ CAFs were more highly 
enriched in the peripheral region of HCC tumors than 
in the core region (figure  2I and online supplemental 
figure S2H). This finding was further supported by the 
analysis of a liver tissue array dataset and fibroblast tran-
scriptome sequencing data, which both confirmed the 
specific enrichment of POSTN+ CAFs in tumor tissues 
(figure 2J,K).

Cell-state transition trajectory of different CAF subpopulations
To gain insights into the dynamic processes underlying 
CAF subtypes at the single-cell level, we derived the 
pseudotime cell trajectory of the various CAF subtypes 
based on the Monocle 2 algorithm (figure 3A). Remark-
ably, statistical analyses of the combination of pseudotime 
and inferred state data revealed two distinct trajectories, 
with CD36+ CAFs (lpCAFs) representing the progenitor 
state and subsequently evolving into POSTN+ CAFs or 
MYH11+ CAFs separately (figure 3B,C and online supple-
mental figure S3A). Additionally, the majority of prolifer-
ative STMN1+ CAFs were present in the initiation state, 
while CXCL12+ CAFs were present in the terminal state 
within the differentiation branch, leading to differen-
tiation of POSTN+ CAFs. Moreover, we explored gene 
expression patterns associated with the two differentiation 
branches involved in CAF state transitions. As depicted 
in the smoothed heatmap, the functional enrichment of 
highly expressed genes in the early stage of the trajectory 
(cluster 4) in both differentiation branches was enriched 
in protein secretion and G2M checkpoint pathways. In 
contrast to the MYH11+ CAF differentiation branch, the 
terminal state of the POSTN+ CAF differentiation branch 
exhibited higher expression levels of cluster 3 genes, 
which are implicated in epithelial-mesenchymal transition 
(EMT), TGF-β signaling, and hypoxia pathways known to 
be strongly associated with tumor progression. Neverthe-
less, the terminal state of the MYH11+ CAF differentiation 
branch displayed increased expression of cluster 1 genes, 
which were enriched in TNF-α signaling via the NF-KB, 
G2M checkpoint, and adipogenesis pathways (figure 3D).

We further evaluated the correlation between the 
pseudotime axis and a set of progression-related path-
ways, including the EMT, TGF-β signaling, and hypoxia 
pathways. Interestingly, the hypoxia pathway showed a 
significant positive correlation with pseudotime (Spear-
man’s correlation test, rho=0.324, p<0.001) and was 
specifically activated in POSTN+ CAFs (figure  3E and 
online supplemental figure S3B,C). Hypoxia is a critical 
characteristic of the TME and plays a role in regulating 
CAF heterogeneity and promoting tumor progression. To 
identify potential differentially expressed genes between 
the two branches, we performed BEAM. We observed that 
antigen presentation-related genes (CD74 and CXCL12) 
and cytokines (CCL19, CCL21, and IL32) were signifi-
cantly upregulated in the POSTN+ CAF differentiation 

branch (online supplemental figure S3D) and increased 
expression of ECM-related genes (COL11A1, COL6A1, 
COL6A3, COL8A1, and VCAN) and hypoxia-associated 
features (GLI2, NFKB1, STAT1, STAT2, TWIST1, and 
CREB3L1) in the POSTN+ CAF differentiation branch 
(figure 3F). Moreover, to assess the spatial organization 
of POSTN+ CAFs and hypoxic regions, spatial transcrip-
tomics analysis of tumor-derived sections from two HCC 
patients was performed. The results revealed colocal-
ization of POSTN+ CAFs and malignant cells in hypoxic 
zones within the same spot (online supplemental figure 
S3E). This finding suggested that hypoxia might stimu-
late CAF-mediated collagen secretion to modulate ECM 
properties.

To further determine the master regulator of POSTN+ 
CAFs, we conducted pySCENIC analysis to evaluate the 
most highly expressed TFs and their activities in the 
TF regulatory network. Specifically, we observed that 
CREB3L1 exhibited high expression and activity levels 
in the regulatory network of POSTN+ CAFs, and we 
constructed an RSS model for the POSTN+ CAF cell 
type using Jensen-Shannon divergence and identified 
CREB3L1 as one of the 15 most prevalent TFs based on 
the RSS, suggesting that CREB3L1 may serve as the key TF 
driving this differentiation pathway (figure 3G–J). Simi-
larly, we found that hypoxia stimulated CAFs expressing 
POSTN and CREB3L1 (online supplemental figure S3F). 
Additionally, we next observed that the protein level of 
CREB3L1 was significantly greater in OE-POSTN-CAFs 
than in OE-NC-CAFs and that POSTN expression was 
strongly correlated with CREB3L1 expression in the 
TCGA-LIHC cohort (online supplemental figure S3G,H).

A previous study demonstrated that CREB3L1 is 
highly correlated with ECM production,36 which facil-
itates remodeling of the tumor stromal microenviron-
ment. We next detected the mRNA levels of ECM-related 
genes in CAFs treated with si-NC or si-CREB3L1 under 
hypoxia, and the results showed that CREB3L1 promoted 
collagen secretion to modulate ECM properties (online 
supplemental figure S3I). These findings suggested that 
CREB3L1 may be a key molecule driving this differen-
tiation pathway through its regulation of downstream 
signaling pathways.

Tumor-specific POSTN+ CAFs are associated with HCC 
progression
The differences in the proportions of infiltrated cell types 
between tumor-adjacent tissues and tumor tissues indi-
cate that the TME undergoes dynamic remodeling, which 
plays a crucial role in HCC progression. CAFs have long 
been suggested to be a critical stromal cell type involved 
in the regulation of tumorigenesis and cancer progres-
sion. However, the heterogeneous nature of CAF popula-
tions has not been fully elucidated. To further investigate 
this possibility, we used publicly available data on HCC 
to validate the presence of tumor-specific POSTN+ CAFs. 
We compared the differential infiltration of POSTN-
expressing fibroblasts between tumor and adjacent 
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Figure 3  Trajectory analysis of cancer-associated fibroblast (CAF) subtypes in hepatocellular carcinoma. (A) The 
developmental trajectory of CAFs was inferred by monocle 2 and colored according to the subtype. (B) The pseudotime of 
the developmental trajectory. The colors from purple to yellow indicate values from low to high, respectively. (C) The inferred 
states of the trajectory. The proportions of CAF subtypes are shown in the circles with different colors representing different 
CAF subtypes, and each circle color represents a different state. (D) Expression heatmap of significant (q<1e-3) genes based 
on branch expression analysis comparing the two CAF cell fates (left). Box plots showing the top five significantly enriched 
hallmark pathways in each gene cluster (right). (E) Dot plot showing Spearman’s correlation of the pseudotime and hypoxia 
scores, with different colors representing different CAF subtypes. (F) Pseudotime projections of transcriptional changes in 
extracellular matrix-associated genes and hypoxia-associated genes between the two trajectory branches. (G) Heatmap 
showing the mean activity of the top differentially activated regulons in each CAF subtype inferred by pyscenic. (H) Dot 
plots showing the top 15 specific activated transcription factors ranked by the regulon-specific score in each CAF subtype. 
(I) Uniform manifold approximation and projection (UMAP) plot (up) and violin plot (bottom) showing the expression of CREB3L1. 
(J) UMAP plot (up) and violin plot (bottom) showing the activity of the CREB3L1 regulon.
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normal tissues from each donor. Tissue immunofluo-
rescence staining revealed significantly greater POSTN 
expression in tumor tissues than in non-tumor tissues 
(online supplemental figure 4A). This phenomenon was 
also verified at the cellular level through immunofluores-
cence analysis and flow cytometry (online supplemental 
figure 4B,C). Notably, HCC patients with more POSTN+ 
CAFs had shorter overall survival and progression-free 
survival (online supplemental figure 4D), indicating 
that POSTN+ CAFs may promote tumor progression and 
adversely impact patient prognosis.

High infiltration of POSTN+ CAFs is associated with T-cell 
exclusion
To gain further insight into the potential functional 
signals that induce POSTN+ CAFs, we conducted an anal-
ysis to identify genes that differentially expressed between 
POSTN+ CAFs and other CAF subgroups. Subsequently, 
we performed GSEA to examine the enriched pathways. 
online supplemental figure S5A illustrates the results of 
this analysis. The upregulated genes in POSTN+ CAFs were 
significantly enriched in several pathways associated with 
ECM remodeling in the TME, including the ECM-receptor 
interaction, the PI3K-AKT signaling pathway, focal adhe-
sion, and the TGF-β signaling pathway (figure  4A). 
Numerous studies have highlighted the crucial role of 
ECM-related CAFs in promoting resistance to immuno-
therapy by facilitating T-cell exclusion.37–39 To validate this 
finding, we assessed the correlation between the infiltra-
tion of POSTN+ CAFs and T-cell exclusion in three inde-
pendent cohorts downloaded from the Tumor Immune 
Dysfunction and Exclusion Database (http://tide.dfci.​
harvard.edu/) (figure  4B–D). Our findings revealed a 
significant positive correlation between the infiltration 
of POSTN+ CAFs and T cell exclusion. Furthermore, we 
observed a significant negative correlation between the 
infiltration of POSTN+ CAFs and CD8+ T cell infiltration 
(online supplemental figure S5B–C). To investigate the 
spatial organization of POSTN+ CAFs and CD8+ T cells, 
we performed spatial transcriptomic analysis. Interest-
ingly, our observations revealed that POSTN+ CAFs were 
responsible for excluding T cells from the malignant area 
within HCC tumor tissue sections(figure 4E). Similar to 
the findings reported by Liu et al, POSTN+ CAFs formed 
a tumor immune barrier structure that excluded T cells 
in non-responders to ICB therapy but not in responders 
(figure 4F). Bayesian-enhanced spatial data highlighted 
that regions with high POSTN expression exhibited 
elevated levels of CD68 and COL1A1 in non-responders, 
while regions with high CD3D expression demonstrated 
lower levels of POSTN in responders (figure 4G). In addi-
tion, we explored the differences in the expression of 
immune checkpoint-associated genes between POSTN+ 
CAFs with high infiltration and POSTN+ CAFs with low infil-
tration in the TCGA-LIHC cohort. The results suggested 
that the presence of POSTN+ CAFs is associated with 
immunotherapy efficacy (figure  4H). Importantly, anal-
ysis of patients with progressive disease (PD) compared 

with those with a partial response (PR), based on the 
dataset from Chuan-Yuan Wei et al40, revealed significantly 
greater infiltration of POSTN+ CAFs in PD patients. This 
suggests that patients with a high proportion of POSTN+ 
CAFs exhibit a significantly poorer response to anti-PD-1 
treatment than other patients (figure  4I). Additionally, 
we analyzed the response to sorafenib, a first-line targeted 
therapy for advanced HCC. Compared with responders 
and patients treated with placebo, non-responders to 
sorafenib showed greater infiltration of POSTN+ CAFs 
(based on the GSE109211 dataset) (online supplemental 
figure S5D). Furthermore, we performed mIHC staining 
to validate our findings. We observed significantly greater 
levels of POSTN+ CAFs with colocalization of POSTN 
and α-SMA protein expression in non-responders than 
in responders. Importantly, the colocalization of POSTN+ 
α-SMA+ CAFs correlated with the exclusion of CD8+ cells 
in non-responders (figure 4J), suggesting potential cross-
talk between POSTN+ CAFs and CD8+ T cells associated 
with immunotherapy efficacy. To further validate whether 
POSTN knockdown could promote PD-1 mAb therapy 
in vivo, we established an orthotopic HCC implantation 
model for anti-PD-1 therapy. We observed that AAV8-
shPOSTN and IgG cotreatment significantly inhibited 
tumor proliferation compared with the AAV8-control and 
IgG co-treatment group. More importantly, cotreatment 
with AAV8-shPOSTN and PD-1 mAb further impaired 
tumor proliferation compared with treatment with AAV8-
shPOSTN or PD-1 mAb alone (online supplemental 
figure S6A–C). These findings provide valuable insights 
into the role of POSTN+ CAFs in HCC and offer potential 
immunotherapeutic targets and predictive biomarkers.

Cell–cell interactions between POSTN+ CAFs and SPP1+ 
macrophages may contribute to the immunosuppressive TME
To explore the mechanisms underlying the regulation 
of the immune microenvironment in HCC by POSTN+ 
CAFs, we performed cell–cell interaction analysis using 
the CellPhoneDB method to examine the interplay 
among seven major cell types. Compared with those in 
normal samples, stronger interactions were observed 
between fibroblasts and myeloid cells in tumor samples 
(figure 5A), suggesting that POSTN+ CAFs may promote 
the development of an immunosuppressive microen-
vironment by modulating myeloid cells. Based on the 
expression of specific marker genes, we identified 19 
subtypes within the myeloid lineage: nine macrophage 
subtypes (CCL3L1+ Mph, CXCL10+ Mph, FTX+ Mph, 
MKI67+ Mph, MT1G+ Mph, WWP1+ Mph, SEPP1+ Mph, 
and SPP1+ Mph), three monocyte subtypes (FCN1+ Mono, 
TCF7L2+ Mono and VCAN+ Mono), one neutrophil 
subtype (S100A8+ Neu), two Kupffer cell subtypes (CD5L+ 
Mph and MARCO+ Mph), and five dendritic cell subtypes 
(CD1C+ DC, CLEC9A+ DC, GNB2L1+ DC, LAMP3+ DC 
and LILRA4+ pDC) (figure 5B and online supplemental 
figure S7A,B). We found that SPP1+ macrophages were 
predominantly enriched in tumor tissues (online supple-
mental figure S7B). We employed CIBERSORTx to assess 
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Figure 4  POSTN+ CAFs were associated with T-cells exclusion. (A) Gene set enrichment analysis (GSEA) of the ECM-receptor 
interaction, PI3K-AKT signaling, focal adhesion, and TGF-beta signaling pathways between POSTN+ CAFs and other CAFs. 
The genes were ranked by fold change in expression between these two conditions. (B–D) The correlation between the ssGSEA 
score of each CAF subtype and T-cell exclusion score in the TCGA-LIHC cohort (B), GSE10186 (C), and GSE54236 cohort 
(D). (E) Spatial HE staining and spatial feature plots of the signatures of malignant cells, POSTN+ CAFs and T cells in HCC-2T 
tissue sections (from left to right). (F) HE staining of tumor tissues from immune checkpoint blockade (ICB) non-responders and 
responders at ST spots (left). Original defined cell types in ICB-treated non-responder and responder tumor tissues (middle). 
Spatial feature plots of the signatures of POSTN+ CAFs and T cells in the tumor tissue of ICB-treated non-responders and 
responders (right). (G) Enhanced spatial feature plots showing the expression of POSTN, CD3D, CD68, and COL1A1 in ICB non-
responder and ICB responder tumor tissues. (H) Box plots showing the expression of immune checkpoint-associated genes 
between the POSTN+ CAFs with high infiltration group and the POSTN+ CAFs with low infiltration groups in the TCGA-LIHC 
cohort. The Wilcoxon rank-sum test was used to assess the differences. (I) Box plots showing the difference in the POSTN+ 
CAF ssGSEA score between the PD and PR anti-PD1 treatment groups. The Wilcoxon rank-sum test was used to assess the 
differences, and the p value was ≤0.05.* (J) Representative IF staining of anti-PD1 responder and non-responder tissues. DAPI 
(blue), α-SMA (red), POSTN (green), and CD8 (purple) are shown in individual and merged channels. Bar, 100 µm. CAFs, cancer-
associated fibroblasts; ECM, extracellular matrix; PD, progressive disease; PR, partial response; TGF-beta, transforming growth 
factor beta.
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Figure 5  Characterization of myeloid cells in normal and hepatocellular carcinoma tissues. (A) Chord diagrams showing 
the cell‒cell interactions between seven major cell types in tumor (left) and normal (right) tissues. (B) Uniform manifold 
approximation and projection (UMAP) plot of individual myeloid cells. Each dot denotes one cell; the color represents the 
myeloid subtype. (C) Dot plots showing the Spearman correlation for the pairwise infiltration of cancer-associated fibroblast 
(CAF) subtypes and myeloid subtypes in the TCGA-LIHC cohort. Dot size and color represent Spearman’s correlation, and 
black dots indicate significance at different p value thresholds, p≤0.05*, 0.05<p≤0.01**, p≤0.001***. (D) UMAP plots showing 
the density distribution of M1 and M2 macrophages and the corresponding box plots showing the M1 and M2 scores of 
each macrophage and monocyte subtype. (E) Top-ranked ligands inferred to regulate SPP1+ macrophages via POSTN+ CAFs 
according to NicheNet. (F) Dot plots showing the expression percentage (dot size) and intensity (dot intensity) of the top-ranked 
ligands (E) in each CAF subtype. (G) Ligand–receptor pairs showing interactions between SPP1+ macrophages and POSTN+ 
CAFs ordered by ligand activity (E). (H) Dot plots showing the percentage (dot size) and intensity (dot intensity) of the expression 
of IL-6 or TGFB1-targeted receptors in each myeloid subtype.
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the infiltration of 25 cell clusters identified by scRNA-seq, 
including the above-mentioned subtypes, in the TCGA-
LIHC cohort and calculated pairwise Spearman correla-
tions for pairs of cell clusters (figure 5C). We found that 
POSTN+ CAFs and SPP1+ macrophages exhibited the 
strongest correlation among the cell populations in the 
TCGA-LIHC cohort (figure 5C).

By calculating the M1/M2 polarization scores for 
CXCL9-SPP1 macrophages and assessing the expres-
sion profiles of M1/M2 CXCL9-SPP1 macrophages, we 
found that SPP1+ Mphs were more prevalent in anti-
inflammatory responses and skewed toward the M2 
phenotype (figure  5D and online supplemental figure 
S7C). To identify key regulators of the interaction 
between POSTN+ CAFs and SPP1+ macrophages in HCC 
patients, we employed the NicheNet package to examine 
the interplay mechanisms between these cell types. We 
observed that POSTN+ CAFs exhibited high levels of 
ligand activity for IL-6, TGFB1, FGF2, and CXCL2, along 
with relatively elevated gene expression of IL-6, TGFB1, 
FGF2, and CXCL2 (figure 5E,F). In addition, the protein 
encoded by IL-6 bound to the receptors IL-6R, IL6ST, and 
THBD expressed on SPP1+ macrophages (figure  5G), 
while SPP1+ macrophages expressed high levels of IL-6R 
(figure  5H), suggesting that POSTN+ CAFs and SPP1+ 
macrophages may regulate the formation of an immu-
nosuppressive environment via the IL-6/IL-6R axis. We 
further explored the interplay mechanisms between 
SPP1+ macrophages and POSTN+ CAFs and observed that 
SPP1+ macrophages expressed cytokines (TGFB1, IL1A, 
and IL1B) that interacted with corresponding receptors 
expressed on POSTN+ CAFs (online supplemental figure 
S7D). Collectively, our findings suggest the formation of 
a mutually supportive and functional interaction network 
between POSTN+ CAFs and SPP1+ macrophages, which 
may play crucial roles in ECM remodeling and promote 
the formation of an immunosuppressive environment in 
HCC.

POSTN+ CAFs promote macrophage SPP1 expression via the 
IL-6/IL-6R axis
The correlation between SPP1+ macrophages and POSTN+ 
CAFs suggests that these cells may work together to create 
an immunosuppressive microenvironment in HCC and 
contribute to tumor progression. Our study aimed to 
explore the clinical significance of this correlation and 
investigate the mechanisms involved. We observed that 
HCC patients with high levels of POSTN+ CAFs and 
SPP1+ macrophages had the shortest OS (figure  6A), 
indicating synergistic promotion of tumor progression 
by these two cell types. To further understand the rela-
tionship between POSTN+ CAFs and SPP1+ macrophages, 
we performed experiments to examine their interaction. 
We overexpressed POSTN in CAFs and found that the 
ability of these cells to recruit macrophages was signifi-
cantly greater than that of control CAFs (figure  6B,C). 
This recruitment phenomenon was also observed in HCC 
patient tissues (figure 6D).

Previous studies have indeed demonstrated that 
secreted POSTN can bind to the surface ligand inte-
grin-αvβ5 on macrophages, thereby facilitating their 
recruitment.41 Our results align with these findings, as 
we observed a high expression of ITGB5 and ITGAV in 
SPP1+ macrophages (figure 5H and online supplemental 
figure S6E). Our findings support the role of POSTN 
secreted by POSTN+ CAFs in macrophage chemotaxis. 
Furthermore, we investigated whether POSTN+ CAFs 
promote high SPP1 expression in recruited macro-
phages. Compared with macrophages cultured in control 
medium, macrophages cultured in medium derived from 
OE-POSTN-CAFs exhibited significant upregulation of 
SPP1, IL-6R, and p-STAT3 (figure  6E). Previous studies 
have indicated that IL-6, which is secreted by CAFs, 
mediates the activation of STAT3 to promote chemo-
therapeutic resistance in gastric carcinoma.42 Moreover, 
it has been demonstrated that p-STAT3 can bind to the 
promoter region of SPP1, enhancing its transcription 
and facilitating melanoma progression.43 Consistent with 
these findings, we observed significant upregulation of 
IL-6 mRNA expression in the OE-POSTN-CAF group 
compared with the control group (figure 6F). Addition-
ally, tocilizumab treatment led to a decrease in the protein 
expression level of SPP1 (figure  6G). Consistent with 
our previous findings, our mIHC results of HCC patient 
tissues revealed that IL-6 was mainly localized in POSTN+ 
CAFs, IL-6R was mainly localized in SPP1+ macrophages 
and that SPP1+ macrophages were also concentrated in 
the same region as POSTN+ CAFs (figure 6H). Addition-
ally, when we blocked the effect of IL-6 with tocilizumab, 
macrophage recruitment was inhibited (figure 6I,J). This 
led us to hypothesize that POSTN+ CAFs recruit macro-
phages and promote their high SPP1 expression through 
IL-6-IL-6R signaling. In conclusion, our study suggested 
that the interaction between POSTN+ CAFs and SPP1+ 
macrophages play a crucial role in the immunosuppres-
sive microenvironment of HCC. Further investigation 
into the mechanisms involved in this interaction could 
reveal the potential to identify therapeutic targets for the 
treatment of HCC.

High infiltration of POSTN+ CAFs and SPP1+ macrophages is 
correlated with immunotherapy resistance
The immunosuppressive “cold” TME is the main cause of 
immunotherapy resistance in HCC patients. Currently, the 
conventional type of immunotherapy treatment is check-
point inhibitors, which mobilize T cells to induce T-cell 
mediated responses. Checkpoint inhibitors have little effect 
on cold-induced tumors. The analysis of survival data from 
the IMvigor210 dataset revealed that patients treated with 
anti-PD-L1 therapy who had high infiltration of POSTN+ 
CAFs or SPP1 macrophages exhibited worse OS than those 
without these features (figure  7A). Moreover, anti-PD-L1 
antibody-treated patients with high infiltration of POSTN+ 
CAFs and SPP1+ macrophages had shorter survival times 
than those with other infiltration profiles (figure 7A). Impor-
tantly, patients with high infiltration of these cells had lower 
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Figure 6  High infiltration of POSTN+ cancer-associated fibroblasts (CAFs) and SPP1+ macrophages was associated with poor 
patient survival. (A) Survival analyses for patients with low and high infiltration of SPP1+Mph (left), CXCL10+ Mph (middle), and 
SPP1+ Mph/POSTN+ CAF (right) in the FU-HCC cohort. (B) Transwell assay of chemotactic macrophages (n=3). (C) Statistical 
data. ***p<0.001. (D) Representative IF staining of tumor tissues. DAPI (blue), CD68 (yellow), SPP1 (green), and POSTN (red) 
are shown in individual and merged channels are shown. Bar, 100 µm. (E) Western blot analysis of the protein levels of SPP1, 
IL-6R, p-STAT3, and STAT3. OE-NC-CAFs: macrophages treated with conditioned medium from control CAFs; OE-POSTN-
CAFs: macrophages treated with conditioned medium from CAFs overexpressing POSTN. (F) IL-6 levels were examined by 
qRT-PCR analysis (n=3). (G) Western blot analysis of the protein levels of SPP1. Control: macrophages treated with conditioned 
medium from CAFs overexpressing POSTN and PBS; tocilizumab: macrophages treated with conditioned medium from CAFs 
overexpressing POSTN and tocilizumab. (H) Representative IF staining of tumor tissues. DAPI (blue), IL-6 (green), SPP1 (red), IL-
6R (purple), and POSTN (yellow) are shown in individual and merged channels. Bar, 100 µm. (I) Transwell assay of chemotactic 
macrophages (n=3). (J) Statistical data. **p<0.01; ***p<0.001.



16 Wang H, et al. J Immunother Cancer 2024;12:e008721. doi:10.1136/jitc-2023-008721

Open access�

Figure 7  High infiltration of POSTN+ cancer-associated fibroblasts (CAFs) and SPP1+ macrophages is correlated with 
immunotherapy resistance. (A) Survival analyses for patients with low and high infiltration of POSTN+ CAFs alone (left), SPP1+ 
macrophages alone (middle), and both (right) in the anti-PD-L1 immunotherapy cohort using Kaplan-Meier curves (IMvigor210 
cohort). (B) Bar plots showing that patients with both low infiltration of both POSTN+ CAFs and SPP1+ macrophages were more 
likely to respond to anti-PD-L1 treatment. Fisher’s exact test was used to assess differences. (C) Heatmap showing the Jaccard 
index of gene programs in each sample identified by SpaGene calculated based on the overlap of top-ranked genes. (D) Spatial 
feature plots of the signature score of the specific gene pattern, POSTN+ CAFs and SPP1+ macrophages in ICB-treated non-
responders and responder tumor tissues (from left to right), and dot plots showing the Spearman’s correlation of the signature 
score of POSTN+ CAFs and SPP1+ macrophages. (E) Enhanced spatial feature plots showing the expression of COL1A1, 
POSTN, CD68, SPP1, CD3D, CD8B, CD4, CD19, GZMA, and GNLY in immune checkpoint blockade (ICB) non-responder and 
ICB responder tumor tissues.
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complete response and PR rates and a greater PD rate than 
patients with low infiltration of these cells (figure 7B). This 
suggests that patients with TMEs enriched in POSTN+ CAFs 
and SPP1+ macrophages have a significantly poorer response 
to anti-PD-L1 therapy.

To further assess the spatial gene expression patterns asso-
ciated with immunotherapy responsiveness, we used the 
SpaGene algorithm to identify ten spatial gene expression 
patterns for each sample and assessed the similarity between 
patterns based on the Jaccard index (figure 7C). The patterns 
highlighted with red circles in figure 7C and online supple-
mental figure S8 A–D were differentially expressed between 
immunotherapy-sensitive and immunotherapy-resistant 
HCC patients and were associated with ECM-receptor inter-
actions and the focal adhesion pathways, suggesting that 
these patterns might be closely linked to POSTN+ CAFs. To 
test this hypothesis, we quantified the specific gene expres-
sion pattern, the signature score for POSTN+ CAFs, and the 
signature score for SPP1+ macrophages in each spot in the 
corresponding samples. Notably, we observed that an ECM-
associated pattern was present in both immunotherapy-
responsive and immunotherapy-resistant patients and 
colocalized with POSTN+ CAFs (figure 7D). Interestingly, we 
observed stronger spatial colocalization between POSTN+ 
CAFs and SPP1+ macrophages in non-responders than in 
responders (figure  7D). This further supports the finding 
that patients with enriched POSTN+ CAFs and SPP1+ 
macrophages have a significantly poorer response to anti-
PD-1 therapy. Similarly, mIHC staining revealed that non-
responders exhibited greater infiltration of POSTN+ CAFs or 
SPP1+ macrophages than responders (online supplemental 
figure S9). Bayespace-enhanced spatial data showed that 
most POSTN+ CAFs and SPP1+ macrophages were colo-
calized in the same region, whereas T cells or B cells were 
excluded from the tumor core (figure 7E). Collectively, these 
results indicate that the interaction between POSTN+ CAFs 
and SPP1+ macrophages limit the infiltration of immune cells 
into the tumor core. These two cell types may determine the 
efficacy of immunotherapy in HCC patients.

DISCUSSION
Despite significant advancements in immunotherapy for 
tumor treatment, not all patients exhibit a positive response, 
and the underlying mechanisms of non-response remain 
incompletely understood.44–46 Limited information is avail-
able regarding the prediction of immunotherapy response 
in clinical trials involving HCC patients treated with ICB. 
In our study, we conducted a comprehensive analysis using 
publicly available scRNA-seq and bulk RNA sequencing data-
sets, as well as ST data from HCC patients undergoing ICB 
treatment. These findings were further validated using mIHC 
staining and other techniques. Our study provides valuable 
insights into the distinct subpopulations of CAFs in HCC and 
their properties at the single-cell level. Moreover, we demon-
strated that the interactions between POSTN+ CAFs and 
CD8+ T cells, as well as between POSTN+ CAFs and SPP1+ 

macrophages, could play a crucial role in the development of 
an immunosuppressive microenvironment.

The heterogeneity of CAFs plays a crucial regula-
tory role in the immune microenvironment.47 Recent 
advancements in scRNA-seq have allowed for a deeper 
understanding of CAF heterogeneity across various 
tumor types.48 Consequently, biomarker genes that define 
different potential CAF subgroups have been identified.49 
In our study, we systematically deciphered the heteroge-
neity and characteristics of CAFs in HCC and identified 
six unique CAF subpopulations: POSTN+ CAFs, STMN1+ 
CAFs, MYH11+ CAFs, CD36+ CAFs, CXCL12+ CAFs, and 
SEPT7+ CAFs.

Previous studies have shown that interactions between 
CAFs and HCC cells occur through multiple molecular 
mechanisms.50 51 However, the different activation states, 
stress responses, and CAF sources lead to functional 
heterogeneity.52 Thus, the role of specific functional 
CAF subpopulations in regulating HCC progression is 
unclear. Our analysis revealed that among human CAFs, 
the marker gene POSTN is specifically enriched in 
HCC tumors. Further analysis demonstrated that ECM/
TGF-β/hypoxia signaling was highly enriched in POSTN+ 
CAFs, and that these signaling pathways played key roles 
in tumor progression and the immune microenviron-
ment.53–55 POSTN is a secreted protein that has been well 
studied in tumor cells. However, its role in CAFs is poorly 
understood. Our study revealed that POSTN+ CAFs are 
located mainly in the peripheral regions of tumors and 
dominate ECM remodeling compared with other CAF 
subpopulations. ECM remodeling is an important factor 
in tumor progression and creates a physical barrier that 
inhibits the recruitment of immune cells, especially T 
cells, to cancer sites.56 57 Collagen density in the ECM also 
determines T-cell distribution.58 Our data suggest that 
POSTN+ CAFs suppress CD8+ T-cell infiltration, suppress 
antitumor immunity, promote the development of an 
immunosuppressive microenvironment, and affect the 
response to immunotherapy. Our findings indicated a 
significant increase in the number of POSTN+ CAFs in 
tumor tissues, which was strongly correlated with poor 
patient prognosis. By identifying key CAF subpopulations 
and their functions, our study provides new insights for 
developing therapeutic strategies targeting the immune 
microenvironment in HCC.

Identification of factors contributing to TME immu-
nosuppression is crucial for the development of effec-
tive immunotherapies. Interactions between CAFs 
and immune cells, including tumor-associated macro-
phages, have been shown to modulate the immune 
microenvironment and suppress antitumor immune 
responses.59 60 In our study, we investigated the role of 
CAFs and macrophages in HCC and their impact on the 
immune microenvironment.

We observed a close interaction between CAFs and 
macrophages, with macrophages being prominent in 
the dense zone of CAFs. CAFs were found to promote 
the recruitment and differentiation of monocytes into 
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M2-type macrophages via various regulatory mole-
cules.61 These macrophages, in turn, impair effector 
T-cell responses and induce an immunosuppressive 
state in the TME.62 SPP1+ macrophages were identi-
fied as the most relevant cell subtype interacting with 
POSTN+ CAFs and were associated with poorer OS in 
HCC patients. We further characterized the immune 
microenvironment in HCC and focused on the key 
cell subtypes regulating immune evasion. Through 
single-cell and spatial transcriptomics, immunoflu-
orescent labeling, and analysis of other datasets, we 
investigated the interactions between POSTN+ CAFs 
and SPP1+ macrophages. We predicted that POSTN+ 
CAFs promote the overexpression of SPP1 in macro-
phages through IL-6/STAT3 signaling, leading to 
the differentiation of macrophages toward the SPP1+ 
phenotype. We also mapped the spatial distribution 
of SPP1+ macrophages, which interact with POSTN+ 
CAFs. In regions enriched with POSTN+ CAFs and 
SPP1+ macrophages, we observed reduced infiltra-
tion of lymphocytes, suggesting the formation of an 
immune-excluded microenvironment. Furthermore, 
high expression of POSTN and/or SPP1 was predic-
tive of poorer OS and a reduced response to anti-PD-1 
therapy, supporting the presence of an immunosup-
pressive microenvironment.

Our findings provide insights into the mechanisms 
involved in the formation of the immunosuppressive micro-
environment in HCC. Specifically, we highlighted the 
crucial interaction between POSTN+ CAFs and SPP1+ macro-
phages. Targeting this interaction holds promise as a poten-
tial strategy for HCC immunotherapy. Our findings indicate 
that the interaction between POSTN+ CAFs and SPP1+ 
macrophages plays a crucial role in remodeling the ECM 
and creating a microenvironment that promotes fibroblast 
proliferation. This microenvironment suppresses the infil-
tration of lymphocytes into the core of the tumor, thereby 
reducing the effectiveness of PD-1 therapy. We propose 
a possible mechanism for this interaction: The induc-
tion of POSTN+ CAFs by hypoxia leads to the expression 
of CREB3L1, subsequently facilitating CREB3L1 nuclear 
transport, thereby influencing ECM remodeling. Addition-
ally, POSTN+ CAFs secrete IL-6, which activates the STAT3 
signaling pathway in macrophages, leading to increased 
expression of SPP1. Furthermore, our results suggest that 
SPP1+ macrophages may influence POSTN+ CAFs through 
the action of TGFβ1. This interaction promotes the secre-
tion of matrix metalloproteinases and collagen, which 
contributes to ECM remodeling. However, further investiga-
tion is necessary to fully elucidate the underlying biological 
mechanisms involved. Our study revealed that the propor-
tion of POSTN+ CAFs determines the efficacy of immuno-
therapy in HCC patients. This highlights the importance of 
developing strategies that target POSTN+ CAFs to overcome 
immunosuppression and enhance the tumor response to 
immunotherapy.
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