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MYELODYSPLASTIC NEOPLASM

Bone marrow transplantation reduces FGF-23 levels and
restores bone formation in myelodysplastic neoplasms
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TO THE EDITOR:
Myelodysplastic neoplasms (MDS) are hematopoietic stem cell
disorders characterized by ineffective hematopoiesis and dysplas-
tic cells in the bone marrow (BM) [1]. In addition, patients with
MDS display an increased susceptibility to osteoporosis [2].
Evidence points towards dysregulation in the BM niche that
concurrently impairs bone turnover and hematopoiesis. We
identified fibroblast growth factor (FGF)-23 as a critical regulator
of bone mineralization and erythropoiesis. FGF-23 serum levels
were higher in both patients and mice with MDS, and its
neutralization resulted in improved erythropoiesis and bone
mineralization in NUP98/HOXD13 (NHD13) mice [3]. FGF-23 is
mainly produced by osteoblasts/osteocytes [4] and exerts
phosphaturic effects leading to poor bone mineralization [5].
However, in NHD13 mice, intact FGF-23 (iFGF-23) and C-terminal
FGF-23 (cFGF-23; produced by the cleavage of the intact form)
protein levels were unchanged in the bone tissue, but erythroid
progenitors secreted more FGF-23 compared to littermate wild-
type (WT) controls (Fig. S1A, B).
Here, we tested the hypothesis that erythroid precursors

contribute to increased FGF-23 production/cleavage in MDS as a
cause for impaired erythropoiesis and bone mineralization. To that
end, we used BM transplantation as a first approach to substitute
myelodysplastic erythroblasts with healthy ones in NHD13 mice.
Four months after the BM transplantation, all mice that received
the NHD13 BM showed MDS-like symptoms. In WT recipients, a
reduction in hemoglobin levels [−32%; p < 0.001], platelets
[−20%; p < 0.05], and lymphocytes [−71%; p < 0.001], but not in
neutrophils or monocytes was observed compared to WT controls
(transplanted with WT BM), showing a similar MDS status as
NHD13 controls. In turn, NHD13 mice transplanted with WT BM
did not develop MDS during the observation period. Compared to
NHD13 controls, blood count reached normal levels [hemoglobin:
+22%; p < 0.001; platelets: +26%; p < 0.05; lymphocytes: +6.5-
fold; p < 0.001; neutrophils: +2-fold; p < 0.001] (Fig. 1A–E). This
confirms that the MDS blood phenotype is transferable via

hematopoietic cells. In line with NHD13 mice only showing
increased cFGF-23 levels, but normal serum levels of iFGF-23 [3],
the transplantation of WT or NHD13 BM into either WT or NHD13
recipient mice did not alter iFGF-23 (Fig. 1F). In contrast, cFGF-23
was increased in all recipients of NHD13 BM [WT: +3.5-fold;
p < 0.05; NHD13: +2.1-fold; p < 0.01] compared to the correspond-
ing mice with WT BM (Fig. 1G). Because of the transferable FGF-23
status, we hypothesized that WT mice receiving NHD13 BM would
exhibit a bone phenotype mimicking the NHD13 controls. That
was the case regarding the increased bone formation parameters
usually observed in NHD13 mice. Similar to NHD13 mice, WT mice
receiving NHD13 BM showed an increased number of osteoblasts
[+95%; p < 0.001] concomitant with elevated levels of the bone
formation marker procollagen type I N-propeptide [+45%;
p < 0.05] and an increased bone formation rate [+87%; p < 0.01]
(Fig. 1H–J). Also, the osteoid surface per bone surface tended to be
increased [+44%; p= 0.056] (Fig. 1K). Importantly, transplanting
WT BM to NHD13 mice normalized their bone formation
parameters (Fig. 1H–K), indicating that hematopoietic cell signals
control bone formation in NHD13 mice.
To address whether stem cell transplantation (SCT) leads to

similar changes in FGF-23 in patients with MDS, we employed
samples from the BoHemE study, in which we previously
confirmed the high plasma iFGF-23 and cFGF-23 levels in patients
with MDS [3]. Within this cohort, we identified 10 patients with
MDS (3 women, 7 men; median age: 64 years; without renal
disease) who had undergone SCT. We analyzed their hematolo-
gical and bone-specific parameters before (range: 1–6 months)
and after SCT (range: 5–11 months). SCT led to a higher number of
red blood cells in 9/10 patients, neutrophils in 9/10 patients, and
lymphocytes in 6/10 patients with normal monocyte counts.
Platelet counts were below the reference range in 8/10 patients
and higher in 1/10 patients before SCT, but only 4 patients had
persistent thrombocytopenia after SCT (Figs. 2A, S2A–D). Before
SCT, 5 patients showed elevated cFGF-23 plasma levels, which
were normalized after SCT (Fig. 2B). Elevated iFGF-23 levels were
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Fig. 1 NHD13 bone marrow increases serum cFGF-23 and induces the MDS bone phenotype. Eigth-week-old male wild-type (WT) and
NUP98/HOXD13 (NHD13) mice were lethally irradiated one day before 2 × 106 total bone marrow cells of age-matched WT (WT BM) or NHD13
(NHD13 BM) donor mice were transplanted by intravenous injection. After 16 weeks all mice were sacrificed and analyzed. The blood count,
(A) hemoglobin levels (WT BM→WT: n= 9; NHD13 BM→WT: n= 9; WT BM→NHD13: n= 14; NHD13 BM→NHD13: n= 8), (B) platelet
number (WT BM→WT: n= 8; NHD13 BM→WT: n= 8; WT BM→NHD13: n= 14; NHD13 BM→NHD13: n= 7) as well as the number of (C)
neutrophils, (D) lymphocytes (WT BM→WT: n= 8; NHD13 BM→WT: n= 8; WT BM→NHD13: n= 14; NHD13 BM→NHD13: n= 8), and (E)
monocytes (WT BM→WT: n= 8; NHD13 BM→WT: n= 7; WT BM→NHD13: n= 15; NHD13 BM→NHD13: n= 7) were received using the
Sysmex XN-100 (Sysmex, Norderstedt, Germany). After collecting the serum, (F) the intact (WT BM→WT: n= 9; NHD13 BM→WT: n= 8; WT
BM→NHD13: n= 14; NHD13 BM→NHD13: n= 9) as well as (G) C-terminal fibroblast growth factor (FGF)-23 (WT BM→WT: n= 8; NHD13
BM→WT: n= 6; WT BM→NHD13: n= 13; NHD13 BM→NHD13: n= 8) were measured by ELISA. (H) The osteoblasts per bone perimeter were
evaluated in TRAP-stained vertebral bone slices (WT BM→WT: n= 9; NHD13 BM→WT: n= 9; WT BM→NHD13: n= 14; NHD13 BM→NHD13:
n= 9) and (I) the osteoblast activity was assessed by procollagen type I N-propeptide (P1NP) using ELISA (WT BM→WT: n= 8; NHD13
BM→WT: n= 9; WT BM→NHD13: n= 14; NHD13 BM→NHD13: n= 9). J To determine the bone formation rate in vertebrae, mice received
intraperitoneal calcein injection 5 and 2 days before sacrifice for the double labeling analysis (WT BM→WT: n= 9; NHD13 BM→WT: n= 6; WT
BM→NHD13: n= 13; NHD13 BM→NHD13: n= 6). K Embedded vertebrae were stained with von Kossa/van Gieson to determine the osteoid
surface per bone surface (WT BM→WT: n= 6; NHD13 BM→WT: n= 8; WT BM→NHD13: n= 14; NHD13 BM→NHD13: n= 5). Data are shown
as mean ± SD of five independent experiments. Statistical analysis was performed by two-sided Student´s t test. *p < 0.05; **p < 0.01;
***p < 0.001.
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observed in 2 patients before SCT, with levels decreasing post-
SCT. However, after SCT, iFGF-23 levels slightly increased in all
patients with normal baseline levels (Fig. 2C). Additionally, 7/10
patients had reduced osteocalcin levels (bone formation) before
SCT, though this did not result in abnormal bone mineral density
(BMD) (Fig. 2D, Table S1). Given that bone mineralization is
impaired in MDS [3], we also analyzed albumin-adjusted calcium,
phosphate, and bone-specific alkaline phosphatase (BSAP).
Calcium levels were reduced in 2/5 patients with elevated cFGF-
23 and normalized after SCT (Fig. 2E). All patients with normal
cFGF-23 had calcium levels within the reference range, with only
one showing reduced levels of phosphate, which were corrected
by the SCT. Whereas 3/5 patients with high cFGF-23 had mild to

moderate hypophosphatemia before SCT, only one remained
hypophosphatemic after SCT (Fig. 2F). In line with the increase of
serum phosphate, BSAP levels, the major regulator of bone
mineralization, also increased after SCT with high cFGF-23
(determined in 3/5 patients only, Fig. S2E). In addition, we
analyzed 10 BM plasma samples regarding cFGF-23 and iFGF-23
levels in a separate set of patients with MDS (4 women, 6 men;
median age: 57 years; Table S2). Since the samples were collected
relatively shortly after SCT (range: 2–8 months), it is not surprising
that the number of red blood cells was equal or decreased after
SCT in 4/9 patients (data from one patient are not evaluable)
compared to the basal levels (Fig. 2G). In line with our previous
observations, before SCT 5/10 patients had elevated cFGF-23

Fig. 2 Normal cFGF-23 is linked with improved bone formation in patients with MDS after stem cell transplantation. The hematological
and plasma parameters of patients with MDS were analyzed before and after allogeneic stem cell transplantation (SCT) in blood (A–F) and
bone marrow samples (G–I). A, G The number of red blood cells was determined by the Sysmex XN-100 (Sysmex, Norderstedt, Germany).
B, H C-terminal fibroblast growth factor (FGF)-23, (C, I) intact FGF-23, as well as (D) osteocalcin, were determined in plasma samples and in
serum (E) albumin-adjusted calcium levels, as well as (F) phosphate levels, were measured by ELISA. n= 10 except (G) n= 9. The grey boxes in
the graphs mark the reference range of healthy individuals. In all graphs, each dot represents a patient with MDS, and the values from the
same patient are connected by a line (normal C-terminal FGF-23 before SCT, n= 5) or dotted line (high C-terminal FGF-23 before SCT, n= 5).

H. Weidner et al.

1855

Leukemia (2024) 38:1853 – 1857



levels, which normalized after SCT. In patients with normal
baseline cFGF-23, levels were either slightly increased (1/5
patients) or decreased (2/5) after SCT (Fig. 2H). Before SCT, all
patients had normal iFGF-23 levels. The SCT led to an increase in
6/10 patients and a decrease in 4/10 patients independently of the
basal iFGF-23 levels (Fig. 2I). Overall, the regulation of cFGF-23 in
blood and BM plasma samples from patients with MDS after SCT
suggests that BM cells are a source for cFGF-23 in MDS. This is
supported by the transplantation of NHD13 BM cells, which causes
the increase of cFGF-23 levels leading to impaired erythropoiesis
and bone mineralization. Only erythroid precursors of NHD13
mice show a high Fgf23 expression, but myeloid cells and
megakaryocytes do not (Fig. S1C, D). The question remains why
and how cFGF-23 levels are increased in MDS. The expression of
Galnt3 and Fam20c, which stabilize or mark FGF-23 for cleavage
[6, 7], was normal in NHD13 erythroid precursors (Fig. S1E, F),
indicating that these cells do not directly contribute to the
increased cleavage of erythroid-derived FGF-23. Therefore, other
signals or cells within the bone microenvironment or beyond may
participate in this regulation. In line with this, it has been shown
that FGF-23 production/cleavage can be triggered by erythro-
poietin, iron deficiency, anemia, and inflammation [8–10], factors
that also play a role in MDS [11, 12]. While iron serum levels are
unchanged in NHD13 mice, erythropoietin is upregulated. Since
erythropoietin can affect FGF-23 production/cleavage in WT
erythroid cells [8], this may be a possible regulator also in
NHD13 mice. The whole inflammatory status of NHD13 mice has
not been described yet, suggesting that inflammation and/or
anemia might be drivers of cFGF-23 in NHD13 mice as well. The
production of cFGF-23 is increased by inflammation, inhibits
hepcidin induction in the liver, and increases iron bioavailability
independent of the functions of iFGF-23 [10]. This scenario may
hold true for MDS as it is also characterized by inflammation (and
anemia) and may require high levels of cFGF-23 to provide
enough iron for erythropoiesis. In our human cohorts, not all
patients with MDS showed elevated cFGF-23 levels, and not all
patients with elevated cFGF-23 showed dysregulations of iron or
inflammation (Table S1). All patients with elevated cFGF-23
however did have anemia. MDS is a heterogeneous group of
disorders. As NHD13 mice mimic a severe form of MDS with a high
percentage of blasts in the bone marrow and a high propensity to
transformation towards acute leukemia [13], we included patients
with intermediate to very high-risk MDS in our cohorts and
indicated their mutations. Analyzing the mutational landscape in
patients with MDS might further allow assumptions on the
underlying mechanisms leading to increased cFGF-23 levels.
Mutations like TET2, DNMT3A, ASXL1, RUNX1, SF3B1, and SRSF2
are linked to increased responses to inflammatory stimuli [12, 14],
and Tet2 or Dnmt3a deficiency causes bone loss in mice due to
increased osteoclastogenesis [15]. In our blood plasma cohort, 4/5
patients with elevated cFGF-23 carried a mutation in at least one
of these genes. However, 2/5 patients with normal cFGF-23 also
had these mutations, but they received the MDS diagnosis a
month earlier only. It is conceivable that the cFGF-23 levels
increase after some time. Future research is needed to determine
whether any of these mutations contribute to high cFGF-23 levels.
In summary, we show that the high serum cFGF-23 levels in MDS
originate from the BM and that BM transplantation/SCT can
reduce cFGF-23 levels and its associated negative effects on
erythropoiesis and bone mineralization. Future studies need to
validate these findings in humans and address why cFGF-23 levels
are increased in MDS.
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