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Genes from ancient families are sometimes involved in the convergent evol-
utionary origins of similar traits, even across vast phylogenetic distances.
Sulfotransferases are an ancient family of enzymes that transfer sulfate
from a donor to a wide variety of substrates, including probable roles in
some bioluminescence systems. Here, we demonstrate multiple sulfotrans-
ferases, highly expressed in light organs of the bioluminescent ostracod
Vargula tsujii, transfer sulfate in vitro to the luciferin substrate, vargulin.
We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous
to known LSTs of fireflies or sea pansies; animals with distinct and conver-
gently evolved bioluminescence systems compared to ostracods. Therefore,
distantly related sulfotransferases were independently recruited at least
three times, leading to parallel evolution of luciferin metabolism in three
highly diverged organisms. Reuse of homologous genes is surprising in
these bioluminescence systems because the other components, including
luciferins and luciferases, are completely distinct. Whether convergently
evolved traits incorporate ancient genes with similar functions or instead
use distinct, often newer, genes may be constrained by how many genetic
solutions exist for a particular function. When fewer solutions exist, as in
genetic sulfation of small molecules, evolution may be more constrained to
use the same genes time and again.
1. Introduction
The convergent evolutionary origins of similar traits sometimes employ existing
genetic elements that originated much earlier. This pattern of parallel evolution
is often called ‘deep homology’, especially when similar but convergently
evolved traits express shared transcription factors. For example, limbs in
some distantly related phyla express the transcription factor distalless [1]. Con-
vergently evolved traits also may recruit ancient genes with shared enzymatic
functions. For example, convergently evolved instances of biomineralization
use α-carbonic anhydrases, an ancient gene family found across animals [2]
that facilitates conversion of carbon dioxide to bicarbonate, crucial in regulating
pH and mineral deposition. Similarly, convergently evolved cases of photosym-
biosis involve vacuolar H+-ATPase (VHA), another ancient gene family [3,4],
which plays a vital role to acidify intracellular compartments, essential for
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nutrient transport and cellular metabolism. Finally, convergently evolved cases of bioluminescence may have recruited ancient
dehalogenases [5,6]. Characterizing new examples where homology differs across levels of biological organization will build
the knowledge necessary to answer fundamental evolutionary questions, such as what types of traits, genes or evolutionary
histories are more likely to lead to the use of ancient elements in novel systems (e.g. [7]).

We hypothesize sulfotransferases, a family of enzymes shared across vast phylogenetic distances, are used in convergently
evolved bioluminescence systems of distantly related species. Fireflies, sea pansies and ostracods convergently evolved biolumi-
nescence systems and produce light using structurally diverse organs or tissues [8–10], different luciferin substrates [11], and non-
homologous, autogenic, luciferase enzymes [12,13] (electronic supplementary material, figure S1). Despite these vast differences,
these taxa use the same biochemical mechanism, sulfation—the transfer of sulfate (SO3

−) from the donor 30-phosphoadenosine-50-
phosphosulfate (PAPS) to a substrate [14]—to modulate the chemical state of luciferins [15–18] (electronic supplementary material,
figure S2). Sulfation may create chemical forms of the substrate that are better for storage by making them less susceptible to non-
specific oxidation [16–19], or may create an activated form of the substrate for the luciferase reaction [20]. Sulfation is catalysed by
luciferin sulfotransferases (LSTs) in fireflies [17] and sea pansies [18], but less is known about ostracod sulfotransferases. Although
previously published results do show crude protein extracts from the ostracod Vargula hilgendorfii can reversibly sulfate luciferin,
thereby suggesting sulfation as a mechanism for luciferin metabolism in the organism [16], the genetic sequences of LSTs in
ostracods have yet to be identified and functionally characterized.

Here, we provide evidence of independent recruitment of paralogous genes from a single, ancient gene family—sulfotrans-
ferases—leading to parallel evolution of luciferin sulfation in phylogenetically distant organisms with distinct bioluminescence
systems. We use gene expression analyses, recombinant protein expression, and in vitro biochemical assays to identify and func-
tionally test the five most highly expressed sulfotransferase genes from the light-producing organ of the cypridinid ostracod
V. tsujii and report multiple sulfotransferases capable of sulfating vargulin in vitro. Our results, taken together with functional
evidence of LSTs previously published on sea pansies and fireflies [17,18] provide an example of an ancient and pervasive
gene family that was recruited multiple times independently for a similar purpose.
2. Material and methods
(a) Reference transcriptome assembly for Vargula tsujii
We constructed a reference transcriptome for V. tsujii by pooling RNA from 88 specimens across various instars (see electronic supplemen-
tary material, table S1 and figures S3 and S4A). We extracted RNA using TRIzol® for sequencing at the BYU Sequencing Centre using
PacBio Sequel II (IsoSeq) using two transcript size fractions: 4–10 kb selected using BluePippin (Sage Science) and a non-size-selected frac-
tion. Next, we processed circular consensus sequencing reads with the IsoSeq v3 pipeline (https://github.com/PacificBiosciences/IsoSeq)
and combined them with Illumina short reads (SRR21201581, [21]) using rnaSPAdes with flags –rna, –only-assembler and –trusted-
contigs [22]. We clustered sequences with ≥ 95% identity using cd-hit-est [23,24].

(b) Sulfotransferase candidates from the upper lip of Vargula tsujii
To quantify gene expression, we collected RNA from light organs (upper lips) of five male and four female ostracods maintained in culture
[25] (electronic supplementary material, figure S4B). After extracting RNA with Trizol, we used the Genomic Sequencing and Analysis
Facility at UT-Austin for library preparations and Tag-Seq profiling using Illumina HiSeq 2500, SR100 [26]. We processed Tag-Seq
reads (https://github.com/z0on/tag-based_RNAseq) by mapping to our reference transcriptome with Bowtie2 v. 2.3.4.3 [27] (electronic
supplementary material, table S2). For protein sequence identification, we translated sequences with TransDecoder v. 5.5.0 and used
HMMER v. 3.2.1 (hmmer.org) to find complete protein sequences containing a sulfotransferase domain (Pfam ID: PF00685) of e-value≤
1 × 10−3.

(c) Cloning, expression and purification of Vargula tsujii sulfotransferase candidates
We synthesized DNA sequences for candidate LSTs ST1–5 (electronic supplementary material, figure S5) as gBlocks (Integrated DNA
Technologies) and cloned them into bacterial expression vectors (ST3 and ST4 into pQE80L; ST1, ST2 and ST5 in pET SUMO to improve
solubility [28] (electronic supplementary material, figures S6 and S7) using Gibson assembly (electronic supplementary material, table S3).
These vectors allow protein expression with N-terminal hexahistidine tags for purification using metal-affinity chromatography.
We propagated plasmid constructs in E. coli NEB 10-beta cells and verified by Sanger sequencing (Genewiz, South Plainfield, NJ, USA).

We expressed proteins in E. coli BL21 cells via induction with IPTG, followed by incubating cultures at room temperature for 18 h. We
purified proteins by incubating lysed cell extracts with Ni-NTA agarose beads, then using gravity-flow metal-affinity chromatography to
elute hexahistidine-tagged proteins. We concentrated eluates by spin filtration (10 kDa molecular weight cut-off ) and assessed protein
purity via SDS-PAGE (electronic supplementary material, figure S7 and table S4) and densitometry. We quantified purified protein
yields using a Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA) calibrated with a bovine serum albumin standard. These
methods successfully purified all five proteins with > 90% homogeneity (electronic supplementary material, table S5), and we prepared
proteins freshly for each experiment.

(d) Sulfotransferase functional assays
We tested for sulfotransferase activity using two functional assays. First, we used a commercially available sulfotransferase assay (R&D
Systems, Minneapolis, MN, USA) that probes for the formation of 30-phosphoadenosine-50-phosphate (PAP), a by-product of sulfation, by
measuring the increase in absorbance at 620 nm following the enzymatic hydrolysis of PAP into phosphate, which binds to malachite
green. In this assay, the phosphatase used to hydrolyse PAP into phosphate has some activity with PAPS, so we used an enzyme-free
negative control and kept PAPS the same between experiments and control.

https://github.com/PacificBiosciences/IsoSeq
https://github.com/z0on/tag-based_RNAseq
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Figure 1. Based on two different assays, multiple candidate sulfotransferases from Vargula tsujii, especially ST3 and ST5, exhibit luciferin sulfation activity. (a)
Although mass spectroscopy would be the most direct demonstration of vargulin sulfation, we illustrate a schematic of the chemistry underlying the two
assays we use here. (b) Results of the absorbance-based sulfotransferase assay that probes for the conversion of PAPS (sulfate donor) to PAP. Our positive (+)
control used 50 µl of 10 ng µl−1 Golgi-resident PAP-specific 30 phosphatase and 50 µM PAP to confirm phosphatase activity and a negative (–) control used
50 µl of 10 ng µl−1 coupling phosphatase, 100 µM luciferin, 200 µM lithium-free PAPS, but lacks any sulfotransferase. The test reactions used 50 µl of
10 ng µl−1 coupling phosphatase, 100 µM luciferin, and 200 µM lithium-free PAPS, and 10 µM sulfotransferase. Three genes showed the highest activity (ST3–
5) and ST1 also showed significant activity under these conditions. (c) Results of the bioluminescence assay that probes for a decrease in light emission due
to sulfation of luciferin, which decreases luciferin available for oxidation. Negative control reactions (grey bars) lack PAPS. Test reactions (blue bars) included
10 µl of 10 µM ostracod luciferin and 100 µM PAPS with 1 µl of each purified protein (final concentrations ST1: 15 µM, ST2: 22 µM, ST3: 51 µM, ST4: 32 µM,
ST5: 25 µM). Variations across the negative controls likely arise from the spontaneous oxidation of luciferin. Compared to control PAPS-free reactions, two candidates
(ST3, ST5) exhibit a significant decrease in light production indicative of sulfation activity sufficient to modulate bioluminescence in vitro. ST2 may have some activity,
but was not statistically significant with Welch’s test.
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The second assay quantifies decreases in luminescence to test each candidate protein’s ability to convert luciferin to its sulfated form,
which luciferase does not oxidize. For ostracod luciferase, we transfected CHO cells with a pCMV Cypridina luciferase vector, and purified
the protein with metal-affinity chromatography (electronic supplementary material, figure S8). We first mixed each purified protein with
ostracod luciferin and PAPS, incubated at 25°C for 3 h, then quenched reactions by heat inactivation. After cooling, we added the diluted
reaction product to purified ostracod luciferase and immediately measured bioluminescence. We compared luminescence between test
and enzyme-free reactions with a decrease in light emission indicating less luciferin available for light production due to conversion to
its sulfated form. In addition to luciferin sulfation assays, we used an established p-nitrophenol sulfation assay to evaluate sulfotransferase
candidates for their ability to sulfate p-nitrophenol, a common substrate for many sulfotransferases, including those unrelated to
bioluminescence (electronic supplementary material, figure S9).

(e) Phylogenetic analyses
We estimated a phylogenetic tree for sulfotransferase candidates from V. tsujii and a tree of functionally tested sulfotransferases from the
literature (as of March 2023) (electronic supplementary material, table S6 and references). For aligning protein sequences, we used MAFFT
(v. 7.429) [29], trimmed the alignment of functionally tested sulfotransferases using trimAl (v. 1.4) [30] with the flag-gappyout, inferred
maximum-likelihood phylogenies using IQ-TREE (v. 1.6.12) [31], assuming the best-fit substitution model (LG + I + G4 for candidates,
LG + F + R5 for functionally tested, LG + R5 for trimmed alignment of functionally tested) according to Bayesian information criterion,
as determined with ModelFinder [32], and performed ultrafast bootstrap approximation [33] with 1000 bootstrap replicates. To midpoint
root the phylogeny and visualize bootstrap values and expression values, we used the R packages phytools (v. 1.5-1) [34] and ggtree
(v. 3.9.0) [35].
3. Results
(a) Functional assays of sulfotransferase genes from the light organ of Vargula tsujii
From Tag-seq on light-producing organs of V. tsujii (N = 9), we identified 40 genes, expressed in at least one individual, that con-
tain domains with significant similarity to sulfotransferase domains, with nine expressed in all individuals. We selected the five
(ST1-5) most highly expressed candidate sulfotransferases in light organs (electronic supplementary material, figure S10) for
recombinant expression and performed two functional assays to test for luciferin (vargulin) sulfation activity (figure 1b,c).
Based on the commercial absorbance-based assay that probes for sulfotransferase-dependent conversion of PAPS to PAP, we
found three candidates have the highest fold-change (five- to sixfold) in activity (ST3, ST4 and ST5) with ST1 also showing stat-
istically significant change in absorbance under the conditions used (figure 1b). Based on the bioluminescence assay, which
measures the decrease in light emission caused by sulfating luciferin, we infer the largest magnitude of luciferin sulfation in
ST3 and ST5 (figure 1c).

(b) Ostracods, fireflies and sea pansies sulfate luciferin by using homologous genes
Genes of ostracods, fireflies and sea pansies convergently evolved sulfation capabilities (figure 2), probably independently recruit-
ing sulfotransferase genes as a mechanism for metabolizing luciferin. Our phylogenetic analysis of functionally characterized LSTs
are most closely related to sulfotransferases of non-luminous animals. We find firefly LST to be most closely related to a gene from
a non-luminous silk moth Bombyx mori that sulfates multiple substrates. The LST of the sea pansy R. muelleri is most closely related
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Figure 2. Maximum-likelihood phylogeny of functionally tested sulfotransferases. Luciferin sulfotransferases from luminous organisms are denoted by coloured
branches (firefly = green, ostracods = light blue, sea pansies = purple). Invertebrate sulfotransferases are highlighted in grey. Coloured squares (green = firefly
luciferin, light blue = ostracod luciferin for genes with strong activity in both assays herein, purple = sea pansy luciferin, orange = p-nitrophenol, dark blue =
other) indicate functionally demonstrated substrates for each sulfotransferase; grey squares indicate molecules that are not sulfated by the respective sulfotransferase;
white squares are untested. *Sulfates the luciferin coelenterazine at a different site compared to sea pansy sulfated luciferin [36]. Accession numbers are listed on
the right. Ultrafast bootstrap values are represented by coloured circles at each node.
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to sulfotransferase genes from a non-luminous tick (Ixodes scapularis) and a nematode (Caenorhabditis elegans). The five candidate
LSTs from the ostracod V. tsujii we tested form a clade sister to genes from non-luminous B. mori, and D. melanogaster, and ST3
from firefly, which does not sulfate luciferin [17]. The close relationship between LSTs to genes from non-luminous animals or
genes lacking the ability to sulfate luciferin, strongly support convergent recruitment of LSTs in fireflies, sea pansies and ostracods
(figure 2; electronic supplementary material, figure S11).
4. Discussion
Convergently evolved traits may independently deploy members of deeply conserved gene families, a pattern called deep hom-
ology [1]. Although criticized for imprecision and incompleteness [37,38], the term deep homology highlights the importance of
ancient evolutionary histories in shaping new traits [39]. Here, we report sulfation in bioluminescence systems may have evolved
by independently recruiting homologous genes from the ancient sulfotransferase gene family present across animals. We provide
functional evidence for multiple sulfotransferases capable of sulfating luciferin in the ostracod V. tsujii and synthesize our results
with those previously described in fireflies and sea pansies.

Although establishing the genetic basis of organismal functions requires gene knockdowns, multiple lines of evidence point to
sulfotransferase involvement in the bioluminescence of ostracods. Our results demonstrate multiple sulfotransferase genes of
V. tsujii catalyse a reaction to sulfate luciferin, but determining how many using statistical significance depends on the assay
(figure 1). The commercial assay that probes for PAP indicates four genes with statistically significant sulfation of luciferin
(with ST3–5 showing especially strong differences between test and control) and the ‘bioluminescence assay’ that probes directly
for luciferin sulfation indicates two genes (ST3 and ST5). The statistical difference between assays is likely due to specific exper-
imental conditions, with the bioluminescence assay requiring a lower concentration of luciferin (10 µM) than the absorbance assay
(100 µM), due to substrate inhibition of luciferase (electronic supplementary material, figure S12). Nevertheless, results from both
assays support multiple sulfotransferases highly expressed in the light organ—especially ST3 and ST5—are capable of sulfating
luciferin. Forthcoming work indicates ST3 is the only sulfotransferase with significant co-expression with luciferase across multiple
stages and tissues [40]. Based on this co-expression with luciferase, we speculate ST3 could be the primary sulfotransferase used in
bioluminescence. Coupled with published results from crude protein extracts of V. hilgendorfii that sulfate luciferin [16], we
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hypothesize ST3 and possibly at least one other sulfotransferase (ST5) have important organismal functions in luminous ostracods,
perhaps for use as a storage form of the easily oxidized luciferin.

A similar confluence of evidence suggests sulfotransferases are important to bioluminescence systems of fireflies and sea pan-
sies. In fireflies, one sulfotransferase, highly expressed in lanterns, can catalyse formation of sulfoluciferin from luciferin and the
reverse reaction [17]. This suggests an organismal function for an LST in fireflies, again perhaps for creating a storage form of the
substrate [17]. In the anthozoan R. muelleri, sulfated luciferin is converted into luciferin, bound to a luciferin-binding protein, and
released upon addition of calcium to react with luciferase [41]. Recently, two sulfotransferase isoforms, similar in sequence to the
native protein, were cloned, expressed, and shown to have sulfotransferase activity [18]. Because preparations from Renilla yield
much higher amounts of luciferin sulfate compared to the amount of luciferin bound to luciferin-binding proteins [42], the sulfated
form probably acts as a storage form of the luminous substrate in the animal [43]. Therefore, despite difficulties in knocking down
specific sulfotransferases in ostracods, fireflies or sea pansies, the combination of native preparations, gene expression studies and
heterologous expression suggests these animals use sulfotransferases (electronic supplementary material, figure S13) in their
respective bioluminescence systems.

Despite a growing realization of deep homology in evolutionary history, discovering homologous components in biolumines-
cence systems is arresting because of the distinctness of the other components. First, even the small-molecule substrates catalysed
by sulfotransferases are different: the luciferin of ostracods is vargulin, fireflies is D-luciferin, and sea pansy is coelenterazine. The
luciferases also evolved from non-homologous gene families [12,13,44]. At the organismal level, bioluminescence is created by very
different structures. Ostracod bioluminescence is secreted outside the body by the upper lip [45], firefly light is created in an
abdominal structure called the lantern, and in sea pansies, light production occurs in specific cells called photocytes, located in
the endoderm of two types of polyps. The presence of homologous sulfotransferases with similar functions along with non-hom-
ologous luciferases and distinct substrates provides a striking example of the often varied, cobbled-together elements of evolved
complex systems. As more examples accumulate of cases of ancient genes independently recruited for similar functions, a logical
pattern begins to emerge. Deeply homologous genes tend to have generally useful functions, such as sulfating small molecules in
the case of sulfotransferases. Especially when there are few other solutions—as there is no other demonstrated mechanism for sul-
fation besides sulfotransferases—evolution may recruit the same gene family time and again, even in animals as distantly related
as cnidarians and arthropods. This highlights how constraints—in this case determined by the number of biological solutions—
may bias the options available to evolution [46,47].
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