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Aggressive natural killer cell leukemia (ANKL) is a rare hematological malignancy with a fulminant clinical course. Our previous
study revealed that ANKL cells proliferate predominantly in the liver sinusoids and strongly depend on transferrin supplementation.
In addition, we demonstrated that liver-resident ANKL cells are sensitive to PPMX-T003, an anti-human transferrin receptor 1
inhibitory antibody, whereas spleen-resident ANKL cells are resistant to transferrin receptor 1 inhibition. However, the
microenvironmental factors that regulate the iron dependency of ANKL cells remain unclear. In this study, we first revealed that the
anti-neoplastic effect of PPMX-T003 was characterized by DNA double-strand breaks in a DNA replication-dependent manner,
similar to conventional cytotoxic agents. We also found that the influx of extracellular amino acids via LAT1 stimulated sensitivity to
PPMX-T003. Taken together, we discovered that the amount of extracellular amino acid influx through LAT1 was the key
environmental factor determining the iron dependency of ANKL cells via adjustment of their mTOR/Myc activity, which provides a
good explanation for the different sensitivity to PPMX-T003 between liver- and spleen-resident ANKL cells, as the liver sinusoid
contains abundant amino acids absorbed from the gut.
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INTRODUCTION
Aggressive natural killer cell leukemia (ANKL) is a rare hematological
malignancy associated with Epstein–Barr virus reactivation in natural
killer (NK) cells [1]. ANKL has a fulminant clinical course with a median
overall survival of less than two months despite performing intensive
chemotherapies [2–4]. As the standard of care for ANKL has not been
established due to its rare incidence, the treatment of ANKL remains
challenging. Although several genetic investigations have suggested
that overactivation of Myc and JAK/STAT pathways accompanied by
malfunction of TP53 represent common genomic alterations of ANKL
[2, 5, 6], the molecular pathogenesis contributing to the fulminant

clinical appearance of ANKL remains poorly understood, as most of the
reported gene abnormalities are common in extranodal NK/T cell
lymphoma, another mature NK cell neoplasm presenting a relatively
indolent clinical course [7]. To overcome this problem, we previously
established ANKL-patient-derived xenograft mouse models (ANKL-
PDXs) and discovered that ANKL cells predominantly proliferate in the
liver sinusoid, depending on the transferrin-transferrin receptor 1 (TfR1)
interaction [8]. Transferrin, the most common iron carrier protein, is
specifically expressed by hepatocytes, and its receptor TfR1 is
upregulated in ANKL cells under the regulation of Myc. ANKL cell
proliferation requires massive supplementation of transferrin-binding
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iron from the liver microenvironment [8]. Although we further
uncovered the anti-neoplastic efficacy of TfR1 blockade by a human
anti-TfR1 inhibitory antibody, PPMX-T003 [9], in liver-resident ANKL,
spleen- and bone marrow-resident ANKL cells with lower proliferative
activity were resistant to PPMX-T003 [8]. This led us to hypothesize that
the iron dependence of ANKL is determined by microenvironmental
factors.
In this study, we revealed that PPMX-T003 causes DNA damage

to liver-resident ANKL cells via malfunction of DNA replication and
repair in the S-phase cell cycle, which is regulated by LAT1-
mediated uptake of extracellular amino acids abundant in the liver
sinusoid via activation of the mTOR/Myc axis.

MATERIALS/SUBJECTS AND METHODS
Study approval
The experiments using patient-derived materials were approved
by the Institutional Review Board of Tokai University (H18-144).
The experiments in this study were approved by the Animal Care
and Use Committee (221046) and Genetically Modified Experi-
ment Safety Committee of Tokai University (22-009-27R2). Written
informed consent was obtained from all patients.

In vivo CRISPR screening
A total of 482 genes encoding iron-dependent molecules were
selected based on a previously published study [10], and the sgRNA
library, including sgRNAs targeting those genes and 1004 control
(non-target) sgRNAs, was constructed following a previously reported
methodology [11], except for plasmid usage of Ubi-RFP-sgRNA. The
Ubi-RFP-sgRNA plasmid and sgRNA library oligonucleotide pool were
kindly provided by Prof. Hirao (Supplementary Table S1). Briefly, the
Ubi-RFP-sgRNA plasmid was constructed from FG12 (Addgene,
#14884) by cloning the RFP gene derived from pRSI12-U6-sh-HTS4-
UbiC-TagRFP-2A-Puro (Addgene, #28289) into the GFP gene site and
the sgRNA expression cassette used in a previous work [11] into the
siRNA expression cassette. The RNA oligonucleotide pool was ligated
into the Ubi-RFP-sgRNA plasmid digested with BsmBI using the
Gibson Assembly Master Mix (New England BioLabs, #E2611S).
Transformation of the 10-beta Electrocompetent Escherichia coli
(New England BioLabs, #C3020) with sgRNA library-inserted plasmids
was then performed using Gene Pulser II (Bio-Rad; 1000 V, 200Ω, and
25 µF). More than 100 colonies per sgRNA were harvested, and
sgRNA library-containing plasmids were purified using NucleoBond
Xtra Midi (Macherey-Nagel, #740410). The constructed sgRNA library
plasmids were then transduced with the lentiCas9-Venus plasmid
(Addgene, #70267) into ANKL1 cells, and Venus+ and RFP+ cells were
sorted 48 h after each transduction procedure using flow cytometry.
Finally, 2 × 105 (i.e., 40 cells per sgRNA) of sorted Venus+RFP+ cells
were intravenously injected into a Nod/Shi-Scid, IL-2RγKO mouse
(NOG mouse; In-Vivo Science) to establish PDX, and genomic DNA
was extracted from the remaining sorted cells (as Input) using
DNeasy Blood&Tissue Kit (Qiagen, #69504). Fourteen days after
in vivo cultivation, ANKL1 cells were harvested from the liver, and
genomic DNA was extracted (output). Integrated sgRNAs in genomic
DNAs were initially amplified using Tks Gflex DNA polymerase
(TaKaRa, #R060A) with a pair of primers, 5′-GTCTAGAGAGGGCCTATT
TCCCATGATTCC-3′ and 5′-CACCGACTCGGTGCCACTTTT-3′, followed
by additional amplification to add unique i7-index adaptor sequence
per sample using a pair of primers, 5′-CAAGCAGAAGACGGCATACG
AGATCXXXXXXTTTCTTGGGTAGTTTGCAGTTTT-3′ and 5′-AATGATACG
GCGACCACCGAGATCTACACCACCGACTCGGTGCCACTTTT-3′ (“X” indi-
cates i7-index adaptor sequences of Illumina TruSight Tumor 15,
named R701 to R706). Amplified, i7-index-added sgRNAs were then
mixed and sequenced by DNBSEQ-G400 (MGI Tech), using index
primer of 5’′-TTTCAAGTTACGGTAAGCATATGATAGTCCATTTTAAAACA
TAATTTTAAAACTGCAAACTACCCAAGAAA-3′, and sequence primer of
5′-CGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGC
TATTTCTAGCTCTAAAAC-3′. The reference FASTA-formatted file of the

sgRNA library was created using Biostrings version 2.66.0 [12]. The
obtained FASTQ-formatted files were then mapped, and sgRNA
reads were counted using Rsubread version 2.12.3 [13] and
GenomicAlignments version 1.34.1 [14]. In total, 479 of the 482
targeting sgRNAs were detected in the input samples. Positively- and
negatively selected sgRNAs were statistically analyzed using the
“test” command of MAGeCK version 0.5.9.5 [15], with default settings
of alpha cut-off value. Gene Set Enrichment Analysis (GSEA) was
performed using “pathway” command of MAGeCK with GMT-
formatted file of HALLMARK of human Molecular Signatures
Database (MSigDB) v2023.1 (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp; data obtained on 7th Oct. 2023), and gene sets
with false-discovery ratio lower than 0.25 were extracted as
significant. This procedure was independently performed three
times, and three NOG mice (Mouse #1, Mouse #2, and Mouse #3)
were analyzed.

Connectivity scoring analysis
NK92 cells were pre-incubated for 18 h and then equally separated
into two dishes containing fresh medium. Then, 10 µg/mL of
PPMX-T003 was added to one of them, and both samples were
cultured for an additional 6 h. After harvesting the cultured cells,
total RNA was extracted using Sepasol-RNA I Super G (Nacalai
tesque, #09379-55) following the manufacturer’s protocol. A cDNA
library was prepared using the TruSeq Stranded mRNA
Sample Prep Kit (Illumina, #20020594). Sequencing was performed
using a NovaSeq6000 (Illumina) with the NovaSeq6000 S4
Reagent Kit v1.5 (Illumina, #20028312). The FASTQ-formatted files
obtained were trimmed using Trimmomatic version 0.38 [16],
followed by mapping using HISAT2 version 2.2.0. Mapped reads
were counted using StringTie version 2.1.3b [17] and EdgeR
version 3.17 to obtain differentially expressed gene signatures
between non-exposed and exposed NK92 cells to PPMX-T003.
To identify agents that induce gene expression changes
similar to PPMX-T003, connectivity scoring analysis [18] was
performed using the Link database between Chemotherapeutic
Agents and Gene Expression (JFCR_LinCAGE; available at http://
molpro.jfcr.or.jp/db/cs/index.html; accessed on 23rd Oct. 2023)
[19], following the procedure described in a previously published
article [20].

Single-cell RNA sequence
In the six ANKL1-PDXs, 10 mg/kg PPMX-T003 was intravenously
injected into three of them twice a week for 2 weeks (a total of
four times). After sacrificing the treated and non-treated ANKL1-
PDX, human CD45-positive ANKL cells were harvested from the
spleen using FACS Aria III. A single-cell cDNA library was
constructed using a BD Rhapsody WTA Amplification Kit (Becton,
Dickinson, #633801) and a BD Hu Single-Cell Sample Multiplexing
Kit (Becton, Dickinson, #633781). Sequencing was performed using
NextSeq550 (Illumina), and 247,753,594 aligned reads of 28,021
putative cells were detected by data processing using the BD
Rhapsody Sequence Analysis Pipeline version 1.11 provided in
SevenBridge (Becton, Dickinson, performed on 29th Oct. 2022).
Clustering and detection of featured genes were performed using
Seurat version 4.3.0.1 [21]. GSEA of feature genes was performed
using clusterProfiler version 4.6.2 [22].

Western blotting and quantitative PCR
Detailed materials and methods performed as the previous study
[23] are described in supplemental materials.

Statistical analyses
Statistical analyses were performed using GraphPad Prism 10.1.0
(GraphPad software). Two-sided Welch’s t-test was used to analyze
the differences between two independent groups described by
continuous variables. A two-sided paired t-test was used to
analyze the differences between the two groups with some
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dependencies. In the analyses of differentially expressed genes or
GSEA, the Benjamini-Hochberg method was used to adjust the
p-value. All experiments were independently replicated more than
two times. Sample sizes for all experiments were determined
empirically from previous experimental experience with similar

assays. Specific sample sizes of each study can be found in the
figures, their accompanying legends, or within the methods
section. All analyzed samples were included in the analyses. All
results of statistical analyses were described in figures, as follows;
“*” when p < 0.05, “**” when p < 0.01, and “***” when p < 0.001.
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RESULTS
ANKL cells in the spleen and bone marrow were resistant to
treatment with an anti-TfR1 antibody, PPMX-T003
In vivo luciferase assay of two established ANKL-PDXs (ANKL1-PDX
and ANKL3-PDX; Fig. 1a) demonstrated that luciferin luminescence
derived from ANKL cells was predominantly detected in the
spleen and bone marrow after the injection of PPMX-T003 (IVLA2)
and eventually re-grew in the liver long time after treatment
(IVLA3). Statistically, in both ANKL-PDXs, the relative luminescent
intensities of the spleen versus the liver remarkably increased after
the treatment of PPMX-T003 (Fig. 1b and Supplementary Fig. S1a).
By the flow cytometric analysis, the liver-resident ANKL cells were
decreased in both strains, whereas the spleen-resident ANKL cells
were increased in the ANKL1- or unchanged in the ANKL3-PDX
with the treatment of PPMX-T003 (Fig. 1c and Supplementary
Fig. S1b). The immunohistochemistry (Fig. 1d) revealed that the
spleen-resident ANKL cells were still largely detected after
treatment, whereas liver-resident ANKL cells were remarkably
decreased. Altogether, the sensitivity to PPMX-T003 is different
between the liver- and the spleen-resident ANKL cells, raising the
possibility that cellular iron requirement depends on the
microenvironment in which they are localized.

PPMX-T003 caused DNA double-strand breaks to S-phase
ANKL cells, similar to conventional cytotoxic agents
To investigate the molecular mechanisms of iron dependency in
ANKL cells in the liver sinusoid, we performed in vivo CRISPR
screening, targeting genes encoding molecules that require iron
for their enzymatic activities. We designed sgRNA library targeting
482 genes of iron-dependent molecules (10 sgRNAs per gene) and
1004 non-target control sgRNAs to assess the contribution of
these molecules to in vivo cellular proliferation or survival of ANKL
cells in the liver (Supplementary Table S1). Cas9- and library
sgRNA-transduced ANKL1 cells were purified, intravenously
inoculated into NOG mice, and re-harvested from the liver 14 days
after in vivo cultivation, followed by genomic DNA extraction and
deep sequencing of the integrated sgRNAs to detect positively or
negatively selected sgRNAs during cultivation (Fig. 2a). Deep-
sequence analysis showed that sgRNAs targeting common
essential genes such as CIAO1 and POLA1 (annotated by Depmap
portal [https://depmap.org/portal/]; accessed on 7th Feb, 2024)
were negatively selected (“dropped-out”), whereas control sgRNAs
(CTRL) were not (Supplementary Tables S2–4; Fig. 2b; Supple-
mentary Fig. S2a–b). Those results assured the reliability of the
screening. A total of 2884, 2494, and 2861 sgRNAs were dropped-
out in Mouse #1, Mouse #2, and Mouse #3, respectively
(Supplementary Tables S2–4), which signified their contribution
to cellular proliferation or survival of ANKL cells. GSEAs of the
genes targeted by negatively selected sgRNAs using HALLMARK of
MSigDB in the three mice indicated that five gene sets (oxidative
phosphorylation, DNA repair, E2F-targets, mitotic spindle, and
adipogenesis) were commonly dropped-out with false-discovery
ratios lower than 0.25 (Fig. 2d; Supplementary Fig. S2c–e;
Supplementary Tables S5–7). In particular, the gene sets of
oxidative phosphorylation and DNA repair showed a lower false-
discovery ratio in all three mice. Gene sets of DNA repair and

E2F-targets included various genes crucial for DNA repair, such as
ERCC2 (contributing to nucleotide excision repair) and DGCR8
(contributing to the repair of ultraviolet radiation-induced DNA
damage; Supplementary Fig. S2f). Furthermore, sgRNAs targeting
to several DNA polymerase- and ribonuclease-coding genes
(POLA1, POLE, and RRM2), which are required for DNA replication,
were also significantly dropped out in all three mice (Supplemen-
tary Fig. S2f). These results suggested that the survival of liver-
resident ANKL cells depended on extracellular iron supplementa-
tion mainly through two cellular functions, oxidative phosphoryla-
tion and DNA replication/repair system.
We then compared the differentially expressed gene profiles of

PPMX-T003-treated NK92 cells (an ANKL-derived cell line) with those of
tumor cells treated with various functionally well-known anti-
neoplastic agents deposited in JFCR LinCAGE to assess their similarities
in predicting the molecular mechanism of the PPMX-T003-induced
anti-neoplastic effect (connectivity scoring analysis; Supplementary
Fig. S2g). Among the assessed agents, conventional cytotoxic agents
that induce DNA damage, such as anthracyclines and DNA
intercalators, had higher connectivity scores, indicating that the
transcriptomic alterations induced by PPMX-T003 resembled those
induced by these agents (Supplementary Fig. S2h; Supplementary
Table S8). The γH2AX expression, a well-validated cytological marker of
DNA double-strand breaks, as well as the total cellular DNA content of
ANKL-derived cell lines (NK92 and KHYG1) exposed to PPMX-T003 in
vitro, indicated that PPMX-T003 caused DNA damage throughout the
cell cycle progression (Fig. 2d; Supplementary Fig. S2i). Furthermore,
ANKL1 cells derived from liver of PPMX-T003-treated ANKL1-PDXs also
increased γH2AX expression, whereas those derived from spleen did
not (Fig. 2e, f). These findings suggest that replication-dependent DNA
damage is responsible for the antineoplastic effect induced by PPMX-
T003, and it depends on somewhat liver-specific microenvironmental
factors. Previous GSEA also indicates that the liver-resident ANKL cells
show more enrichment in gene expression related to DNA repair than
the spleen-resident cells, which supports the higher sensitivity of liver-
resident ANKL cells to PPMX-T003 [8].

PPMX-T003-sensitive ANKL cells were characterized by higher
activity of the mTORC1/Myc/TfR1 axis
Next, we characterized the subpopulation of spleen-resident ANKL
cells sensitive to PPMX-T003. Spleen-resident ANKL1 cells harvested
from pre- and post-PPMX-T003-treated ANKL1-PDXs were subjected to
single-cell whole-transcriptome analysis (Fig. 3a). Unsupervised
clustering analysis separated the cells into six clusters, suggesting that
the population in cluster 1 decreased after treatment (Fig. 3b,
Supplementary Fig. S3a). GSEA with HALLMARK from MSigDB
indicated that the activities of mTORC1 and Myc were significantly
upregulated in cells belonging to cluster 1 (Fig. 3c, Supplementary
Table S9). Furthermore, the expression levels of MYC and TFRC, which
is the Myc target gene that encodes TfR1, were specifically
upregulated in cluster 1 (Fig. 3d, e). Cell cycle scoring analysis
annotated cluster 1 as a DNA replicative cell cluster, which was
strongly related to the anti-neoplastic mechanism of PPMX-T003 as
shown previously (Fig. 3f). These results suggest that the PPMX-T003-
sensitive subpopulation of ANKL cells is characterized by a higher
activity of the mTOR/Myc/TfR1 axis. The results agree with those that

Fig. 1 ANKL cells in the spleen and bone marrow were resistant to treatment with an anti-TfR1 antibody, PPMX-T003. a In vivo luciferase
assay (IVLA) of pre- (IVLA1), early after- (IVLA2), and late after- (IVLA3) treatment of two ANKL-PDXs (ANKL1-PDX and ANKL3-PDX) with PPMX-
T003 as previously reported [8]. b Relative luminescent intensities of the spleen compared with the liver of six ANKL1-PDXs and six ANKL3-
PDXs at the time of IVLA1 and IVLA2 in (a). Setting of the regions of interest was shown in Supplementary Fig. S1. c Proportion of human
CD45-positive cells (i.e., ANKL cells) of liver- and spleen-derived cell suspension of ANKL1- and ANKL3-PDXs at IVLA1 and IVLA2. Hepatocytes
were excluded by density gradient centrifugation, and proportions were measured using flow cytometer (see Supplementary Fig. 1b). Three
mice per stage per lineage were analyzed. d Hematoxylin and eosin (HE) staining and immunohistochemistry with an anti-human CD56
antibody of the liver and spleen derived from pre- and post-treated ANKL1-PDX. Squares in pictures of low-powered fields indicate the place
of high-powered fields.
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Fig. 2 PPMX-T003 caused DNA double-strand breaks to S-phase ANKL cells, similar to conventional cytotoxic agents. a A schema of
in vivo CRISPR screening targeting iron-require molecules. The procedure was independently performed three times, and three mice (Mouse
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liver-resident ANKL cells (sensitive to PPMX-T003) show higher activity
along the mTOR/Myc/TfR1 axis [8]. Furthermore, we investigated the
antineoplastic effect of PPMX-T003 against mTORC1-suppressed ANKL-
derived cell lines by sublethal dosages of rapamycin, and revealed that
PPMX-T003-derived antineoplastic effect was decreased in mTORC1-
suppressed cells via apoptosis and cell viability assays (Supplementary
Fig. S3b–c). It also supports the results described above.

LAT1-mediated amino acid influx positively regulates ANKL
cell proliferation
To identify the extracellular factors regulating the mTORC1 activity
of ANKL cells, a re-analysis of the bulk RNA-seq data of liver-
derived ANKL1 and ANKL3 cells and peripheral NK cells of healthy
volunteers (deposited in the Gene Expression Omnibus;
GSE189722) was performed, focusing on the metabolic status.
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GSEA with the Kyoto Encyclopedia of Genes and Genomes and
MSigDB-HALLMARK indicated that ANKL cells were characterized
by higher activities of amino acid metabolism, but relatively lower
glucose and fatty acid metabolism (Supplementary Fig. S4a–c). In
particular, the ANKL cells metabolized sulfur-containing amino

acids (Supplementary Fig. S4c). Pathview [24] of sulfur-containing
amino acid metabolism showed that the transcription of genes
associated with the methionine cycle and polyamine synthesis
was specifically upregulated (Supplementary Fig. S4d), which is
known as an mTOR stimulator [25]. Additionally, mRNA expression
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analyses of solute carrier (SLC) family molecules showed that
various amino acid transporters were highly expressed in ANKL
cells compared with primary NK cells (Supplementary Fig. S4e).
The investigation of the dependency of ANKL cells on extracellular
amino acids by in vitro culture of those cells in the single amino
acid-deprived RPMI-1640 medium revealed that all the assessed
ANKL cells (ANKL-PDX-derived cells and cell lines) showed
impaired proliferation (<50% compared with all amino acid-
included medium) in the single sulfur-amino acid depletion
(cysteine and methionine; Fig. 4a–d). These results suggest that
ANKL cell proliferation highly depends on the influx of sulfur-
containing amino acids. Furthermore, single-cell whole-transcrip-
tome analysis data explained in Fig. 3 indicated that SLC7A5 and
SLC1A5, which encode LAT1 and ASCT2, respectively, were
upregulated in PPMX-T003 sensitive cluster (cluster 1; Fig. 4e).
LAT1 is a cancer-specific large neutral amino acid transporter that
can transport methionine [26, 27], whereas ASCT2 is annotated as
a cysteine transporter [28]. Violin plots indicated that SLC7A5 was
more specifically expressed in cluster 1 than SLC1A5 (Fig. 4f–g).
SLC7A5 was annotated as a mTORC1-related gene in HALLMARK of
MSigDB (Supplementary Table S9). In vitro growth competition
assay using the CRISPR-Cas9 system in NK92 cells indicated that
the sgSLC7A5-RFP transduced cells significantly decreased the
survival (RFP positive) ratio compared with non-target control
sgRNA (sgNT)-RFP-transduced cells, whereas the sgSLC1A5-RFP
transduced cells did not (Fig. 4h, Supplementary Fig. S5a).
Furthermore, we established ANKL-PDXs with sgSLC7A5-RFP- or
sgNT-RFP-transduced ANKL3 cells to assess the contribution of
LAT1 to the proliferation of liver-resident ANKL cells (Supplemen-
tary Fig. S5b). In vivo luciferase assay and flow cytometric analysis
seven days after inoculation indicated that LAT1-knocked-out cells
decreased proliferative ability (Fig. 4i–j). These findings show that
amino acid influx via LAT1 is crucial for regulating cell proliferation
through the cell cycle in liver sinusoid ANKL cells.

Amino acid influx via LAT1 is essential to the therapeutic
efficacy of PPMX-T003 through positive regulation of mTOR/
Myc activity
Finally, we investigated the relationship between LAT1 and
mTORC/Myc activity, and cellular sensitivity to PPMX-T003. The
inhibition of LAT1 using JPH-203 [29] caused the dose-dependent
inhibition of cell proliferation, accompanied by G1 arrest
(Fig. 5a–c). This growth suppression effect was observed
specifically in neoplastic cells (Fig. 5b). Western blotting analyses
of NK92 and KHYG1 cells treated with JPH-203 revealed the
downregulation of phosphorylated mTOR and p70S6K, one of the
major targets of mTORC1 contributing to cell proliferation, as well
as Myc and TfR1 in a single day (Fig. 5d, Supplementary Fig. S6),
suggesting that LAT1 positively regulates mTOR/Myc activity and
TfR1 expression. Quantitative PCR analyses of JPH-203-treated
ANKL-derived cell lines also showed downregulation of TFRC
expression (Supplementary Fig. S7a, b). The intracellular ferrous
ion (Fe2+) concentration was significantly decreased by LAT1

inhibition without any alteration of iron supplementation from
culture medium (Supplementary Fig. S7c), indicating that the
cellular iron demand (usage) was decreased. In addition, LAT1-
inhibition of ANKL-derived cell lines decreased γH2AX expression
in response to PPMX-T003 exposure in vitro (Fig. 5f) and the anti-
neoplastic effect of PPMX-T003 toward the liver-resident ANKL
cells in vivo (Fig. 5g). These findings suggest that the regulation of
mTOR/Myc activity via LAT1-mediated amino acid influx is a
determinant of iron dependency for survival and the resultant
sensitivity to PPMX-T003 in ANKL. The single-cell transcriptome of
liver-resident ANKL, presenting a favorable response to PPMX-
T003, showed a wider distribution of SLC7A5-expressing cells in
active cell cycles than spleen-resident ANKL (Figs. 3a and 4f,
Supplementary Fig. 7d–f), supporting those findings. We finally
assessed the antineoplastic potential of JPH-203 in vivo. Although
knockout of LAT1 in ANKL cells decrease their growth in the liver
of ANKL-PDX (Fig. 4h–j), no obvious therapeutic effect of JPH-203
in ANKL-PDX was observed (Supplementary Fig. S7g).
In conclusion, the influx of amino acids, which is abundant in

the liver sinusoid, through LAT1 promotes the cell cycle of ANKL
cells via mTOR/Myc activation and stimulates replication-
associated DNA damage caused by PPMX-T003.

DISCUSSION
We previously reported that PPMX-T003 is a promising therapeutic
agent for ANKLs, especially in the liver [8]. Based on our findings, a
phase Ib/II clinical trial of PPMX-T003 against ANKL was initiated in
April 2023 (jRCT2061230008). To enhance the evidence for the
high efficacy of PPMX-T003, a detailed mechanistic analysis of the
anti-neoplastic efficacy of PPMX-T003 was investigated in this
study. PPMX-T003 induced DNA double-strand breaks in ANKL
cells, specifically in the S-phase cell cycle. Furthermore, LAT1-
mediated amino acid influx is crucial for the G1-S cell cycle
transition of ANKL cells via mTOR/Myc activation, suggesting that
abundant extracellular amino acids are key determinants of
sensitivity to PPMX-T003 of ANKL cells.
Since accumulated studies have reported that the anti-

neoplastic efficacy of iron chelators, such as deferoxamine and
deferasirox, is caused by G1 arrest followed by p21-triggered
apoptosis [30–39], the cell death induced by PPMX-T003-mediated
specific TfR1 blockage in ANKL is unique. Further investigation of
the mechanisms, including iron sensing, iron metabolism, and iron
cellular distribution, is needed to clarify the differences in cell
cycle regulation between iron chelation and specific TfR1
inhibition.
Although the results obtained by in vitro experiments suggest

that the survival of ANKL cells highly depended on extracellular
cysteine rather than methionine, those by in vivo CRISPR/Cas9
gene knockout analyses suggest that a methionine transporter
LAT1 was more crucial for their in vivo growth than a cysteine
transporter ASCT2. These inconsist results might be caused by
activity of other cysteine uptake pathways, as several molecules

Fig. 4 LAT1-mediated amino acid influx positively regulates ANKL cell proliferation. a–d In vitro cell proliferation assay of liver-derived
ANKL cells and ANKL-derived cell lines cultured in single amino acid-deprived RPMI 1640. Each bar indicates the relative proliferation value to
all amino acid-included conditions. The red line indicates a relative proliferation value of 0.5, a cut-off of these assays. Total of three samples
per treatment group were analyzed. e Volcano plot of feature genes of cluster 1 of single-cell whole-transcriptome analysis described in Fig. 3,
compared with other clusters. Red dots and underbars indicate SLC family genes and genes encoding amino acid transporter, respectively.
f–g Violin plots of SLC7A5 (h) and SLC1A5 (i) of single-cell whole-transcriptome analysis described in Fig. 3. h In vitro competitive proliferation
assay of transduced Cas9-overexpressed NK92 cells with sgRNA-RFP plasmids by lentiviral vector. Proportions of RFP-positive cells (i.e., target
gene-knocked-out cells) were measured using flow cytometry two and eight days after lentiviral transduction. %RFP-positive cells is
determined by dividing the number of RFP-positive cells of day 8 by those of day 2. Total of three samples per treatment group were analyzed.
i In vivo luciferase assay of ANKL3-PDXs established with Cas9-overexpressed ANKL3 cells transduced with sgNT- or sgSLC7A5-RFP plasmids.
Assays were performed seven days after ANKL3 cell inoculation. Luminescent intensities of liver regions were measured. Experiments were
independently performed three times, and statistical value was calculated using paired t-test. j Proportions of RFP-positive cells (i.e., target
gene-knocked out cells) of liver-derived ANKL3 cells at the timing of in vivo luciferase assay in (h), measured using flow cytometry.
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coded in SLC family genes (e.g., SLC7A11, SLC7A9, and SLC3A1;
according to SLC TABLES; https://www.bioparadigms.org/slc/;
accessed on 7th February). Further investigations were needed
to evaluate cysteine dynamics in liver sinusoid of ANKL-PDXs.
LAT1 is a cancer-specific neutral amino acid transporter widely

investigated as a therapeutic target molecule [26, 29, 40]. In ANKL,
we found that LAT1 plays a crucial role in excess cell cycle
progression in the liver sinusoids via mTOR/Myc activation and
increases cellular sensitivity to PPMX-T003 by enhancing cellular
iron requirements. Accordingly, in the PPMX-T003 treatment of
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ANKL, LAT1 activity should be maintained, rather than inhibited, to
obtain a favorable therapeutic effect. Single-cell transcriptome
analysis suggested that liver-resident ANKL cells express SLC7A5
(LAT1 coding gene) regardless of their cell cycle, whereas spleen-
resident ANKL cells specifically express it only in their S-phase cell
cycle, suggesting that LAT1 expression is regulated by some
microenvironmental factors. To improve the therapeutic potential
of PPMX-T003, the detailed molecular mechanism of the environ-
mental regulation of LAT1 expression should be elucidated,
followed by drug discovery to regulate tumor LAT1 expression.
Clinically, LAT1 can potentially be a surrogate marker of the
therapeutic response to PPMX-T003, which will be investigated in
an ongoing clinical trial. JPH-203 monotherapy was ineffective to
ANKL in ANKL-PDXs (Supplementary Fig. S5g), in spite of the
significant growth incompetence of LAT1-knocked out ANKL cells
in liver sinusoid. We speculated that the discrepancy between
knockout of LAT1 and its pharmacological inhibition was caused
by insufficiency of the systemic permissive dose of JPH203 to exert
enough inhibition of LAT1 in the liver sinusoid, where LAT1 might
be highly upregulated by environmental factors as discussed in
the manuscript. The fact that inhibition of LAT1 is a therapeutic
effect in ANKL as well as its expression confers the sensitivity of
ANKL to PPMX-T003 suggest that TfR1 and LAT1 should not be co-
targeted in ANKL. The potential of LAT1 as a novel therapeutic
target of ANKL should further investigated focusing on these
concerns.
In conclusion, PPMX-T003 induces DNA double-strand breaks in

ANKL cells, depending on their DNA replication in the S-phase of
the cell cycle, and its pharmacological efficacy is determined by
LAT1-mediated amino acid influx via mTOR/Myc activation.

DATA AVAILABILITY
High-throughput data have been deposited in the Gene Expression Omnibus
(GSE246541).
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