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Abstract

Type 1 diabetes is an autoimmune disorder in which the immune system attacks and destroys 

insulin-producing islet cells of the pancreas. Although islet transplantation has proved to be 

successful for some patients with type 1 diabetes, its widespread use is limited by islet donor 

shortage and the requirement for lifelong immunosuppression. An encapsulation strategy that can 

prevent the rejection of xenogeneic islets or of stem cell-derived allogeneic islets can potentially 

eliminate both of these barriers. Although encapsulation technology has met several challenges, 

the convergence of expertise in materials, nanotechnology, stem cell biology and immunology is 

allowing us to get closer to the goal of encapsulated islet cell therapy for humans.

Type 1 diabetes (T1D; also known as juvenile-onset diabetes) represents 5–10% of 

the diagnosed cases of diabetes, corresponding to more than 1.5 million individuals in 

the United States and 20 million worldwide1. The disease results from the destruction of 

insulin-producing β-cells by the patient’s overactive immune system. Insulin injections, 

the most common treatment modality, do not perfectly simulate insulin secretion from 

β-cells; consequently, a patient’s blood glucose levels fluctuate despite close monitoring and 

frequent adjustments of insulin doses. Chronic hyperglycaemia leads to irreversible tissue 

and organ damage, and hypoglycaemia can be acutely life-threatening2.

More recently, the replacement of lost insulin-producing cells using islet transplantation has 

proved to be an effective therapy for some patients with T1D3,4, allowing for tighter blood 

glucose control. Enthusiasm for islet transplantation was initially sparked by a series of 

human islet transplants carried out at the University of Alberta, Canada, during which seven 

patients received ~800,000 human islets prepared from two or three pancreases per recipient, 

through portal vein injection5. This resulted in insulin independence in seven patients for 

an average of 1 year. Subsequent results from a worldwide, multicentre clinical trial of the 

Edmonton Protocol, conducted by the Immune Tolerance Network, indicated that 16 of 44 

islet transplant patients (44%) became insulin-free for 1 year, with 10 patients experiencing 
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complete graft loss6. Importantly, although the short-term survival of the grafts is up to 80%, 

less than 20% of the grafted patients remain insulin-independent by 5 years2.

A recent clinical trial evaluated the safety and effectiveness of a standardized human 

pancreatic islet product in patients in whom impaired awareness of hypoglycaemia (IAH) 

and severe hypoglycaemic events (SHEs) persisted despite medical treatment7. IAH and 

SHEs can cause substantial morbidity and mortality in patients with T1D. It was found that 

transplanted human pancreatic islet product provided glycaemic control, the restoration of 

hypoglycaemia awareness and protection from SHEs at 2 years in more than 70% of patients 

with previously intractable IAH and SHEs7.

Unfortunately, donor shortage and the need for lifelong immunosuppression to prevent 

rejection of the transplanted cells (BOX 1) limit the widespread application of islet 

transplantation. The required chronic systemic immunosuppression puts patients at risk 

of organ damage, infection and malignancies. Although two strategies have the potential 

to provide an unlimited supply of β-cells for transplantation — the use of xenogeneic 

islets and human embryonic stem cell (hESC)-derived islets8 — both have their own 

risks. Xenogeneic tissue induces potent rejection responses that cannot be safely and 

effectively controlled by anti-rejection medicine, and hESC-derived β-cells often contain 

undifferentiated stem cells, which may pose some regulatory concerns in terms of teratoma 

formation (although this has not been seen in recent studies)9. Moreover, the efficient 

generation of mature pancreatic β-cells with complete functional capabilities has not yet 

been accomplished10.

The use of an encapsulation device, to provide a physical barrier between transplanted 

β-cells and their recipients, has emerged as a promising approach to overcome some 

of these challenges by eliminating the need for immunosuppression11-13 (FIG. 1). 

The key function of an encapsulation device is to create an environment that allows 

for normal insulin secretion in response to fluctuating blood glucose levels, while 

maintaining cell viability through sequestration from the immune system and effective 

nutrient and waste exchange. An ideal islet encapsulation device should therefore: 

provide ample blood supply to sustain survival and function of sufficient islet mass for 

the maintenance of normoglycaemia; exhibit appropriate insulin and glucose kinetics 

to achieve normoglycaemia; be biocompatible; serve as an immune barrier to prevent 

sensitization and rejection; and contain any potentially tumorigenic cells.

With the goal of creating immune-protected β-cells, various microencapsulating and 

macroencapsulating approaches have been developed over the past several decades14, each 

of which has its own advantages and limitations. The fundamental distinction between 

microdevices and macrodevices is a matter of scale: the microencapsulation approach uses 

many microscale capsules with each one containing a single cell or islet, which maximizes 

surface area to volume ratios and promotes improved nutrient exchange15. However, there 

is limited control of membrane thickness and pore size, and as islets are individually 

encapsulated, thousands of microcapsules are required for each transplant, and capsule size 

makes live imaging and tracking a considerable challenge. Conversely, macroencapsulation 

devices house many cells or islets. These larger devices allow for greater control over 
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membrane parameters, such as pore size and porosity, but are plagued by limited nutrient 

and oxygen diffusion and cell response owing to the device thickness and large device 

reservoirs. In some cases, depending on the device design, there can be alterations in the 

kinetics of insulin release that might cause serious problems, such as hypoglycaemia after 

eating or with exercise16,17. In addition to these challenges, the chemistry and mechanical 

properties of materials that are typically associated with macroencapsulation devices can 

lead to a foreign body response and subsequent device failure from fibrotic encapsulation18.

Extensive efforts have recently focused on investigating the ideal cell encapsulation 

approach, including encapsulation material, site of transplantation, configuration of 

encapsulation device, and methods to improve vascularization and immune modulation. 

The key current challenges that are associated with the development of cell encapsulation 

technologies include biocompatibility, cell viability (as well as oxygenation and nutrient 

access), and immune protection or modulation. In this Review, we discuss the challenges 

associated with the clinical translation of cell encapsulation technologies and approaches 

that aim to overcome these barriers, highlighting systems that are currently in the clinic.

The emergence of islet cell encapsulation

One of the first examples of the use of encapsulation in the treatment of diabetes involved 

the xenotransplantation of human insulinoma tissue using membranous bags into rats in 

1933 (REF. 19). However, it was not until a series of experiments in the early 1950s, 

which examined the survival rates of allotransplanted tissue into an extravascular space with 

and without a cell-impermeable encapsulating membrane, that the field of immuneisolated 

transplantation became established20-23. These studies demonstrated that the use of an 

encapsulating membrane prevented immune cell contact and the activation of the direct 

antigen presentation pathway, thereby prolonging the survival of the non-vascularized 

transplanted tissue, despite it receiving fewer nutrients.

Microencapsulation

In 1964, Chang et al.24 first described cell microencapsulation, and in 1980, Lim and 

Sun25 applied microcapsules to diabetes treatment, demonstrating prolonged isograft islet 

survival using alginate-polylysine-poly-ethyleneimine microcapsules. Post-transplantation, 

the encapsulated islets survived up to 3 weeks, compared with 8 days for unencapsulated 

islets without immunosuppression25.

The microcapsule material itself was improved in 1984 by O’Shea et al.26, who removed the 

polyethyleneimine component and designed alginate as the outer layer of the microcapsule. 

The use of alginate demonstrated substantial improvement, and in one of the five animals 

used, the microencapsulated islets remained viable for the duration of the 365-day 

experiment. An additional advantage of the new microcapsules was increased microcapsule 

strength. Efforts to further improve the biocompatibility of alginate microcapsules involved 

decreasing the impurities and increasing the guluronic acid to mannuronic acid ratio27,28.

Over the next several decades, research focused on designing microencapsulation materials 

with sufficient durability and biocompatibility, many of which demonstrated success in 
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small animals26,27,29,30. For example, Wang et al.31 evaluated more than 1,000 combinations 

of polyanions and polycations with regards to suitability for cell encapsulation. They 

identified a polyelectrolyte complexation process using five different polymers, which 

enabled independent control over capsule size, wall thickness, mechanical strength and 

permeability.

Since then, many encapsulation strategies have been shown to be effective in rodents. 

Souza et al.32 reviewed over 60 more encapsulation studies that were carried out in 

rodents between 2000 and 2010 and found that the best reported survival was 100 days 

for alginate encapsulated islets transplanted intraperitoneally without immunosuppression, 

and unencapsulated islets transplanted into the liver were able to survive 164 days with 

immunosuppression. However, Souza et al. did not consider several studies in their analysis, 

such as those by Duvivier-Kali et al.33,34, which reported microencapsulation with high-

mannuronic acid (high-M) alginate crosslinked with BaCl2, allowing prolonged survival of 

syngeneic and allogeneic transplanted islets in diabetic BALB/c and NOD mice for 

more than 350 days. The normalization of glycaemia in the transplanted mice was associated 

with normal glucose profiles in response to intravenous glucose tolerance tests.

Macroencapsulation

The earliest macroencapsulation approaches used extravascular chambers, which were 

developed by Algire, Prehn and Weaver in the 1950s, containing transplanted tissue21-23. 

During the 1970s, Millipore Corporation produced a commercially available extravascular 

transplantation chamber using the Algire approach14. These membranes typically had pore 

sizes of 450 nm, a size that was sufficiently small to prevent direct cell–cell contact 

and which was therefore promising for allotransplants. Studies by Algire and colleagues 

demonstrated improved cell viability when encapsulated in these membranes20,35,36. 

Although many of the initial experiments involved syngeneic cells, transplant failure 

occurred nonetheless, owing to fibroblastic overgrowth of the graft and chamber, 

highlighting the importance of biocompatibility of the chamber to transplant success14.

A series of compelling animal studies was conducted by Baxter Healthcare in the late 1990s, 

using a device that consisted of two membranes sealed at all sides with a loading port37,38. 

The membrane was designed to be robust and to encourage host vascularization, as well as 

allograft immune protection. Neovascularization at the membrane–tissue interface occurred 

in several membranes that had pore sizes large enough to allow complete penetration by 

host cells (0.8–8 μm pore size). When the vascularization of the membrane–tissue interface 

of 5 μm pore-size polytetrafluoroethylene (PTFE) membranes was compared with 0.02 μm 

pore-size PTFE membranes, it was found that the larger pore membranes had 80–100-fold 

more vascular structures. The increased vascularization was observed even though the larger 

pore membrane was laminated to a smaller pore inner membrane to prevent cell entry into 

the prototype immunoisolation device. This significantly higher level of vascularization was 

maintained for 1 year in the subcutaneous site in rats.

Another macroencapsulation study demonstrated that islet allografts transplanted into the 

epididymal fat pad of streptozotocin-induced diabetic mice could attain normoglycaemia 

that lasted up to 12 weeks39. However, this study raised the issue of the practicality of 
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having diffusion-dependent macroencapsulation with large islet masses. In addition, some of 

the devices failed owing to a considerable amount of fibrosis around the macrocapsule, 

leading to numerous attempts to create more biocompatible cell encapsulation devices.

Studies have also been conducted in larger animal species, including dogs and non-

human primates (NHPs). In one canine study, microencapsulated islets were transplanted 

intraperitoneally, and, using C-peptide analysis, the survival of grafts was found to be up to 

726 days40. This long-term survival was attributed to the careful selection of high-quality 

capsules, ensuring that the capsules did not have macroscopic holes or cellular protrusions 

(FIG. 1c). Poorly encapsulated islets were rapidly rejected at a rate similar to unencapsulated 

islets, although the higher-quality encapsulated islets lasted 6 months41. Another study 

demonstrated the ability of microencapsulated islets to reduce insulin requirement42. 

Microcapsules placed intraperitoneally in NHPs reduced exogenous insulin requirement to 

36% at 12 weeks and to 43% at 23 weeks compared with controls42.

Macroencapsulation devices have demonstrated some success in large animals, although 

the results have not been consistent. In NHPs, porcine islets placed within an alginate 

macrocapsule transplanted subcutaneously were found to provide normoglycaemia for up to 

6 months, compared with 2 weeks for porcine islets within alginate microcapsules placed 

under the kidney capsule41. Another approach, using alginate sheets containing islets — 

known as the Islet Sheet Device — showed some promising results in preclinical studies 

but also highlighted the challenges that are associated with maintaining sheet planarity43. 

The overall thickness of the Islet Sheet (250 μm) was chosen to maximize nutrient diffusion. 

In one of their key studies, allogeneic islet equivalents in Islet Sheets were sutured to 

the omentum of dogs at the time of pancreatectomy. Fasting euglycaemia was maintained 

for 84 days and islets within alginate sheets were recovered from the interior of these 

capsules, suggesting that allogeneic islet tissue survived for the duration of the study and 

was responsible for maintaining fasting euglycaemia. This work highlighted the importance 

of maintaining adequate nutrient diffusion for maintaining cell viability and function.

Together, these preclinical animal studies have guided the field with regard to the optimal 

choice of cells, encapsulation material and useful functional measures in vivo. However, 

they have also highlighted several challenges that must be addressed for the successful 

translation of encapsulation approaches into the clinic.

Overcoming challenges to human translation

The key challenge to human translation is promoting and maintaining the survival of 

transplanted islets for an extended period of time14 (FIG. 1d). Islets must be delivered 

such that they have access to the required nutrients for survival, for which oxygen is often 

the limiting factor, while also achieving sufficient mass to sense blood glucose and secrete 

insulin that can be distributed throughout the host. In addition, T1D is an autoimmune 

disease, and the transplantation process and cell source can further induce immune responses 

that can compromise engraftment and function. Finally, the number of allogeneic donor 

islets available for transplantation is limited and the potential of alternative cell sources 
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is being pursued. We discuss below strategies and approaches to overcome these key 

challenges, some of which have enabled encapsulation devices to enter the clinic.

Strategies to maintain cell viability

Design of encapsulation material.—The choice and design of encapsulation materials 

can enhance engraftment and promote islet survival post-transplantation. In contrast to 

unencapsulated islets44, encapsulated islets are typically delivered extrahepatically, with 

transplantation sites that include the intraperitoneal cavity, subcutaneous space and the 

omentum45-48. A challenge to engraftment is the host response to the material, which can 

lead to a fibrotic response that can exacerbate mass transport limitations, and the material 

choice or chemistry can modulate the extent of fibrosis.

Finding a material that can simultaneously achieve biocompatibility, immunoisolation 

and a suitable environment that minimizes stress on the islets is therefore desired. The 

design of microcapsules has so far focused on biocompatibility, as well as on achieving 

immunoisolation, while allowing sufficient nutrient availability. However, the design that 

optimizes these parameters may compromise the environment surrounding the cells and may 

negatively affect cell behaviour. In addition to biocompatibility, nutrient availability and 

immune protection, pancreatic β-cell function is also highly dependent on the surrounding 

matrix environment and organization49. In native islets, cell–cell communication is essential 

to provide appropriate insulin release after food intake. Even paired β-cells secrete more 

than twice the amount of insulin than a single cell50. Previous studies have shown that 

insulin production per cell increases with three-dimensional organization and optimal cluster 

size51,52. Thus, the inability to independently control cell environment from membrane 

permeability will continue to present challenges for achieving therapeutic success of 

microencapsulated cells.

In the search for optimal encapsulation materials, many types of natural and 

synthetic polymers are being explored. Although alginate has been the predominant 

microencapsulation material of choice owing to availability, cost and ease of production, 

variability in alginate production has led to inconsistencies in endotoxin content and purity, 

which has affected biocompatibility53. Efforts to further improve the biocompatibility of 

alginate microcapsules have involved decreasing impurities and increasing the guluronic 

acid to mannuronic acid ratio27,28. Other researchers examined the reproducibility of 

alginate-polylysine microcapsules and explored either their coating with a polyethylene 

glycol (PEG) hydrogel or manufacturing the microcapsules from a different material, such 

as a polyacrylate29,30 or silica54. Other natural materials, such as collagen, chitosan, gelatin 

and agarose, have also been investigated; however, these materials are more difficult to 

fabricate for optimal pore size and often have some immunogenicity.

Recently, chemically modified alginates — such as triazole–thiomorpholine dioxide 

(TMTD) alginate — have been identified that resist implant fibrosis in both rodents 

and NHPs55. These materials were shown to provide long-term glycaemic correction of 

a diabetic, immunocompetent animal model using human SCβ-cells for 174 days56,57. 

Currently, there is no consensus on the best material to use for microencapsulation, although 

alginate systems are predominately used owing to their in vivo biocompatibility. However, 
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all alginate systems are not the same. One of the key considerations is whether the capsule 

material may be reactive, thereby triggering complement and activating leukocytes. Rokstad 

et al.58 showed that polycation-containing APA microcapsules (calcium beads coated with 

PLL and alginate) and PMCG microcapsules (formed by polyelectrolyte complexation 

between sodium alginate (SA)/cellulose sulfate (CS) with polycation poly(methylene–

co-guanidine) hydrochloride (PMCG) and calcium cations) triggered complement and 

leukocyte activation, but alginate microbeads consisting of only alginate and divalent cations 

did not provoke complement reactions58. This demonstrates the need to closely examine all 

of the chemical constituents of the microcapsules.

A wider range of materials has been investigated for macroencapsulation. As these devices 

are typically crafted from prefabricated membranes or films, material composition has 

ranged from polymers, such as ePTFE38 and polycaprolactone (PCL)18, to inorganic 

materials such as titania and silicon59. Although the inorganic membranes (silicon and 

titania) have advantages in terms of their tight pore size distribution and their thinner and 

more precisely controllable membrane thickness, these materials are rigid and thus are 

limited in terms of the macrocapsule configurations that one can achieve59. In addition, 

increasing evidence suggests that if they are not surface modified, rigid materials are more 

prone to fibrotic encapsulation60. For the polymeric-based devices, the biocompatibility and 

ability to promote vascularization have primarily driven the choice of material. Both PTFE 

and PCL have been shown to induce limited fibrosis and to exhibit good vascularization, 

allowing for better cell viability18,38.

The volume of material and islets delivered can also affect transplanted islet survival. 

Indeed, large delivery volumes can lead to aggregation that further exacerbates mass 

transport and can result in central necrosis of islet clusters within a few days of 

transplantation61. Strategies are being developed to provide a thin, or conformal, coating 

to the islet to minimize the amount of material for transplantation and, correspondingly, the 

distance from the islet to the host tissue62.

With the advent of sophisticated micro-manufacturing and nano-manufacturing techniques, 

it is becoming increasingly possible to ‘engineer’ the membrane with precise morphologies, 

in order to optimize engraftment. The hypoxic environment around the device, combined 

with the material properties and surface topography can lead to the endogenous secretion 

of angiogenic factors63. Attributes such as the size, length and density of pores can now 

be engineered to control the diffusion and exclusion of specific molecules. These attributes 

are important for a membrane-based device, which seeks to allow certain molecules to pass 

through but to block immune components. As a point of reference, globular proteins range 

in diameter between 2 nm and 10 nm, whereas organic metabolites are between 0.5 nm 

and 1 nm in diameter64,65. Immunological cells, such as macrophages and leukocytes, are 

6–10 microns in diameter so they cannot pass through membranes with submicronsized 

or nanometre-sized channels15. To achieve this size scale, silicon micromachining has 

been used to produce macrocapsules with uniform and well-controlled pore sizes, channel 

lengths and surface properties15. This work showed that membranes with 20 nm pore sizes 

could maintain cell function and reduce key immune components, and 66 nm membranes 

led to the loss of cell function. Controlled pore size has also been demonstrated using 
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other inorganic materials, such as alumina66. Although control over pore size has shown 

differences in cell functionality in published work15, it is important to view this parameter in 

the context of the device composition and its overall geometric configuration. Despite many 

studies, the optimal pore size for a microencapsulation or macroencapsulation membrane 

remains unclear.

More recently, a nano-porous thin-film cell encapsulation device from PCL was developed 

using a nanotemplating technique18. Although it still maintained flexibility, the material was 

engineered to have precise nanoscale pores and showed cell viability in allogeneic mouse 

models for up to 90 days. The lack of foreign body response, in combination with rapid 

neovascularization around the device, demonstrates the promise of using this technology 

for cell encapsulation. Another macroencapsulation device that uses microfabrication 

technology is called the Nanogland. It consists of an outer membrane with parallel 

nanochannels (3.6–40 nm) and perpendicular microchannels (20–60 microns) surrounding 

islets. The nanochannels are designed to provide immunoprotection and the microchannels 

are thought to help with engraftment. Subcutaneous implantation of the Nanogland with 

human islets in mice showed the survival of implants for more than 120 days67. The defined 

architecture was hypothesized to improve both vascularization and immune protection in 
vivo; however, long-term glycaemic control has not yet been evaluated.

Facilitating nutrient and oxygen transport.—The functionality of cell-based devices 

has been limited by inadequate oxygen delivery owing to a lack of immediate angiogenesis 

after implantation57,68,69. It is well known that insufficient oxygen levels lead to cell 

apoptosis, particularly for highly metabolic cells such as β-cells that reduce insulin 

production under low oxygen tension70,71. Pancreatic islets, as highly metabolic cells, pose 

an especially difficult challenge for encapsulation technology. The delivery of sufficient 

oxygen requires diffusion from the surrounding blood vessels to the device, across 

the immunobarrier membrane, and then through the interior of the device to the cells 

themselves. The volume of cells that can occupy the device is constrained by oxygen supply 

limitations in the interior of the device. To enable sufficient oxygen diffusion and thus 

prevent cell death, the device diameter can be no more than a few hundred microns72. This 

limits the geometry of an encapsulation device in order to load enough cells. For example, 

a hollow fibre device with a diameter of 200 microns would need to be 1,700 cm long to 

support the viability of 250,000 IE63. Studies by the Papas group73,74 have suggested that 

the maximum number of cells is 1,000 IEQ for 1 cm2 of surface area, with the oxygen 

entering from both sides of a device. It is therefore crucial to consider oxygen requirements 

a priori to designing the encapsulation device and to develop ways in which to improve 

oxygenation.

As encapsulation devices are often implanted or injected into avascular spaces, one must 

try to limit the amount of hypoxia that cells experience when first introduced into the 

body. Designing the device with appropriate porosity and dimensions, as well as high 

surface to volume ratios, will help in part. However, this approach may not fulfil the 

oxygen needs for transplanted cells. Prevascularization of the transplant site75,76 has been 

encouraging for enhancing islet engraftment. A catheter was subcutaneously implanted and 

removed after 4 weeks to initiate and terminate a foreign body response that creates a 
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space lined with neovessels. Transplantation of islets into the space enabled the reversal of 

diabetes76. The transplantation of co-encapsulated pig islets with adipose or bone marrow 

mesenchymal stem cells improved islet survival and function in vitro, and oxygenation and 

neoangiogenesis post-transplantation77.

Additional targeted methods include facilitating more rapid vascularization through the 

delivery of growth factors78,79, the incorporation of oxygen carriers within biomaterials80 

and the in situ generation of supplemental oxygen81-84. Encapsulation devices in 

development by Theracyte and Sernova (see below) have a membrane or a series of 

rods that promote vascularization, and, upon vessel ingrowth, islets are delivered into the 

pouch (Theracyte) or into space cleared by the removal of the rods (Sernova). Mouse 

syngeneic islets and porcine autografts implanted within these devices into the subcutaneous 

space have been shown to induce normoglycaemia for extended periods of up to 100 

days46-48. Localized delivery of angiogenic factors has been used to increase vascularization 

and enhance islet engraftment and function45,85,86. Alternatively, modulating the immune 

response at the site of implantation can promote effective vascularization87,88.

More recently, the localized generation of oxygen has been used. One approach is to 

insert calcium peroxide within polydimethylsiloxane disks for use as an oxygen-generating 

biomaterial57. By encapsulating solid peroxide within a highly hydrophobic biomaterial, a 

diffusional barrier is created that is capable of modulating the release of oxygen for more 

than 40 days. The geometry and dimensions of the disk, as well as the calcium peroxide 

loading, can be manipulated to achieve the desired oxygen release kinetics.

Immunomodulatory approaches

The innate immune system is the initial barrier with the potential to induce cell damage 

following transplantation89. Encapsulation of islets within biomaterial devices has the 

potential to ameliorate these responses to promote survival post-transplantation, and to 

thereby facilitate long-term islet function.

Immobilized ligands to enhance immunoprotection.—Several cell surface 

molecules have been associated with the establishment of immune privilege by manipulating 

T cell function at the local site90-92. These include Fas ligand (FasL), TNF-related apoptosis-

inducing ligand (TRAIL) and CD200. Ligand–receptor ligation and the subsequent 

engagement of cell death pathways initiate activation-induced cell death (AICD), playing 

a pivotal part in immune homeostasis and self-tolerance92. The presentation of FasL 

has been most extensively studied as a means to eliminate T effector cells that would 

normally target the graft. The co-transplantation of FasL-overexpressing myoblasts with 

islets has restored euglycaemia without the need for sustained immunosuppression93. More 

recently, a FasL protein has been engineered that has been used to modify cells before 

transplantation, which, combined with short-term rapamycin treatment, yielded long-term 

engraftment of allogeneic and xenogeneic islets94. The use of FasL has been shown to 

be highly effective and potent, and represents an opportunity to investigate the complex 

biology that is elicited by the presentation (concentration, and immobilized versus soluble) 

on the relevant cell types within the various tissues being used for islet transplantation. 
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Immobilized peptides have similarly been used to protect islets against the cytotoxic effects 

of diffusible factors95-98.

This approach has also been applied to encapsulation. For example, immobilization of a 

peptide that is inhibitory to the cell surface interleukin-1 (IL-1) receptor maintained the 

viability of cells that were encapsulated within PEG-based hydrogels that were exposed to 

combinations of cytokines, including IL-1β, tumour necrosis factor (TNF) and interferon-

γ (IFNγ)95. These peptide-modified hydrogels could efficiently protect encapsulated cells 

against β-cell-specific T cells and supported glucose-stimulated insulin release by islets in 
vitro95.

Drug-releasing and cytokine-releasing scaffolds or capsules.—The material used 

as the vehicle for cell encapsulation and transplantation can also be engineered to release 

factors for dampening local inflammation and creating immune-privileged sites99. Cytokines 

(such as transforming growth factor-β (TGFβ) and IL-10 (REFS 100-102)), chemokines 

(such as CCL2 (also known as MCP1) and CXCL12 (also known as SDF1)103,104), cellular 

enzymes (IDO1 (REF. 105)) and prostaglandins (LTB4 and PGE2 (REFS 106-108)) are 

among the factors that have been locally delivered either to attenuate the local inflammatory 

response, through directly polarizing the cells towards an anti-inflammatory response, or to 

recruit suppressive cell types. The localized delivery of CXCL12 from alginate-encapsulated 

islets has been shown to support long-term allogeneic and xenogeneic islet transplantation 

without systemic immune suppression109. CXCL12 has the capacity to repel effector T cells 

while recruiting regulatory T cells (Treg cells) and to provide a pro-survival signal 

for β-cells. Similarly, islets transduced to express CCL22 induced the prolonged protection 

of islet allografts, maintaining euglycaemia in 75% of recipients for 80 days110. CCL22 

expression was associated with an increased frequency of Treg cells, and the absence of 

antidonor antibodies. In addition, short-term release of TGFβ that was localized to the islet 

graft resulted in fewer infiltrating inflammatory immune cells and promoted the longer 

survival of transplant islet allografts111. Scaffolds can be engineered to release factors alone 

or in combination to maximally attract and/or induce suppressor cell phenotypes that can 

attenuate inflammatory responses.

Material chemistry and topography for immunomodulation.—The surface 

topography of the encapsulation device can modulate immune responses at the host–implant 

interface112. Porous materials promote vascularization and less fibrous tissue encapsulation 

relative to non-porous biomaterials. Porosity on the scale of 30–40 μm has been shown 

to modulate the polarization of macrophages, leading to fewer foreign body giant cells 

(FBGCs) and enhanced tissue repair113. Nanotopography has also been shown to modulate 

the immune response, with reductions in the extent of inflammatory macrophages114. 

Similarly, surface alignment of nanofibres can reduce the host immune reaction and can 

generate a thinner fibrous capsule compared with random fibres and films115. The fibre 

diameter also has the potential to modulate the release of pro-inflammatory cytokines116. 

For microencapsulation capsules, dimensions have an important role in the inflammatory 

response. For example, spheres with a diameter in the range of 1.5–2.5 mm had a 

significantly decreased foreign body response compared with smaller diameter spheres (<1 
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mm)117. However, the benefits of the decreased response with an increased capsule diameter 

must be balanced with the limitations of the volume of material that can be delivered.

Cell co-transplantation approaches.—The co-delivery of cells that are capable of 

modulating immune responses is being investigated as a means to provide protection 

both locally and potentially at distal sites. The use of mesenchymal stem cells 

(MSCs) is promising, based on their ability to modulate the local immune response, 

such as macrophage activation and T cell phenotype, in the context of alloimmune 

responses113,118-121.

MSCs have promoted the regeneration of pancreatic islets through an ability to restore 

the balance between T helper 1 (TH1) and TH2 responses122. One caveat to cell-

mediated therapies is that there can be source-dependent variability in the efficacy of 

immunomodulatory properties. MSCs modulate myeloid leukocytes and lymphocytes that 

are involved in the immune response through multiple mechanisms, including direct cell–

cell contact and indirect contact through cytokines and signalling molecules113,118-121,123. 

Relative to the drug-delivery strategies, transplantation of MSCs results in the secretion of 

numerous proteins that modulate a response113,119. MSCs have also been demonstrated to 

reduce inflammation and to confer tolerance to cell transplants119,123. Similarly, MSCs co-

transplanted with allogeneic cells suppressed T cell activity and improved graft survival124. 

The co-encapsulation of MSCs with syngeneic islets and subsequent intraperitoneal 

transplantation has been shown to improve graft function in murine models relative to 

mice transplanted with encapsulated islets alone125. Clinical trials involving MSC delivery 

are currently recruiting, with the initial purpose of demonstrating safety and tolerability of 

autologous MSCs. Subsequently, MSCs will be infused immediately after islet autograft to 

determine whether glycaemic control can be improved.

Treg cells have also been co-transplanted to promote the long-term survival and function 

of transplanted cells without systemic immunosuppression126,127. Two types of CD4+ Treg 

cells, thymic-derived natural Treg cells (tTreg cells) and Treg cells induced in the periphery 

(pTreg cells) in response to antigen, have been reported to promote peripheral tolerance128. 

The innate ability of Treg cells to induce tolerance provides a viable platform on which 

to develop cell-based therapeutics for the treatment of autoimmune and alloimmune 

responses. Multiple mechanisms are used by Treg cells to reduce effector T cells (Teff 

cells) and dendritic cell (DC) activity, including modulating DC activity with co-stimulatory 

receptors, competition for antigen-presenting cells (APCs) with Teff cells, and release of 

cytokines129. Treg cells are reported to affect their immunosuppressive actions through 

the secretion of TGFβ, IL-10, IL-35 and galectin-1, and through cell–cell interactions 

involving glucocorticoid-induced TNFR-related protein (GITR), cytotoxic T lymphocyte-

associated protein 4 (CTLA4), CD39, CD73 and lymphocyte activation gene 3 (LAG3)128. 

In transplanting Treg cells, the choice of polyclonal Treg cells relative to antigen-specific Treg 

cells, the antigen specificity, and the dosage remain open questions as Treg cell therapeutic 

trials are being designed130,131.

Although polyclonal Treg cells can be more readily produced132,133, preclinical data indicate 

that antigen specificity substantially improves suppressor function134. Furthermore, selecting 
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the correct antigen specificity for expansion is not obvious given the complex immune 

setting of autoimmune T1D and allogeneic islet transplantation. Antigen-specific Treg cells 

co-transplanted with islets within diabetic mice prevented autoimmune rejection and allowed 

the restoration of normoglycaemia126. Interestingly, although the transplanted Treg cells 

were antigen specific, they recruited Treg cells with alternative specificities to islet grafts. 

Furthermore, the local delivery of Treg cells also protected cells at distal sites, indicating 

the potential for systemic protection with localized delivery. As with the encapsulation of 

MSCs, the encapsulation of Treg cells may similarly be able to modulate the local immune 

response to promote engraftment and long-term function.

Identifying replenishable cell sources

Given the limited number of allogeneic donor islets available for transplantation, several 

alternative sources of islet cells are currently being investigated. Porcine islets have the 

potential to provide sufficient islet numbers, and have been effective in NHP models that 

are provided with systemic immunosuppression135,136. Indeed, wild-type porcine islets 

have been isolated, transplanted intrahepatically to NHP models and shown to fully 

reverse diabetes137-145. However, intrahepatic transplantation of islets can induce an instant 

blood-mediated inflammatory reaction (IBMIR), which limits prolonged islet survival146. 

Encapsulated porcine islets have been shown to support graft survival for at least 6 months 

in NHPs41,147, and a second transplantation after the initial graft dysfunction provided 

glucose control for an additional 18 weeks in two recipients. These findings are consistent 

with independent reports from multiple groups that have transplanted non-encapsulated 

islets in the presence of immunosuppression in NHP models, in which long-term survival 

exceeding 6 months was achieved136,137,148,149. At least one group has combined porcine 

islet encapsulation with immunosuppressive co-stimulatory blockade in mouse models, with 

measurable levels of porcine C peptide and near-normal in vivo glucose tolerance tests 

for more than 450 days150. Porcine islets, however, pose a risk for the transmission of 

infections, of which porcine endogenous retroviruses are a particular concern. However, 

this risk is likely to be low, and emerging gene-editing technologies can further reduce the 

risk151. Gene editing can also be tailored to the transplantation mechanism, with intraportal 

islet xenografts benefiting from the expression of anticoagulant and anti-inflammatory 

transgenes, whereas cytoprotective transgenes are likely to be more relevant for encapsulated 

islets151,152. Pig islets that were genetically engineered so that they do not express the 

major antigens that are associated with rejection and do not secrete immunomodulatory 

factors, have been shown to promote islet survival and the maintenance of euglycaemia135. 

Neonatal porcine islets (NPIs) are also attractive given their resistance to hypoxia, human 

pro-inflammatory cytokines and hyperglycaemia, and their ability to differentiate and 

proliferate153. The transplantation of NPIs normalized blood glucose levels and provided 

a robust response to a glucose tolerance test.

Recent reports on the generation of insulin-producing cells from hESCs have demonstrated 

their potential as a cell source56,154-157. However, hESCs must be differentiated before 

implantation, and, so far, mature β-cells have not yet been successfully generated in 
vitro. However, several milestones have been achieved with the development of culture 

systems that enable hESCs to form definitive endoderm158, with subsequent development 
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through pancreatic endoderm to endocrine cells that are capable of synthesizing pancreatic 

hormones159. These endocrine cells are able to develop into glucose-responsive insulin-

secreting cells after implantation into mice160. Subsequently, the Kieffer laboratory built 

on these procedures to produce pancreatic progenitors in vitro that could normalize blood 

glucose levels in diabetic mice after approximately 120 days157. The transplantation of 

these cells within a Theracyte device has demonstrated the potential for survival and 

subsequent maturation towards a mature β-cell following transplantation161-164. The Kieffer 

group recently published a longer in vitro culture protocol by which hESCs develop into 

immature insulin-producing β-cells that responded to glucose challenge in vitro and that 

induced normoglycaemia within 40 days156. The Melton154 and Hebrok155 laboratories 

also reported a culture system for generating insulin-producing cells from hESCs that 

can normalize hyperglycaemia in diabetic mice. Furthermore, encapsulation of these 

hESC-derived immature β-cells within alginate-based hydrogels and transplantation into 

the intraperitoneal space in immune-competent mice rapidly established euglycaemia that 

persisted for 25 weeks without the use of immunosuppressive therapies56. The use of 

embryonic cell sources is attractive owing to their potential to create cell banks for which 

culture conditions can be standardized to produce a consistent cell product. Human induced 

pluripotent stem cells (hiPSCs) remain a compelling cell source156, as they could avoid the 

need for immunosuppression. However, the standardization of procedures for the generation 

of cells that would be required for regulatory approval may be both challenging and costly. 

Recently, antral stomach enteroendocrine cells were converted to insulin-positive cells 

that possessed molecular and functional hallmarks of pancreatic β-cells165. Bioengineered 

stomach spheres were able to control blood glucose levels and it was postulated that the 

number and size of transplanted stomach spheres could be manipulated to control β-cell 

numbers.

Importantly, the delivery system must be designed for the specific cell source. 

The immunological response to porcine islets relative to allogeneic cells will 

substantially differ, with the xenogeneic system potentially requiring more substantial 

immunomodulation locally and/or systemically135. Furthermore, the material requirements 

for the transplantation of adult islets may differ relative to the systems for the transplantation 

of neonatal or progenitor cells. The neonatal and progenitor cells are not fully mature, and 

the environment created by the materials will need to support their in vivo maturation to 

fully mature β-cells166. The potential for immature cells within the transplant may present 

safety concerns that should be addressed, such as through the ability to retrieve the implant 

should issues arise.

First-generation designs in the clinic

A small number of encapsulation systems have been applied clinically (TABLE 1), all of 

which have demonstrated good safety profiles, although it is too early to evaluate functional 

outcomes14.

Microcapsules formed from alginate and with a diameter in the range of 300–400 μm have 

been used to encapsulate allogeneic islets, with a modest capsule thickness to reduce mass 

transport limitations. These capsules were delivered intraperitoneally and have been able to 
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reduce exogenous insulin requirements102,167-169. Clinical trials have initially focused on 

confirming safety with the xenotransplantation of 10,000 to 20,000 IEQ per kg body weight 

of alginate-encapsulated porcine islets, and have subsequently monitored HbA1C levels 

and determined the frequency with which patients were unaware of hypoglycaemic events. 

However, a challenge with intraperitoneal delivery is that oxygen levels in the peritoneum 

are lower than the levels necessary for maximal islet function63.

More recently, Beta-O2 developed the β Air device to provide exogenous oxygen (FIG. 1b). 

The disc-shaped device consists of two major components — an islet module containing 

islets encapsulated in an alginate hydrogel slab, which is separated from the implantation 

pocket, and a gas chamber, which is separated from the islet module170. The device 

is implanted subcutaneously, with access ports placed on the dorsal side of the animal 

between the scapula, connected by short polyurethane tubes, with the access ports used for 

daily filling with oxygen171. Islets within the central cavity receive oxygen by diffusion 

through gas-permeable membranes. A case report for this device in a single patient reported 

that islets retained function for the 10-month study duration, with a modest reduction in 

exogenous insulin83.

Other encapsulation devices that have reached clinical trials include the Theracyte device 

and the Sernova Cell Pouch14,46, which aim to pre-vascularize a subcutaneous site before 

the administration of the cells through a port. Enhancing microvasculature has the potential 

to significantly enhance the survival of encapsulated islets172. The Theracyte device is 

immunoisolating173-175, and is composed of a two-membrane pouch. The outer membrane 

has a 5 μm pore size to support cell infiltration and to promote angiogenesis throughout the 

device. The inner membrane has a pore size diameter of 0.4 μm for immunoisolating the 

islets adjacent to the vasculature. The original Theracyte device has been tested by multiple 

academic researchers and has evolved through multiple companies, including Living Cell 

Technologies, BetaLogics, and ultimately ViaCyte14 (FIG. 1a). ViaCyte has since developed 

a system known as Encaptra, which has a single membrane that is immunoisolating to 

protect the transplanted cells from direct interaction with immune cells, while allowing 

oxygen and nutrients to pass. ViaCyte is currently carrying out a phase I/II clinical trial 

using Encaptra with stem cell-derived cell sources to assess the safety and efficacy of the 

system176. In contrast to Encaptra, the Sernova Cell Pouch is not immunoisolating. The 

device is inserted under the skin for 30 days to enable vascular integration with the device. 

Subsequently, a series of rods are removed to expose channels that can be filled with 

transplanted islets. However, the 3-year phase I/II clinical study using this device recently 

terminated after recruiting three patients177.

A recent phase I/II pilot clinical trial has begun at the University of Miami, USA, to 

evaluate the safety and efficacy of transplanting allogeneic islets encapsulated within a 

plasmin-thrombin scaffold into the omentum using conventional immunosuppression, which 

will be applied with a single donor for treating people with brittle T1D178. Although this 

strategy does not avoid immunosuppression, success with the transplantation of islets at 

this extrahepatic site may provide a foundation for subsequent studies to locally and/or 

systemically modulate the immune response to prevent rejection.
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Other applications of cell encapsulation

The technologies developed for islet transplantation may have utility in other cell 

transplantation strategies, and the potential use of such an approach is being investigated 

for various conditions. Indeed, the ability to regulate the delivery of a systemically available 

hormone could be applied to various diseases in addition to diabetes. This opportunity 

is exemplified by deficient pituitary function (hypopituitarism), which normally requires 

lifelong hormone replacement but which is associated with considerable side effects. The 

pituitary can modulate the function of the adrenal and thyroid glands, and the gonads (testes 

and ovaries), through the production of hormones, and can also receive signals from those 

tissues. Growth hormone deficiency and adrenal insufficiency can lead to developmental 

issues in children (such as short stature and failure to thrive), and can affect the quality 

of life for adults (for example, decreased muscle mass, impaired memory and fatigue). 

The potential of differentiating stem cells into cells of the pituitary is emerging as an 

approach that may provide therapies for hypopituitarism179. The hormonal communication 

between the pituitary and the gonads can affect fertility in adults, and can affect the 

ability of children to undergo puberty. Transplantation of gonadal tissue could enable young 

children to undergo puberty and could provide opportunities to preserve fertility in adults180. 

Finally, we note that dysregulated endocrine signalling has been linked to processes that 

are associated with age-related diseases, including cancer, cardiovascular disease, diabetes, 

osteoporosis and neurodegenerative diseases, all of which directly influence health in 

ageing181.

Furthermore, cells that intrinsically, or are genetically engineered to, secrete therapeutic 

proteins have been transplanted to provide sustained, and potentially localized, delivery for 

applications to prevent tissue degeneration, promote regeneration and as a cancer therapy. 

Cells engineered to secrete neurotrophic or angiogenic factors have been applied to prevent 

neuronal and vascular degeneration in the central nervous system (CNS) for therapies 

in Parkinson disease and Huntington disease182,183. MSCs have been encapsulated for 

transplantation after a myocardial infarction to promote cardiac repair184, and genetically 

engineered CHO cells that secrete angiogenic factors have been used to augment 

revascularization185. Similarly, the transplantation of alginate-encapsulated MSCs, which 

were engineered to secrete hemopexin-like protein, were able to reduce tumour growth and 

blood vessel formation while increasing apoptosis in a mouse model of glioblastoma186. 

In addition, encapsulated cells that secrete immunostimulatory monoclonal antibodies have 

been used to enhance tumour-specific cellular immunity187. Clearly, the development of 

effective cell encapsulation systems that overcome the challenges discussed above will have 

numerous potential applications for the treatment of various diseases.

Outlook

Recent advances in material design, nanotechnology and immunomodulation have led 

to promising approaches in cell-based microencapsulation and macroencapsulation. 

By combining our expertise across disciplines ranging from electrical engineering to 

immunology, we can begin to address the multiple challenges that are involved in translating 

encapsulated cell therapy from the laboratory to the clinic. Future success requires a 
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willingness to collaborate, to combine new ‘device’ technologies with ‘cell’ technologies, 

and to understand the limitations of the biological environment in which human cell therapy 

must exist.
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Glossary

Type 1 diabetes (T1D). A chronic condition of aberrant glucose 

homeostasis that is characterized by a severe deficiency 

of insulin secretion resulting from atrophy of the islets of 

Langerhans.

β-Cells Insulin-secreting cells of the islets of Langerhans.

Hyperglycaemia Elevated blood glucose above normal levels.

Hypoglycaemia Suppressed blood glucose below normal levels.

Immunosuppression Suppression (such as, by drugs or disease) of the immune 

response.

Xenogeneic Derived from, originating in or being a member of another 

species.

Encapsulation To surround, encase or protect in or as if in a capsule.

Normoglycaemia The presence of a normal concentration of glucose in the 

blood.

Vascularization The formation of blood vessels.

Syngeneic Involving, derived from, or being genetically identical or 

similar individuals of the same species, especially with 

respect to antigenic interaction.

Allogeneic Involving, derived from or being individuals of the same 

species that are sufficiently genetically dissimilar to 

interact antigenically.

Fibrosis A condition marked by an increase in interstitial fibrous or 

scar tissue.

Immunogenicity The ability of a particular substance to provoke an immune 

response in the body of a human or an animal.

Hypoxia A deficiency of oxygen reaching the tissues of the body.

Self-tolerance The failure to mount an immune response to a person’s 

own proteins and other antigens.
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Cytokines Members of a class of immunoregulatory proteins 

(interleukin or interferon) that are secreted by cells 

especially of the immune system.

Regulatory T cells (Treg cells). A subpopulation of T cells that modulate the 

immune system, maintain tolerance to self-antigens and 

prevent autoimmune disease.
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Box 1∣

Immunological challenges to islet transplantation

The survival of transplanted islets is challenged immunologically. This challenge 

is a consequence of the pre-existing autoimmune disease and transplant immunity, 

which is of a broader magnitude than autoimmunity owing to the multitude and 

redundancy of pathways. Transplant recipients are frequently sensitized to alloantigens, 

resulting from procedures such as prior blood transfusions, which can lead to both 

humoral and cellular sensitization. The process of immune recognition and the immune 

destruction of transplanted cells has been described as following multiple steps: first, 

inflammation; second, maturation of dendritic cells (DCs) and migration to draining 

lymph nodes; third, T cell activation by DCs resulting in expansion of anti-donor T 

cells; and fourth, migration of T cells to the graft where they mediate cytotoxicity188. 

In any given donor–recipient pair situation, the primary antigen is termed the human 

leukocyte antigen (HLA), and the number of HLA mismatches multiplied by the 

number of distinct epitopes results in a large number of potentially immunogenic 

epitope mismatches129. Furthermore, minor histocompatibility antigens (mHAs) have 

been implicated in rejection, with the different types of mismatches probably eliciting 

immunogenicity of a wide range of strength, which may also vary based on antigen 

processing and presentation specific to the recipient189,190. Classical type 1 helper (TH1) 

CD4+ T cells and cytotoxic CD8+ T cells are considered to be mainly responsible for 

rejection; however, recent studies have implicated a whole range of other effector cells 

in this process, including TH2 cells, TH17 cells, memory CD8+ T cells, and cells of the 

innate immune system, such as monocytes and natural killer cells. The specific effector 

pathways that dominate in any given rejection process can be a function of the tissue 

transplanted and the host immune composition (for example, microbiota and the presence 

or absence of other inflammatory signals). Notably, the suppression of one pathway may 

induce an alternative pathway to promote rejection191.
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Figure 1 ∣. Islet and β-cell transplantation systems.
a ∣ Schematic of the ViaCyte device, which is a rechargeable encapsulating system about 

half the size of a business card in which the membrane functions to contain the cells and 

to limit the access of immune cells, but allows the transport of nutrients from the exterior 

of the device and hormones from the encapsulated cells. Patients would be implanted 

with 4–6 units. b ∣ Image and schematic of the Beta-O2 device demonstrating the ports 

for recharging oxygen and the encapsulation device. The schematic illustrates the central 

module that can be charged with oxygen to diffuse outwards to the islets contained within 

a membrane. The device is approximately 2.5 inches in diameter. The membrane allows for 

nutrient and hormone transport but is impregnated with alginate to restrict cell infiltration. c 
∣ Islet microencapsulation with alginate hydrogels. This image shows genetically engineered 

pig islets entrapped within alginate hydrogels. d ∣ Host response to the transplantation of 

encapsulated islets. Transplantation of the capsules leads to a host response that will depend 

on multiple factors (for example, cells, materials, transplant site and so on). Shortly after 

transplantation into tissues (left-hand side), the host response to transplantation and the 

material can consist of an inflammatory response (pink region) with nearby blood vessels. 

Over time, the inflammatory response would ideally resolve without fibrosis and would 
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allow for vascular growth adjacent to the capsule for nutrient and hormone exchange. 

However, shed antigens released from the islet may contribute to immune cell recruitment 

and activation. PTFE, polytetrafluoroethylene.
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