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Abstract

Therapy resistance is imposing a daunting challenge on effective clinical management of breast 

cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy 

metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic 

challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of 

different signaling networks and activation of DNA damage response (DDR) pathways. Here we 

consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair 

ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators 

are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay 

profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic 

therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-
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DNA repair axis that can be critical for devising novel, targeted therapeutic approaches which 

could sensitize cancer cells to conventional treatment strategies.
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INTRODUCTION

In initial stages many breast cancer patients respond to therapy, however, therapy-resistance 

develops in most cases over-time due to epigenomic (1) and metabolic (2) changes within 

the tumor that promotes drug inhibition, degradation and heightened DNA damage repair 

(3). Acquisition of treatment-resistance and subsequent tumor recurrence is thus one of the 

most major challenges in breast cancer management.

Metabolism is an adaptive process that remains significantly altered in tumor cells, 

and is considered a hallmark of cancer (4) (5) (6)(7). Thus, reprogramming of energy 

metabolism has been associated with the development of resistance towards different 

therapeutic regimens (8), (9), (10), (11). Recently, the DNA damage response (DDR) 

pathways have been highlighted as a pivotal cause of drug resistance (12). Interestingly, 

metabolic flux can hyperactivate different DDR pathways through a complex mechanism 

that eventually heightens cell proliferation as well as survival, thereby promoting resistance 

to therapies (13), (14). Notably, besides genetic mutation, epigenetic changes play a 

key role in regulating metabolic reprogramming as well as DNA repair (15). The axis 

between epigenetics, cellular metabolism, and DNA repair provides a great platform for 

understanding the role of this synergy in the subsequent emergence of drug resistance and 

thus we will trace out the underlying involved epigenetic regulatory mechanisms.

CONVENTIONAL THERAPEUTIC REGIMENS AGAINST BREAST CANCER 

AND THERAPY-RESISTANCE

Breast cancer is a complex and heterogeneous disease, and its therapeutic strategy and 

outcome critically depend on its molecular subtype. Here we discuss the clinical significance 

of molecular subtyping in breast cancer in reference to treatment strategy and acquisition of 

therapy-resistance.

Luminal type breast cancer, therapy and resistance

Luminal breast cancers, are generally positive for estrogen receptor (ER) and/or 

progesterone receptor (PR) which are subdivided based on ER, PR and HER2 receptor 

status and Ki67 expression (16). The mainstay treatment strategy employed against luminal 

breast cancer is anti-estrogen therapy using selective estrogen receptor modulator (SERM) 

(like Tamoxifen), selective estrogen receptor down regulators (SERD) and aromatase 

inhibitors (17). Despite the remarkable sensitivity of luminal tumors to anti-ER therapy, 

30–50% of cases show relapse after 20 years of diagnosis (16), (18). Tamoxifen is 

very frequently used as adjuvant therapy along with chemotherapy in ER+ breast cancer, 

Das et al. Page 2

Cancer Res. Author manuscript; available in PMC 2024 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however about 20–30% of the patients is shown to develop resistance to tamoxifen-

therapy (19). The mechanism of tamoxifen resistance has been extensively studied, and 

modifications in glycolysis have been identified as a major underlying mechanisms (19). 

PFKFB3 (6-Phosphofructokinase-2-kinase/Fructose-2,6-bisphosphatase-3), which catalyzes 

the formation of fructose 2,6-bisphosphate during glycolysis, is transcriptionally activated 

by estrogen signaling (20). HIF1α is also an ER-responsive gene that transcriptionally 

upregulates hexokinase II (HKII) (21), a major rate-limiting enzyme of glycolysis. 

Cumulatively, these events enhance glycolysis-driven tamoxifen resistance in luminal breast 

cancer (22) (Fig. 1A).

HER2-positive breast cancer targeting therapy and resistance

The transmembrane tyrosine kinase receptor encoded by the human epidermal growth factor 

receptor 2 (HER2), intricately regulates cell proliferation and survival. About 15–20% of 

all breast tumors show HER2 overexpression, leading to aggressive tumor development 

and a poor prognosis (23). The clinical management strategies of HER2+ cancer includes 

usage of monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs) and antibody-

drug conjugates (ADCs), which have shown improvement of patient prognosis at all 

stages of the illness (23). The mAbs trastuzumab and pertuzumab, and TKIs lapatinib 

in combination with capecitabine is frequently used to treat advanced HER2+ breast 

cancer (24). Co-treatment of trastuzumab/pertuzumab with microtubular network-disrupter 

docetaxel has been shown to improve Progression-free survival (PFS) (25). However, despite 

these targeting strategies, HER2+ breast cancer mostly remains a fatal illness with median 

PFS of only 1 year even after therapy (23) (26). Early HER2+ breast cancer recurs in about 

26% of patients after trastuzumab therapy, whereas in advanced metastatic cases, relapse 

increases to about 70% within a year (27).

Trastuzumab acts by internalization and degradation of HER2 receptor, which further leads 

to inhibition of downstream PI3K-AKT-mTOR pathway (23). Activating mutations in the 

PI3K-AKT-mTOR network renders trastuzumab-resistance to therapy (28),(29) (Fig. 1B). 

Nearly 30% of human HER2+ tumors display mutations in PI3K-AKT-mTOR pathway 

genes, with about 20–23% cases showing activating mutations of PI3K-catalytic subunit-α 
(PI3KCA) which mediates trastuzumab-resistance (30).

Basal type or triple negative breast cancer (TNBC)

About 15% of all invasive breast cancers are basal-like, which display higher incidence of 

local and distant recurrence (31). TNBC, the most dominant subgroup (about 80–90%) of 

basal-like breast tumors are highly aggressive and show poor clinical outcome (31),(32). 

Successful treatment of TNBC is extremely challenging and often results in poor prognostic 

outcomes as endocrine therapy and HER2 targeting therapies are ineffective due to absence 

of ER, PR and HER2. Hence, a standard neoadjuvant chemotherapy (NACT), often basMed 

on anthracyclines, taxanes, and cyclophosphamides, is used against most TNBC patients 

(33). Adjuvant chemotherapy is also administered to patients with residual illness after the 

completion of NACT (34).
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Being the most aggressive form, TNBC often become resistant to conventional 

chemotherapy and its recurrence peaks early at around 3 years after diagnosis, with distant 

metastasis (32). TNBC patients have lower survival rate than other subtypes of breast cancer, 

having a fatality rate of 40% in the first five years following diagnosis (32). About 46% 

of individuals with TNBC develop distant metastases, following which, the median survival 

period is just 13.3 months, and up to 25% of cases relapse after surgery (32).

The aberrant activation of several signaling cascades in TNBC cells promotes their 

aggressive nature and therapy resistance. For instance, PI3K-AKT-mTOR and EGFR 

signaling often gets hyper-activated in TNBC, and about 70–78% TNBC show EGFR 

overexpression (35), (32). TNBC also show metabolic alterations that drive their resistant 

nature. For instance, glycolysis is especially pronounced in TNBC, promoting heightened 

cell proliferation and chemoresistance (36). Also, Wnt and EGFR pathways, plays a 

significant role in augmenting carbohydrate metabolism in TNBC. For example, MYC 

and MCL1, two important downstream targets of Wnt signaling (37), is reported to 

cooperatively promote mitochondrial biogenesis (Fig. 1C), which in turn enhances oxidative 

phosphorylation, ultimately causing paclitaxel resistance in TNBC (38). TNBC often has 

aberrant genetic abnormalities in DNA pathways, including BRCA1/2 mutations and p53 

malfunction that drives their resistant nature (39). DNA damage repair (DDR)-inhibitors 

alone or in combination with conventional therapies can open up potential avenues in TNBC 

treatment (40).

THE ROLE OF METABOLIC MILIEU OF CANCER IN DRUG RESISTANCE

Both the extracellular metabolic microenvironment and the internal molecular and metabolic 

milieu of the tumor cells play crucial role in acquisition of therapy-resistance.

The role of tumor microenvironment in rewiring cancer cell metabolism and mediating 
resistance

Tumor microenvironment (TME) is composed of tumor cells, non-malignant stromal cells 

like endothelial cells, cancer-associated fibroblasts (CAFs), immune cells (macrophages, 

lymphocytes etc.), and the non-cellular fibers such as collagen, hyaluronan, fibronectin and 

laminin etc. (41). A metabolic crosstalk exists among cancer cells of residing in different 

TME compartments. For instance, a lactate shuttle exists between hypoxic core cancer cells 

with the peripheral well-oxygenated cells, in which the hypoxic cancer cells produce lactate 

by anaerobic glycolysis and release it by MCT4 exporter, which is then taken up by the 

cancer cells proximal to blood vessels through MCT1 importer (42). This in turn protects the 

tumor cells from DNA damage and mediates resistance (43).

Breast cancer cells consume glucose and secrete lactate to sustain neighboring CAFs which 

in turn release exosome to help the cancer cells to cope with the nutrient deprived conditions 

in TME (44). Additionally, CAFs supply glutathione (GSH) and cysteine to cancer cells 

to balance their redox homeostasis to circumvent the chemotherapeutic challenges (45). 

Interestingly, the metabolites secreted by tumor cells dampens the immunosurveillance by 

modulating TME-immune profile. Increased lactate in hypoxic regions of tumor inhibits the 

differentiation of monocytes and dendrites and also block T cell activation (41). Beside this, 
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high lactate level promotes the number of M2 macrophages via induction of VEGF and 

arginase which mainly produce immunosuppressive cytokines like IL10 (41), (46). Notably, 

M2 macrophages promote resistance against radiation therapy via IL4/IL13 mediated STAT6 

phosphorylation (47). One of the key determinants of the response to radiation is the extent 

of DNA damage. Thus, immune-modulation of TME mediates radio-resistance (47). In a 

nutshell, the metabolic inter-connection and crosstalk among different cell types in the TME 

plays critical role in mediating therapeutic resistance.

The role of internal metabolic reprogramming in DNA repair derived resistance

The altered metabolic architecture within cancer cells is intricately associated with the 

acquisition of therapy-resistance linked with DNA damage response (48), (49) (50).

Role of DNA damage response in drug resistance—Sustaining genomic integrity 

by repair of DNA damage is a crucial cellular activity (51). A complex pathway involving 

sensors, transducers, and effectors, known as the DNA damage response (DDR), orchestrate 

this, facilitating cellular survival. Accumulating results indicate that cancer cells exhibit 

alterations in DNA repair pathways, which promotes their inherent and acquired resistance 

toward genotoxic therapies (52).

Alterations in DNA repair pathways of tumor cells lead to heightened genomic instability, 

augmented mutation rate and increased intra-tumor heterogeneity (53). Most conventional 

anti-cancer regimens target cancer cells by increasing double-strand breaks (DSB), and 

hence, DSB repair via non-homologous end-joining (NHEJ), and homology-directed repair 

(HDR) plays a significant role in the resilience of cancer cells towards therapy. Dissecting 

the intricate regulatory network underlying DDR and modulating them therefore can be a 

potential approach to sensitize tumor cells toward therapeutic strategies (54).

DNA damage and subsequent breaks promote an immediate cell-wide increase of bound 

NADH fraction triggered by poly (ADP-ribose) polymerase (PARP) dependent formation 

of poly (ADP-ribose) (PAR). PAR recruits repair proteins to DNA-damaged sites and shifts 

the metabolic balance to oxidative phosphorylation (OXPHOS) over glycolysis. Clinically, 

PARP inhibitors (PARPi) are successful for breast cancer patients with a deficiency in 

HDR (55), which is synthetically lethal with PARP deficiency. Following DNA repair 

initiation, poly (ADP-ribose) glycohydrolase (PARG) hydrolyzes the PAR ‘cloud’ into 

mono-nucleotide ADP-ribose (ADPr), so PARGi can re-sensitize PARPi resistant cancer 

cells (56).

Decade-long studies are unraveling an intricate connection between altered metabolic 

landscape and DDR pathways in cancer, which can in turn influence therapy-resistance 

(57). Heightened glucose intake or the Warburg effect is a primal characteristic of most solid 

tumors, which is associated with a metabolic shift from OXPHOS to anaerobic glycolysis, 

leading to the augmented production of lactic acid (58). Recent reports positively associate 

elevated lactic acid production with chemo/radio-resistance and metastasis, which in turn 

implicates cellular metabolic status in conferring therapy-resistance by modulating DDR 

(59), (60).
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Oxidative stress in DNA damage and repair—A key link between metabolism and 

DNA damage is via redox balance. Reactive oxygen species (ROS), one of the major 

inducers of DNA damage, is produced by several metabolic reactions, with the electron 

transport chain being the chief source (61). Heightened oxidative DNA damage due to ROS 

burdens the DNA-repair machinery, leading to genomic instability (Fig. 2). A major ROS-

DNA interaction happens by reaction of °OH with sugar, purines and pyrimidines of the 

DNA strands, which leads to formation of oxidative DNA lesions like 8-oxo-dG, thymine 

glycol, and strand-break(62), which require efficient DNA base repair (63). Incomplete 

DNA repair due to the increased lesion burden generates pro-mutagenic repair intermediates 

such as single-strand DNA breaks and abasic sites. Accumulation of these pro-mutagenic 

sites within a short DNA span is referred to as oxidatively generated clustered DNA lesions. 

These are often detected after radiotherapy, posing a major threat to genomic integrity, and 

promoting development of radio-resistance (64).

Prolonged exposure to chemotherapy alters the overall ROS level in tumor cells, which 

in turn can lead to acquisition of resistance (65)(66). Elevated ROS production during 

chemotherapy stabilizes HIF-1α and promotes vascular endothelial growth factor (VEGF) 

and macrophage migration-inhibitory factor (MIF) expression, which in turn confer 

chemoresistance via upregulation of anti-apoptotic proteins through RAS/MAPK pathway 

(66). On the other hand, cancer stem cells (CSCs) display significantly lower ROS levels 

and augmented expression of free radical scavenging systems, which renders their resistance 

towards most conventional therapies (67) (68).

Multiple metabolic intermediates and pathways work in coordination to balance intracellular 

ROS levels. The enzyme GSH peroxidase scavenges ROS while oxidizing from GSH 

to GSSG. The reverse reaction, catalyzed by glutathione reductase, utilizes the reducing 

potential of NADPH (69). Glutathione is produced from glutamate and cysteine, with 

the availability of cysteine being the rate-limiting step of this reaction (70). The 

cystine-glutamate antiporter xCT transports cysteine into cells in exchange for glutamate 

(71).Culturing tumor cells in media containing cystine leads to xCT-dependent glutamine-

dependency, alterations in ROS level, and sensitization of cancer cells to glutaminase-

inhibition (72).

Nuclear factor-erythroid 2-related factor-2 (NRF2) is an important modulator of ROS 

level (73). Interestingly, the DNA-repair protein, BRCA1 regulates NRF2, thus linking 

ROS levels and DNA repair pathways (74). BRCA1 recruitment is facilitated by histone-

acetylation specifically H4K16ac close to DNA-damage sites, interfering with the binding of 

NHEJ repair factors and promoting homologous recombination (HR)-mediated DNA repair 

(75), (76), (77), (78). Hence, targeting BRCA1 and NRF2 is a potential approach to enhance 

DNA repair and reverse ROS-mediated therapy-resistance in cancer cells. Activation of 

NRF2 through synthetic triterpenoids acts as a potential strategy to shield the normal tissues 

against severe ionizing radiation treatment (79).

Interestingly, the disruption of the pentose phosphate pathway (PPP) can also act as a 

shield against ROS. Depletion of the phosphogluconate dehydrogenase (PGD) enzyme 

leads to the accumulation of 6-phosphogluconate (6PG), which inhibits the glycolytic 
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pathway and increases glucose flux through PPP that enhances NADPH production (80). 

NADPH synthesis is also dependent on NAD+ production and its two principal enzymes: 

nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase 

(NAPRT)(81). Tumor cells display enhanced NAD+ cycling rate and increased dependency 

on either of these two enzymes (82), inhibition of which promotes susceptibility of the 

cancer cells to oxidative stress (83),(84). Apart from this, S-adenosylmethionine (SAM) is 

one of the stimulators of GSH synthesis and hence plays an important role in GSH-mediated 

ROS detoxification (85).

Due to the critical involvement of ROS in rendering resistance, modulating it can be 

a potential strategy to disrupt the resistant phenotype of cancer cells. Targeting redox-

regulating factors like NADPH oxidase, glutathione metabolism-related enzymes, xCT and 

NRF2 could modulate ROS levels and attenuate drug-resistance in cancer (65). For instance, 

ML385, an NRF2 inhibitor can sensitize resistant cancer cells to chemotherapeutic drugs 

like doxorubicin, carboplatin or paclitaxel (86). Another NRF2 inhibitor IM3829, which 

disrupts NRF2 binding to its target genes, promotes radiosensitivity of cancer cells (87). 

MTH1 (human MutT homologue 1, NUDT1), another protein involved in oxidative stress 

response, has become an attractive anti-cancer target (88). Karonudib, an MTH1 inhibitor 

(89) is currently undergoing clinical trials for the treatment of solid cancers. Buthionine 

sulfoximine, an inhibitor of γ-GCS (the first enzyme of GSH -biosynthetic pathway), is 

reported to suppress cisplatin-resistance in breast cancer (90).

Nucleotide pool and DNA repair potential of cancer cells—Modulation of the 

nucleotide pool is a central metabolic pathway that regulates DNA damage and repair (91), 

(92). Alterations in the dNTP pool can promote genomic instability by inducing replication 

stress and reducing DNA repair. Several factors are recruited to DNA damage sites that aid 

in dNTP generation to ensure a steady dNTP supply for successful DNA repair. For instance, 

rapid recruitment of RRM1 and RRM2 (ribonucleotide reductase family member 1 and 2) at 

DNA damage site ensures the dNTP synthesis needed for successive DNA repair (93), (94). 

RRM1 and RRM2 jointly constitute the Ribonucleotide reductase (RNR) enzyme complex 

that catalyzes the de-novo dNTP synthesis from the corresponding ribonucleotides (95). The 

concentration of the dNTP pool is critical in DNA repair pathways as HR requires a higher 

concentration of dNTPs than NHEJ (96). Hence, metabolic pathways involved in nucleotide 

biosynthesis play a key role in DNA repair and resistance to genotoxic drugs (Fig. 2) (91), 

(97), (98).

DNA damage promotes tumor cells to reprogram their metabolic pathways towards PPP 

(14), which plays a critical role in promoting tumor cell proliferation and survival 

by supplying cells with NADPH and ribose-5-phosphate (99). The multi-enzyme PPP 

diverges from glycolysis at glucose-6-phosphate and runs in parallel. Glucose 6-phosphate 

dehydrogenase (G6PDH) the rate-limiting enzyme of PPP, is associated with tumor cell 

survival (100). The PPP synthesizes several critical intermediates of cell metabolic pathways 

including ribose-5-phosphate, a key precursor for the synthesis of the ribose backbone 

of both purines and pyrimidines (101) (Fig. 2). The PPP intermediates can also return 

to glycolysis by giving rise to glyceraldehyde-3-phosphate (102). In breast cancer cells, 

heightened PPP is responsible for the constant production of NADPH and nucleotides (103). 
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Also, the PPP remains significantly enhanced in several cancers, and has been connected 

with cancer progression, migration and drug-resistance (104), (100).

In cisplatin-resistant cancer cells, inhibition of G6PDH re-sensitizes them to cisplatin 

(100). Activation of ATM in response to DSBs also reportedly induces G6PDH to 

augment the synthesis of dNTPs to promote DNA repair (105). Another metabolic enzyme, 

phosphoglycerate mutase 1 (PGAM1) plays role in HR-mediated DSB repair through 

modulation of nucleotide pools by converting 3-phosphoglycerate to 2-phosphoglycerate and 

coordinating PPP and glycolysis. Inhibition of PGAM1 leads to dNTP depletion, through 

the accumulation of 3-phosphoglycerate and inhibition of PPP enzyme 6-phosphogluconate 

dehydrogenase (6PGD). This also promotes ubiquitination and degradation of CTBP-

interacting protein (CtIP), an important factor of the HR pathway, by the E3 ubiquitin-ligase 

APC/C-Cdh1 (106). In response to ionizing radiation-mediated DNA damage, fructose-2,6-

biphosphatase-3 localizes into the nucleus in an ATM-H2AX-MDC1 dependent-manner, 

where it induces RRM2 to promote local generation of dNTP pool. Inhibition of it thus leads 

to cancer cell sensitization to radiation therapy by repressing DNA repair (107).

Alterations in glutamate is also important in metabolic rewiring of cancer cells for 

enhancing dNTP production. Cancer cells overexpress the glutamine synthetase (GS) 

enzyme which converts glutamate to glutamine and utilized by cells for nucleotide 

biosynthesis (Fig. 2) (108), (109), (110), (111), (112). Glutamine synthetase has also been 

reported to be overexpressed in radio-resistant cancer cells, playing an integral role in 

sustaining their DNA repair and promoting their resistance(113). Inhibiting GS is thus a 

potential approach to combat radio-resistance in cancer cells.

Another instance of dNTP regulation in the context of DNA repair can be traced through 

the dNTP triphosphohydrolase enzyme SAMHD1 that breaks down dNTP molecules 

into deoxynucleoside and inorganic triphosphate, inhibiting usage of the dNTPs in DNA 

synthesis (88). The higher expression of SAMHD1 is often associated with drug-resistance 

because its substrates also include anticancer nucleoside analogues (88). Suppression of 

SAMHD1 promotes sensitivity towards the deoxyguanosine analogue chemotherapeutic 

drug nelarabine (114).

cGAS-STING pathway in DNA damage response—The cytosolic DNA-sensing 

cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) pathway (115) 

(116) promotes innate immune responses by production of cyclic GMP-AMP (cGAMP) 

(117). It is activated in response to DNA damage (116) (118) and induces expression of 

type 1 interferon (IFN), which suppresses cancer progression (119) (120). Several agonists 

of this pathway are currently in clinical trials and demonstrate therapeutic efficacy (121) 

(122). In a subgroup of ER+ breast tumors, high perinuclear-localized expression of STING 

was an independent predictor of good prognosis and increased immune response while low 

expression corelated with immunosuppression and oncogenic mTOR activation (123).

Metastatic tumors often hijack cGAS-STING pathway to circumvent therapeutic-stress 

(124) (125). Cancer cells exhibit chromosomal instability (CIN), resulting in cellular 

rupture that exposes genomic contents into cytosol through micronuclei, triggering chronic 
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activation of cGAS-STING (126)(115); and induces an immune-suppressive TME (127) 

(123). Genomic instability and DDR also triggers inflammatory response (128). In 

BRCA1/2 mutant tumors, inflammatory signaling, as a consequence of CIN, actively 

modulates TME to escape immune-surveillance (129). Furthermore, cGAS suppresses HR-

mediated repair, promotes tumor growth and has emerged as an attractive therapeutic target 

(130).

Inactivation of cGAS-STING signaling selectively impairs the survival of TNBC cells that 

display CIN and promotes tumorigenesis through an IL6-STAT3 mechanism (131). In a 

subset of TNBCs, epigenetic silencing of STING by binding of MYC on its promoter 

enhanced immune-evasion and conferred resistance against immune-checkpoint blockers 

(132). Inhibition of MYC, in conjunction with PDL-1 blockade, restored PDL1-inhibitor 

sensitivity and enhanced therapeutic response (132).

STING activation corelates with advanced cancer stage and promotes drug-resistance (133) 

and inhibition of this axis could be combined with traditional chemotherapy for potent 

anticancer effects. Doxorubicin mediated DNA damage activates the cGAS-STING that 

enable cell proliferation and survival through activation of NF- κB and IL6 pathways and 

corelates with resistance and poor patient outcome (134). Different breast tumors express 

varying levels of STING, that defines their response to chemotherapy (127). Absence of 

STING necessitates a significantly increased dose of 5-Fluorouracil for reducing tumor 

burden and its efficacy is dependent on activation of tumor-intrinsic STING (135), (136). 

Use of STING agonists increase the antitumor immunity when combined with classical 

therapies reversing therapeutic-resistance (137). Activation of STING suppresses NRF2 and 

sensitizes tumors to chemotherapy (138)(139) and reduces chemotherapy induced toxicity 

while potentially enhancing its antitumor effects (140) (141). Collectively, these studies 

highlight the complex interplay that determines the mechanistic roles of cGAS-STING in 

mediating pro or antitumor effects.

The epigenetic regulatory mechanisms involved in the DDR-metabolism axis
—Epigenetic regulation plays an integral role in repair pathway choice (142)(143)(144)

(145). Methylation and acetylation, depend on the metabolic pathways for the availability 

of methyl- and acetyl-group. For instance, ATP-citrate lyase (ACLY), which is responsible 

for the production of nuclear acetyl-CoA and oxaloacetate from citrate, localizes at the 

DNA damage sites and supplies acetyl-CoA to promote histone acetylation (146). ACLY 

remains overexpressed in several cancers and its activity reportedly increases in response 

to ionizing-radiation therapy (147). ACLY and acetyl-CoA mediated histone acetylation 

near DNA damage sites leads to the recruitment of BRCA1, promoting preferential DNA 

repair by HR (148). Moreover, ACYL mediates the activation of PI3K-AKT pathway which 

through downstream mechanisms induce double stranded break repair (DSBR) in cancer, 

thereby promoting drug-resistance (149) (150).

In cancer cells, elevated glucose and glutamine metabolism lead to increases in N-acetyl-

glucosamine (GlcNAc) synthesis. This in turn increases protein O-GlcNAcylation in tumor 

cells, which can promote DNA repair-mediated therapy-resistance. The mechanism behind 

such an activity can be traced through the histone methyltransferase protein enhancer 
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of zeste homolog 2 (EZH2). In cancer cells, EZH2 is activated and stabilized by O-

GlcNAcylation, which then induces DNA repair by increasing H2K27 trimethylation, an 

important determining factor for NHEJ repair (151) (Fig. 2).

The oncogenic metabolite 2-hydroxyglutarate (2-HG), which is highly synthesized in 

some tumors from α-ketoglutarate by a mutated version of isocitrate dehydrogenase 

1 (IDH1) (152), acts in altering DNA repair by epigenetic regulation. 2-HG inhibits 

lysine-specific demethylases such as KDM4A and KDM4B. Inhibition of KDM4B by 

2-hydroxyglutarate promotes basal H3K9 hypermethylation, which results in masking 

of heightened trimethylation near the vicinity of DNA damage sites. This suppresses 

recruitment of DDR factors at the damage site, subsequently impairing DNA repair (153). 

Interestingly, IDH1 gets frequently mutated in cancer, and has controversial reports in DDR 

and chemo-,radio-resistance (154) (155).

The glycolytic enzyme PKM2 remains overexpressed in various cancers, playing crucial 

roles in tumor development and progression (156). PKM2 furthermore acts in HR-mediated 

DNA repair. As a response towards DNA damage induced by ionizing radiation and 

oxidative stress, PKM2 is phosphorylated by ATM and retained within the nucleus (157), 

in turn leading to phosphorylation and activation of CtIP, promoting HR-mediated DNA 

repair (158). PKM2 also phosphorylates H2AX serine-139 in response to DNA damage, thus 

generating γ-H2AX and playing an integral part in DDR. The above reports highlight the 

intricate association between the altered metabolic landscape of cancer cells and modulation 

of DNA damage repair, which is functionally interlinked with immune and inflammatory 

responses.

SYNOPSIS AND FUTURE IMPLICATIONS

The metabolic milieu of cancer cells is a crucial determinant of therapeutic-resistance 

and tumor relapse. The outcome of rewired energy metabolism branches into myriad 

manifestations that a resistant cancer cell exhibit. The integrated findings on epigenetic 

and metabolic mechanisms in conjunction with the DNA damage repair can promote 

identification of novel strategies to epigenetically target this vicious metabolism-DNA repair 

axis of cancer. In fact, several epi-drugs targeting this axis are actively being assessed in 

clinical trials in breast cancer. Overall, this review aims to facilitate identification of novel 

therapeutic strategies that can combat altered metabolism-mediated acquisition of DNA 

repair capacity and therefore drug-resistance of cancer cells.
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Fig. 1: Therapeutic regimens aginst different breast cancer subtypes and therapy-resistance.
A. ER+ breast cancer. In estrogen receptor (ER)+breast cancer, tamoxifen is used as 

a major therapeutic agent. Here the PI3K-AKT-mTOR-pathway plays a major role in 

tamoxifen-resistance. Also, Hypoxia-inducible factor 1α (HIF1α) have estrogen-response 

element (ERE) on its promoter where estrogen hormone-receptor complex binds and triggers 

its expression. HIF1α promotes hexokinaseII (HKII) expression by binding to hypoxia-

response element (HRE) on its promoter. Elevated HKII leads to increased glycolysis, 

proliferation and subsequent acquisition of thearapy-resistance. B. HER2+ breast cancer. 
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A major targeting therapy for HER2+breast cancer is trastuzumab, resistance to which 

is mediated by alterations in the PI3K-AKT-mTOR pathway. C. Triple negative breast 
cancer (TNBC). Chemotherapy is the mainstay therapeutic-regiman for TNBC. The Wnt-

β catenin pathway plays a key role in acquisition of its chemo-resistance. β catenin 

promotes c-myc expression, which in turn induces mitochondrial biogenesis through MCL1, 

ultimately resulting in amplified oxidative phosphorylation (OXPHOS). Also HKII is 

elevated in TNBC, increasing glycolytic flux, further promoting cell proliferation and 

chemo-resistance.
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Fig. 2: Correlation between metabolic pathways and DDR-mediated therapeutic-resistance.
Chemo- and radiotherapy leads to DNA damage resulting in DSBs. Accumulation of 

reactive oxygen species (ROS) also leads to generation of DSB. Both free radical-

scavenging pathway and pentose phosphate pathway (PPP) play crucial role in facilitating 

DNA repair. The ROS-scavanging pathway neutralizes the ROS generated by chemo/

radiotherapy. On the other hand, increased PPP in resistant cells augments dNTP production 

and supply to the DNA damage repair (DDR) pathways, specially to homologous 

recombination (HR)-mediated DDR which requires high amount of dNTP. Glutamine 
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synthetase (GS), which converts glutamate to glutamine, is overexpressed in resistant cancer 

cells, leading to usage of glutamine in PPP promoting increased nucleotide-biosynthesis. 

The DDR protein BRCA1 induces HR-mediated DNA repair, NRF2 promotes both NHEJ 

and HR-mediated DNA repair. This metabolic pathways facilitates DNA repair (indicated by 

red line) in chemo/radio-damaged cancer cells, thus promoting therapy-resistance.
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