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Abstract 

Purpose  Bladder cancer (BLCA) is a prevalent malignancy. Dysregulated propionate metabolism, a key cancer 
factor, suggests a potential target for treating metastatic cancer. However, a complete understanding of the link 
between propionate metabolism-related genes (PMRGs) and bladder cancer is lacking.

Methods  From the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we gathered BLCA 
patient data, which was classified into distinct subgroups using non-negative matrix factorization (NMF). Survival 
and pathway analyses were conducted between these clusters. The PMRGs model, created through univariate Cox 
and least absolute shrinkage and selection operator (LASSO) analyses, was assessed for prognostic significance using 
Kaplan–Meier and receiver operating characteristic (ROC) curves. A comprehensive evaluation included clinical, 
tumor microenvironment (TME), drug sensitivity, and immunotherapy analyses. Finally, the expression of HSD17B1 
essential genes was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR), with further validation 
through Transwell, wound healing, colony-formation, and EDU assays.

Results  We discovered two distinct subcategories (CA and CB) within BLCA using NMF analysis, with CA demonstrat-
ing significantly better overall survival compared to CB. Additionally, six PMRGs emerged as critical factors associated 
with propionate metabolism and prognosis. Kaplan–Meier analysis revealed that high-risk PMRGs were correlated 
with a poorer prognosis in BLCA patients. Moreover, significant differences were observed between the two groups 
in terms of infiltrated immune cells, immune checkpoint expression, TME scores, and drug sensitivity. Notably, we 
found that suppressing HSD17B1 gene expression inhibited the invasion of bladder cancer cells.

Conclusion  Our study proposes molecular subtypes and a PMRG-based score as promising prognostic indicators 
in BLCA. Additionally, cellular experiments underscore the pivotal role of HSD17B1 in bladder cancer metastasis 
and invasion, suggesting its potential as a novel therapeutic target.
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Introduction
Bladder cancer (BLCA) comprises 3% of newly diagnosed 
cancer cases globally, standing as the eleventh most prev-
alent cancer type with an annual incidence of 573,000 
new cases [1]. The predisposing factors for BLCA encom-
pass genetic elements, environmental and work-related 
encounters, tobacco use, and conditions related to exces-
sive body weight [2]. Non-muscle-invasive BLCA exhib-
its a favorable prognosis, boasting an approximate 90% 
5-year overall survival (OS) rate. In contrast, metastatic 
BLCA is characterized by a markedly lower OS, falling 
below 6% [3]. Roughly half of individuals with clinically 
confined muscle-invasive BLCA encounter instances of 
disease recurrence and metastasis [4]. Hence, it is crucial 
to investigate biomarkers capable of accurately assessing 
patient prognosis.

The ability to metabolize propionate is a crucial aspect 
of a microorganism’s metabolic adaptability, enabling 
the utilization of carbon sources that generate propio-
nyl-CoA in various environmental and host settings [5]. 
Recent findings indicate that propionate promotes lipid 
accumulation in adipocytes and demonstrates a signifi-
cant correlation between serum propionate levels and 
human obesity [6]. Moreover, propionate exhibits antia-
poptotic marker inhibition and induces proapoptotic 
proteins at both the gene and protein levels, suggesting 
its potential as a therapeutic option for cervical cancer 
[7]. Studies have uncovered that disrupting propionate 
metabolism contributes to a pro-aggressive profile in 
breast and lung cancer cells, enhancing their metastatic 
capabilities [8]. However, a research gap remains con-
cerning propionate metabolism-related genes (PMRGs) 
in the context of BLCA onset and progression.

This study focuses on unraveling the role of PMRGs in 
BLCA pathogenesis. Leveraging comprehensive genomic 
datasets, such as those from TCGA and GEO, we aim 
to construct a robust PMRG gene model. This model 
promises to elucidate the intricate molecular landscape 
of BLCA and holds the potential to serve as a predictive 
tool and guide personalized therapeutic interventions for 
improved clinical outcomes.

Methods
Data collection
Obtain RNA-sequencing data and clinical annotations 
for 19 normal tissue specimens and 412 BLCA speci-
mens from the TCGA database (https://​portal.​gdc.​can-
cer.​gov/). Concurrently, retrieve the gene expression 
dataset GSE13507 [9], consisting of 256 BLCA samples, 
from the GEO repository (https://​www.​ncbi.​nlm.​nih.​gov/​
gds). Additionally, gather a set of 812 PMRGs (relevance 
score > 5) from the GeneCards database (https://​www.​
genec​ards.​org; Table S1).

Analysis of prognostic relevance and consensus clustering 
analysis
Initially, We used the ‘limma’ R package [10] to analyze 
PMRG differential expression in TCGA-BLCA and to 
identify significant genes. The merged TCGA and GEO 
datasets with survival data underwent univariate regres-
sion analysis using R packages “survival [11]” and “forest 
plot [12]” to identify prognostic genes. A circular plot vis-
ualized significant gene expression differences in normal 
and tumor tissues. Subsequently, we classified 662 tumor 
patients into subgroups based on 20 PMRGs using “Con-
sensusClusterPlus,” from Bioconductor [13] employing 
PCA, tSNE, and UAMP for accuracy. Kaplan–Meier 
curves were generated to compare survival outcomes 
among subtypes. Furthermore, immune-correlation 
analysis, GO analysis, and KEGG analysis were con-
ducted. Immune-correlation analysis studies how various 
immune factors relate to each other, shedding light on 
their roles in diseases and treatment strategies.

Development of a prognostic signature utilizing PMRGs
Patients from TCGA and GEO databases were ran-
domly split into control and validation groups (1:1 ratio). 
Lasso regression and multivariable analysis optimized 
the predictive risk model. The risk score for each sam-
ple was calculated using the following formula: coef-
ficient X1 * expression X1 + coefficient X2 * expression 
X2 + · · · · · · + coefficient Xn * expression Xn. The risk 
score for each sample was calculated using the coef-
ficients 1.005111879 of the regression model obtained 
and patients were categorized into low-risk and high-risk 
groups [14, 15]. Visualization depicted survival status, 
risk gene expressions, and scores across risk groups, with 
Kaplan–Meier curves illustrating OS rates.

Constructing and assessing a predictive nomogram
Through multivariate Cox regression analysis, we crafted 
a nomogram to depict the predictive factors succinctly. 
Internal validation ensued through calibration plots to 
verify the nomogram’s accuracy. Decision curve analy-
sis (DCA) was employed to evaluate clinical net benefits 
[16]. Boxplots were utilized to visually represent the cor-
relation between the scoring system and clinical baseline 
characteristics alongside pathological features.

Immune cell signature analyses
Initially, the CIBERSORT [17] algorithm within the R 
package CIBERSORT assessed the prevalence of 22 
tumor-infiltrating immune cells in BLCA samples. Sub-
sequently, we examined variations in immune cell infil-
tration between groups with high and low risk. Further 
analysis delved into visual representations of correlations 
among the 20 immune cells, the six hub genes, and risk 
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scores. Additionally, we employed the ESTIMATE [18] 
method to calculate the stromal score, immune score, 
and overall ESTIMATE score.

Drug sensitivity analysis
We utilized the R package “pRRophetic [19]” to forecast 
the IC50 values for frequently prescribed drugs in BLCA, 
discerning variations between high- and low-score 
groups. This assessment aimed to gauge the distinct sen-
sitivities to various chemotherapy drugs. Statistical sig-
nificance was established at a p value below 0.05, visually 
depicted through box plots.

Tumor immune single cell hub (TISCH) database 
and validation of the HSD17B1
Access RNA-seq data for single cells from the TISCH 
database (http://​tisch.​comp-​genom​ics.​org), an online 
resource dedicated to the tumor microenvironment 
(TME) [20]. The TISCH database, employed in studying 
TME heterogeneity across diverse datasets and cell types, 
was a valuable resource. The KM plotter dataset was 
utilized to validate the predictive risk model. Perform a 
comprehensive pan-cancer analysis for HSD17B1 using 
the TIMER database (http://​timer.​cistr​ome.​org) and 
evaluate its expression levels in both tumor and normal 
tissues (https://​www.r-​proje​ct.​org/). Verify the protein 
expression patterns of prognostic genes by consulting the 
HPA dataset, accessible at https://​www.​prote​inatl​as.​org/ 
[21].

Validation of HSD17B1 expression in BLCA samples
BCLA samples and adjacent tissues were procured from 
ten recently diagnosed BCLA patients at the First Affili-
ated Hospital of Nanchang University in Nanchang, 
China. Total RNA extraction was performed using Inv-
itrogen TRIzol reagent, and cDNA synthesis was accom-
plished using the Takara PrimeScript RT reagent Kit. 
Real-time quantitative PCR was employed for gene 
expression analysis, employing SYBR Green from Roche, 
Switzerland, with β-actin as an endogenous reference. 
Each reaction underwent at least three replications. The 
primer sequences used were HSD17B1_F: CCT​CTG​TGC​
TGG​ACG​TGA​AT, HSD17B1_R: GCT​GGC​GCA​ATA​
AAC​GTC​AT.

Cell culture and small interfering ribonucleic acid (siRNA) 
transfection
BLCA cell lines T24 and BIU were obtained from 
Procell Life Science & Technology Co., Ltd (Wuhan, 
China) and the cell bank of the Type Culture Collection 
of the Chinese Academy of Sciences (Shanghai, China), 
respectively. The cells were cultured in RPMI-DMEM 
or 1640 medium (Gibco, USA) supplemented with 10% 

fetal bovine serum at 37 °C in a humidified atmosphere 
with 5% CO2. Subsequently, cells were seeded into 
6-well plates at a concentration of 40% to 60%. SiR-
NAs targeting HSD17B1 and corresponding controls 
were synthesized by GenePharma Co., Ltd. (Shanghai, 
China) and transiently transfected using Lipofectamine 
2000 (Invitrogen) according to the manufacturer’s 
instructions. The specific sequences of the siRNAs were 
as follows: HSD17B1 siRNA-1 (5′-GCU​UCA​AAG​UGU​
AUG​CCA​CTT-3′) and HSD17B1 siRNA-2 (5′-GUG​
GGU​GGC​UAA​UUA​AGA​UTT-3′).

Cell migration was assessed through wound‑healing 
and transwell assays
T24 and BIU cells were seeded into 6-well plates and 
underwent siRNA transfection. Upon reaching a cell 
density exceeding 90%, a linear wound was created 
using a 200-μl pipette tip. Subsequently, the medium 
was substituted with a serum-free culture medium and 
placed in a cell culture incubator for incubation. Photo-
graphic documentation was conducted at 0 h and 24 h 
to compare scratch healing rates among various groups. 
In the Transwell assay, cells were suspended in serum-
free DMEM or RPMI-1640 medium and seeded onto 
the upper surface of Transwell chambers, while the 
lower chamber was filled with medium supplemented 
with FBS. After a 24-h incubation period, cells attached 
to the lower membrane were immobilized using 4% 
paraformaldehyde and subsequently stained with crys-
tal violet. Following this, optical microscope imaging 
was conducted to capture photographs of the cells.

Cell proliferation was evaluated via EDU 
and colony‑formation assays
Approximately 1000 transfected cells were seeded 
in 6-well plates containing culture medium supple-
mented with 10% FBS and incubated for 7–10  days. 
Subsequently, the cells were treated with 4% paraform-
aldehyde solution and fixed for 20  min, after which 
they were stained with 1% crystal violet solution for 
30 min. Additionally, transfected cells were plated at a 
density of 5000 cells per well in a 96-well plate. After 
24  h of incubation, the culture medium was replaced 
with EdU for an additional 2  h, and staining was per-
formed according to the instructions in the EDU assay 
kit (C10310-1, RiboBio). Imaging was conducted using 
a confocal microscope.

Statistical analysis
R software (Version 4.3.1, https://​www.r-​proje​ct.​org/) 
and GraphPad Prism 8 were employed for data analysis in 

http://tisch.comp-genomics.org
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this study. Statistical significance was determined by two-
sided p-values less than 0.05. Notably, all experiments 
were conducted thrice to ensure the reliability and con-
sistency of the findings.

Results
Identification of differentially expressed PMRGs 
and molecular subtyping
The entire protocol is delineated in Fig. S1. In the first 
step, a total of 812 PMRGs were retrieved from the 
GeneCard database (Table  S1). Subsequently, RNA-
seq data from the TCGA-BLCA dataset were retrieved, 
and a differential expression analysis was performed. 
Following integration with the GSE13507 dataset, 
169 differentially expressed PMRGs were identified 
(Fig.  1A and Fig. S2A). Clinical information from 537 
BLCA patients in the TCGA-BLCA database and the 
GSE13507 dataset was then integrated, and their sur-
vival data were utilized for univariate Cox regression 

analysis, resulting in the discovery of 20 PMRGs 
(Fig. 1B, C). To gain deeper insights into the functional 
role of PMRGs in BLCA, we employed the ‘Consensus 
Cluster Plus R program to assess the 20 PMRGs identi-
fied through univariate Cox analysis (Fig.  1D and Fig. 
S2B–G). Our analysis revealed the segregation of BLCA 
samples into two distinct subtypes when k = 2. Further-
more, survival analysis revealed a notable contrast in 
prognosis between these two subgroups (Fig. 1E). Nota-
bly, increased expression of the upper subset of PMRGs 
in cluster B was associated with a poorer prognosis in 
BLCA. Additionally, the efficacy of the non-negative 
matrix factorization method was validated through 
PCA, tSNE, and UMAP analyses (Fig. S2H–J).

Characterizing the biological properties of PMRG subtypes
In our analysis, we identified 18 differentially expressed 
genes between clusters A and B of PMRGs (Fig.  2A). 
Additionally, we employed the CIBERSORT algorithm. 

Fig. 1  Identification of differentially expressed PMRGs and molecular subtyping. A Heatmap of differentially expressed PMRGs. B Univariate Cox 
analysis demonstrated the correlation between propionate metabolism-associated genes and prognosis. C A circle plot illustrates the correlations 
among these PMRGs. D The consensus clustering in BLCA samples with k = 2. E Kaplan–Meier (KM) survival analysis of two subgroups
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We employed the CIBERSORT algorithm to estimate 
the levels of various cell infiltrations in BLCA samples, 
revealing significant distinctions in the proportions of 

immune cell and stromal cell infiltration ratios between 
clusters C1 and C2. Notably, cluster B exhibited higher 
levels of infiltration of activated B cells, CD4 and CD8 

Fig. 2  The functional analysis of PMRGs. A The 18 differential expressed genes between the PMRGs cluster A and B. B Boxplots depicting the 23 
immune signature ssGSEA scores of the PMRGs cluster A and B. C Difference distribution of clinicopathological features and ARGs expression 
among the two subtypes. D The gene set variation analysis (GSVA) of the differences in KEGG pathways within subgroups A and B. E, F GSEA 
between clusters A and B
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T cells, dendritic cells, eosinophils, macrophages, mast 
cells, natural killer T cells, neutrophils, regulatory T 
cells, and T helper cells, while cluster A showed abun-
dance in CD56dim natural killer cells and monocytes 
(Fig. 2B). Furthermore, the patterns observed in PMRGs 
cluster B were associated with tumor stages and grades 
(Fig.  2C). Using gene set variation analysis (GSVA), we 
investigated the disparate enrichment of KEGG pathways 
within subgroups A and B. Notably, a robust correlation 
was observed between the adverse prognosis of clus-
ter B and the heightened expression of associated path-
ways, including MAPK signaling, chemokine signaling, 
T cell receptor signaling, and NOD-like receptor sign-
aling pathways (Fig.  2D). Additionally, gene set enrich-
ment analysis (GSEA) revealed that enriched pathways 
such as granulocyte chemotaxis, external encapsulating 
structure, cytokine–cytokine receptor interaction, and 
toll-like receptor signaling pathway may also contrib-
ute to the poor prognosis of cluster B for BLCA patients 
(Fig. 2E, F).

Construction and validation of the PMRGs signature
531 patients diagnosed with BLCA from the TCGA-BLCA 
dataset and GSE13507 were randomly divided into a training 
group (n = 266) and a validation group (n = 265). Through ini-
tial univariate Cox analysis followed by LASSO analysis, over-
fit genes were effectively eliminated, as depicted in Fig. 3A, 
B. Subsequently, a multivariate Cox analysis was conducted, 
resulting in the identification of a prognostic signature 
comprising six PMRGs: SCD, GLP1R, MMP9, HSD17B1, 
RUNX2, and DMD. Utilizing the derived formula: risk 
score = (0.226 × SCD expression) + (− 0.334 × GLP1R expres-
sion) + (0.091 × MMP9  expression) + (0.152 × HSD17B1 
expression) + (0.219 × RUNX2 expression) + (0.322 × DMD 
expression), the risk scores for each patient were computed. 
As a result, the patients were grouped by the median risk 
score 1.005111879 into high- and low-risk categories. Cluster 
B exhibited higher risk scores than Cluster A (Fig. 3C), sub-
stantiating the poorer prognosis associated with Cluster B in 
BLCA patients. Kaplan–Meier survival analysis revealed a 
better prognosis for the low-risk group (Fig. 3D). To validate 
the robustness of these findings, the BLCA patients were 
further randomly divided into training and test cohorts. KM 
survival analysis on both cohorts consistently supported the 
earlier conclusions (Fig. 3E, F). Additionally, ROC curves for 
1-, 3-, and 5-year OS yielded areas under the curve (AUC) 
of 0.670, 0.690, and 0.684, respectively (Fig.  3G). Notably, 
these results were corroborated in both the train and test 
cohorts (Fig.  3H, I), underscoring the predictive accuracy 
of the established prognostic signature across varying time 
frames. Moreover, the expression levels of PMRGs, including 
SCD, MMP9, HSD17B1, RUNX2, and DMD, were notably 
elevated in high-risk patients, indicative of their association 

with poorer prognosis. Conversely, GLP1R expression exhib-
ited a protective effect as a prognostic predictor (Fig. 3J–L). 
In pursuit of precise survival risk predictions, we further 
investigated the efficacy of the risk signature in predicting 
BLCA progression. Our exploration into the relationship 
between the risk score and clinicopathological characteristics 
revealed significant distinctions among different groups con-
cerning age, grade, and TNM stage (all p < 0.05). However, no 
discernible correlation was observed between the risk score 
and gender (p > 0.05; Fig. S3A–F). These findings collectively 
emphasize the effectiveness of the established prognostic sig-
nature in predicting BLCA patient survival across different 
time points, highlighting its clinical relevance and potential 
utility in guiding patient management strategies.

Establishment of a nomogram
The outcomes of the multivariate Cox analysis under-
scored a significant correlation between the risk score 
derived from the propionate metabolism-related gene 
signature (PMRS) and prognosis, as illustrated in Fig. 4A, 
affirming PMRS as an independent prognostic determi-
nant. To refine prognostic evaluation, we devised a novel 
nomogram amalgamating PMRS with clinical features, 
showcased in Fig.  4B, which demonstrated commend-
able predictive accuracy validated by calibration curves 
(Fig.  4C). Furthermore, DCA underscored the favorable 
prognostic performance of the nomogram across 3- and 
5-year intervals (Fig.  4D, E). In summary, our findings 
accentuate the effectiveness of PMRS in precisely fore-
casting outcomes for BLCA patients, thereby furnishing 
crucial insights for clinical prognosis assessment.

Immune landscape
We conducted an evaluation and visualization of the 
proportions of 22 immune cell types in both high- and 
low-risk categorized patients, as depicted in Fig.  5A. 
Comparison of immune cell abundance revealed higher 
levels of T cells CD4 memory resting, T cells folli-
cular helper, and macrophages in high-risk patients. In 
contrast, memory B cells and NK cells activated were 
more prevalent in the low-risk group (Fig. 5B). Further-
more, correlation analysis unveiled inverse relationships 
between most immune cell types (Fig.  5C). Spearman 
correlation analyses highlighted significant associations 
between 6 molecular entities and immune cell composi-
tion (Fig.  5D and Fig. S3G–L). Particularly noteworthy 
was the strong positive correlation between neutrophils, 
M0 macrophages, and M2 macrophages with most genes, 
while T cells follicular helper and monocytes showed an 
inverse correlation (p < 0.05). In addition, TME scores 
based on stromal score, immune score, and estimated 
score of the high-risk group surpassed those of the 
low-risk group (Fig.  5E). In summary, our risk model 
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accurately predicts immune response activity in BLCA 
patients and provides valuable insights into the efficacy of 
immune checkpoint inhibition therapy.

Drug sensitivity
We explored differences in drug sensitivity between two 
BLCA patient groups based on PMRS scoring to improve 

Fig. 3  Establishment of a risk score signature based on PMRGs. A Plots of the coefficient profiles of six prognostic PMRGs. B The least absolute 
shrinkage and selection operator (LASSO) analysis identified six prognostic genes with tenfold cross-validation. C The risk score of clusters A and B. 
D–F The Kaplan–Meier survival curve of the OS rate in different subgroups of patients with BLCA. G–I 1-, 3-, and 5-year ROC curves of the all training 
and testing set. J–L The heat map of 6 PMRGs expression in each subgroup
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treatment outcomes. As depicted in Fig. S4A–I, the 
IC50 values of cyclophosphamide, dasatinib, and stauro-
sporine were lower in the high-scoring group compared 
to the low-scoring group, suggesting heightened sensi-
tivity to these drugs in the former. Conversely, the IC50 
values of afatinib, leflunomide, oxaliplatin, palbociclib, 
selumetinib, and trametinib were lower in the low-scor-
ing group relative to the high-scoring group, indicat-
ing greater sensitivity to these drugs in the latter. This 
nuanced understanding of drug sensitivity profiles offers 
valuable insights for optimizing treatment strategies tai-
lored to individual patient characteristics.

Single‑cell analysis and validation of the HSD17B1 
from external databases
Given the prognostic significance and distinctive dis-
tribution of HSD17B1 in BLCA tissues, we delved 
into its enrichment across specific cell types utilizing 

scRNA-seq data from the GSE145281_aPDL1 dataset. 
This analysis revealed 16 cell clusters and 5 cell types 
within BLCA tissues, as depicted in Fig. S5A–D, with 
corresponding marker genes delineated in Fig. S5E. 
Notably, HSD17B1 demonstrated significant enrich-
ment in CD4Tconv, CD8T, macrophage, and NK cell 
populations (Fig. S5F). To validate the expression pat-
terns of vital prognostic PMRGs, we leveraged the 
TISCH database to scrutinize HSD17B1 expression in 
both BLCA and pan-cancer contexts, as illustrated in 
Fig. S5G and I. Analysis using the KM plotter dataset 
unveiled an association between high HSD17B1 expres-
sion and poorer patient prognosis (Fig. S5H). Addi-
tionally, we corroborated these findings using the HPA 
database, which demonstrated elevated protein expres-
sion of HSD17B1 in BLCA compared to normal tissue, 
as showcased in Fig. S5J.

Fig. 4  An analysis of the predictive value of risk scores in BLCA patients from the TCGA and GEO datasets. A Assessment of clinical features 
and risk scores using a multivariate Cox analysis. B Predictive nomogram for survival over 1, 3, and 5 years based on risk groupings and clinical 
characteristics. ***P < 0.001. C Comparison of actual and predicted outcomes at 1, 3, and 5 years based on calibration curves. The DCA of risk scores 
and clinical features at 3 D and 5 E years
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Utilizing HSD17B1 as the core gene of the scoring system 
and conducting in vitro validation
We conducted PCR analysis on BLCA patient tissues, 
confirming its pronounced overexpression in tumor 
tissues (Fig.  6A). To verify successful transfection 
of S1 and S2 in T24 and BIU cells, PCR assessments 
were performed (Fig.  6B). Results from Transwell and 
wound-healing assays compellingly demonstrate a sig-
nificant reduction in the migratory capability of BLCA 
cells, directly attributed to suppressed HSD17B1 
expression (Fig. 6C, D). Interestingly, the knockdown of 
HSD17B1 did not significantly impact the proliferation 
of T24 and BIU cells, as evidenced by both colony for-
mation and EdU experiments (Fig. 6E, F). In summary, 
these findings unequivocally highlight the pivotal role 
of HSD17B1 in modulating the migratory behavior of 
BLCA cells.

Discussion
BLCA is a prevalent malignancy characterized by nota-
ble progression, significantly impacting patients’ qual-
ity of life [22]. The imperative for practical prognostic 
tools to steer treatment decisions and facilitate out-
comes in BLCA patients cannot be overstated. Over 

time, various gene predictive models associated with 
BLCA have emerged, spanning those linked to base-
ment inflammation [23], ferroptosis-related mecha-
nisms [24], telomere maintenance [25], and dendritic 
cell activity [26]. These models have collectively 
enriched our understanding of BLCA and its therapeu-
tic landscape. Despite these advancements, exploring 
propionate metabolism-related biomarkers in BLCA 
remains relatively uncharted territory. Notably, while 
predictive models related to propionate metabolism 
have been established for hepatocellular carcinoma 
[27], their application in BLCA has been sparse. Our 
study pioneers a novel initiative to address this gap by 
introducing a predictive model explicitly tailored to 
propionate metabolism-related risks in BLCA. Through 
this endeavor, we delineate essential biomarkers intri-
cately linked to propionate metabolism, paving the way 
for enhanced prognostic assessments and personalized 
treatment strategies in BLCA patients.

In this study, we utilized an integrated approach com-
bining both differential expression analysis and univari-
ate Cox regression analysis to identify PMRGs that are 
closely linked to prognosis in BLCA. Subsequently, we 
stratified BLCA patients into two distinct subgroups, 

Fig. 5  Tumor microenvironment cell infiltration. A–C An illustration of the fractions of 22 types of infiltrating immune cells for low and high-risk 
patients. D A relation between infiltrating immune cells and six prognostic PMRGs, along with the risk score. E TME scores between the low 
and high-risk patients
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Fig. 6  Functional verification of knockdown HSD17B1. HSD17B1 expression in bladder cancer tissues was detected using qPCR, 
and the interference efficiency of small interfering RNA (siRNA) was also validated (A, B). Effect of HSD17B1 knockdown on the migration of bladder 
cancer cells (C, D). Knockdown of HSD17B1 was followed by colony (E) and EdU (F) experiments in T24 and BIU cells
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denoted as Cluster A and Cluster B, with Cluster A 
exhibiting a notably higher survival rate compared to 
Cluster B. Notably, nearly all identified PMRGs displayed 
significantly elevated expression levels in Cluster B. 
Interestingly, our investigation into immune cell infiltra-
tion using ssGSEA revealed significantly elevated levels 
of T cells and macrophages within Cluster B compared 
to Cluster A. Among these, CD8+ T cells are pivotal in 
immune surveillance against infections and cancer, while 
macrophages, the predominant myeloid cell type in can-
cer, are believed to exert protumor functions predomi-
nantly [28].

In this investigation, we conducted an extensive anal-
ysis of 812 PMRGs. This meticulous process involved 
carefully selecting genes exhibiting distinct expression 
patterns and significant prognostic relevance, culminat-
ing in developing a comprehensive risk signature. The 
finalized set of PMRGs, comprising SCD, GLP1R, MMP9, 
HSD17B1, RUNX2, and DMD, was the foundation for 
constructing the risk signature. Notably, SCD emerged as 
a pivotal enzyme in lipid metabolism, with its expression 
intricately linked to malignant transformation, tumor 
proliferation, and OS [29–31]. Furthermore, in a BLCA 
xenograft model, the inhibition of SCD resulted in sub-
stantial suppression of tumor progression, underscoring 
its potential as a therapeutic target in BLCA management 
[32]. The GLP1R gene encodes a seven-transmembrane 
protein, acting as a receptor for GLP1 [33]. According to 
Toru Shigeoka et al., upregulation of GLP1R may inhibit 
prostate carcinoma growth by restraining cell cycle pro-
gression [34]. Elevated MMP-9 levels are commonly 
observed in cancer tissues compared to normal adjacent 
tissues, promoting cancer cell migration and invasion 
[35, 36]. Studies suggest increased MMP-9 expression 
in mouse bladder tissues exposed to MC-LR may raise 
BLCA risk [37]. RUNX2, a member of the RUNX fam-
ily, regulates crucial developmental processes, including 
differentiation, apoptosis, proliferation, and cell lineage 
specification [38]. Initially identified for its role in osteo-
genesis, RUNX2’s oncogenic functions have been linked 
to osteosarcoma progression [39]. In BLCA, downregula-
tion of RUNX2 inhibits cell growth, promotes apoptosis, 
and reduces migration and invasion. These findings sug-
gest that RUNX2 may serve as a prognostic biomarker 
and therapeutic target in BLCA [40]. The DMD gene, 
responsible for encoding the DMD protein, is notably 
abundant in humans [41]. This protein comprises two 
subunits, α and β, both of which have been associated 
with involvement in tumorigenesis [42]. HSD17B1 plays 
a critical role in various cancers. Research suggests it 
regulates active estrogen biosynthesis, promoting breast 
cancer cell proliferation [43]. In non-small cell lung can-
cer, increased HSD17B1 expression facilitates cancer 

progression [44]. Clinical studies indicate high HSD17B1 
expression is associated with advanced pathologic N 
stage in BLCA, suggesting its potential as a prognostic 
biomarker [45]. As studies increasingly highlight the sig-
nificance of HSD17B1 in various tumors, its exploration 
in BLCA remains limited. Consequently, we aimed to elu-
cidate the specific role of HSD17B1 in BLCA. Our find-
ings reveal upregulated mRNA expression of HSD17B1 
in BLCA tissues, with knockdown experiments demon-
strating a notable inhibition of BLCA cell migration and 
invasion.

Furthermore, we developed a nomogram that combines 
the risk score associated with propionate metabolism 
and additional clinical parameters, demonstrating excel-
lent performance in prognostic predictions for BLCA 
patients. This novel risk signature offers an innovative 
approach to forecasting the survival outcomes of BLCA 
patients. Calibration curves across the entire dataset are 
closely aligned with the 45° angle, confirming the robust 
performance of the nomogram.

The TME plays a pivotal role in driving the proliferation 
and progression of cancer cells [46]. Our investigation 
revealed a significant disparity in the immune cell infil-
tration pattern within the TME, distinguishing between 
high-risk and low-risk BLCA patients based on the cal-
culated risk score. Specifically, the high-risk group exhib-
ited a notable increase in the abundance of CD4 memory 
resting T cells, follicular helper T cells, and macrophages 
compared to the low-risk group. It is evident that the gut 
microbiota and short-chain fatty acids such as propionate 
play crucial roles in shaping the generation of both effec-
tor and regulatory T cells through epigenetic and meta-
bolic mechanisms [47]. Dysbiosis of the gut microbiota 
and subsequent propionate production have promoted 
cancer progression by inducing autophagy in cancer cells 
and M2 polarization in macrophages [48]. Our investiga-
tion identified significant disparities in the TME between 
high-risk and low-risk BLCA patients, as determined 
by the risk score. Previous studies have highlighted the 
predictive role of TME in immunotherapy outcomes, 
particularly in non-muscle-invasive BLCA [49]. Our 
findings underscore the importance of TME profiling in 
BLCA prognosis and treatment decision-making. Future 
research should focus on elucidating the intricate inter-
play between TME characteristics, PMRGs, and immu-
notherapy to optimize patient outcomes in BLCA. To 
enhance clinical outcomes, we analyzed drug sensitivity 
to identify different responses between high and low-risk 
groups. Our results suggest that high-risk individuals 
may respond well to conventional chemotherapy drugs 
like cyclophosphamide but may be resistant to lefluno-
mide and oxaliplatin. This highlights the potential for 
combination chemotherapy to benefit high-risk BLCA 
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patients, enabling more precise and personalized treat-
ment approaches.

However, our study is not without limitations. Firstly, 
its reliance on public databases means the absence of 
clinical cohorts, hindering direct clinical validation of 
the model’s reliability. Secondly, while we observed the 
impact of HSD17B1 on BLCA cell proliferation and 
migration, we did not delve deeper into its regulatory 
mechanisms. Additionally, the retrospective and indirect 
nature of predicting immune therapy responses under-
scores the necessity for prospective trials involving larger 
patient cohorts to enhance the reliability of the scoring 
system.

Conclusion
Our study highlights the importance of propionate 
metabolism in BLCA and introduces a reliable predic-
tive model for predicting patient outcomes and guiding 
immunotherapy and drug selection. Additionally, we 
identify HSD17B1 as a promising therapeutic target for 
BLCA treatment. These findings have meaningful impli-
cations and could improve BLCA patients’ treatment 
outcomes.
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