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Purpose: To explore the mechanism underlying autophagy disruption in gingival epithelial

cells (GECs) in diabetic individuals.

Methods and materials: Bone marrow-derived macrophages (BMDMs) and GECs were

extracted from C57/bl and db/db mice, the exosomes (Exo) were isolated from BMDMs.

qRT‒PCR and Western blotting were performed to analyse gene expression. The Ani-

malTFDB database was used to identify relevant transcription factors, and miRNA

sequencing was utilised to identify relevant miRNAs with the aid of the TargetScan/

miRDB/miRWalk databases. A dual-luciferase assay was conducted to verify intermolecu-

lar targeting relationships.

Results: Similar to BMDMs, BMDM-derived Exos disrupted autophagy and exerted proin-

flammatory effects in GEC cocultures, and ATG7 may play a vital role. AnimalTFDB data-

base analysis and dual-luciferase assays indicated that NR5A2 is the most relevant

transcription factor that regulates Atg7 expression. SiRNA-NR5A2 transfection blocked

autophagy in GECs and exacerbated inflammation, whereas NR5A2 upregulation restored

ATG7 expression and ameliorated ExoDM-mediated inflammation. MiRNA sequencing,

with TargetScan/miRDB/miRWalk analyses and dual-luciferase assays, confirmed that

miR-381-3p is the most relevant miRNA that targets NR5A2. MiR-381-3p mimic transfection

blocked autophagy in GECs and exacerbated inflammation, while miR-381-3p inhibitor

transfection restored ATG7 expression and attenuated ExoDM-mediated inflammation.

Conclusion: BMDM-derived Exos, which carry miR-381-3p, inhibit NR5A2 and disrupt

autophagy in GECs, increasing periodontal inflammation in diabetes.

� 2024 The Authors. Published by Elsevier Inc. on behalf of FDI World Dental Federation.
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TaggedAPTARAH1IntroductionTaggedAPTARAEnd

TaggedAPTARAPThe gingival epithelium plays an important role as a barrier

against oral bacteria, and this barrier depends on normal sys-

temic and local immunity. Type II diabetes mellitus is a

chronic metabolic disorder that affects 537 million people

worldwide,1 and it is characterised by chronic hyperglycae-

mia and systemic inflammation. Uncontrolled hyperglycae-

mia can exacerbate periodontal inflammation, leading to

rapid alveolar bone absorption and eventual tooth loss, which

are largely attributed to the abnormal innate immune
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Table 1 – TaggedAPTARACaptionPrimers used in RT‒PCR analysis. TaggedAPTARAEnd

Gene TaggedAPTARAEnd Sequence (50 to 30) TaggedAPTARAEndTaggedAPTARAEndTaggedAPTARAEndTaggedAPTARATbody

P62 TaggedAPTARAEnd Forward: GAACTCGCTATAAGTGCAGTGT

Reverse: AGAGAAGCTATCAGAGAGGTGG TaggedAPTARAEndTaggedAPTARAEnd

Nlrp3 TaggedAPTARAEnd Forward: ATCAACAGGCGAGACCTCTG

Reverse: GTCCTCCTGGCATACCATAGA TaggedAPTARAEndTaggedAPTARAEnd

Il-1bTaggedAPTARAEnd Forward: GAAATGCCACCTTTTGACAGTG

Reverse: TGGATGCTCTCATCAGGACAG TaggedAPTARAEndTaggedAPTARAEnd

Atg3 TaggedAPTARAEnd Forward: CTGGAGATCACTTAGTCCACCA

Reverse: GTCGGAAGATATGCCTTCACTTT TaggedAPTARAEndTaggedAPTARAEnd

Atg7 TaggedAPTARAEnd Forward: TGACCTTCGCGGACCTAAAGA

Reverse: CCCGGATTAGAGGGATGCTC TaggedAPTARAEndTaggedAPTARAEnd

Lc3b TaggedAPTARAEnd Forward: TTATAGAGCGATACAAGGGGGAG

Reverse: CGCCGTCTGATTATCTTGATGAG TaggedAPTARAEndTaggedAPTARAEnd

Nr5a2 TaggedAPTARAEnd Forward: TCTGAGCCATGTAGCCTTGC

Reverse: GGAAAGTGACCATAGGGTTGGTA TaggedAPTARAEndTaggedAPTARAEnd

Gapdh TaggedAPTARAEnd Forward: TGACCTCAACTACATGGTCTACA

Reverse: CTTCCCATTCTCGGCCTTG TaggedAPTARAEndTaggedAPTARAEndTaggedAPTARAEnd
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responses of gingival epithelial cells (GECs). The precise

mechanism underlying this process is not yet fully under-

stood.TaggedAPTARAEnd

TaggedAPTARAPAutophagy is a biological process that plays a key role in

regulating the immune response. The formation of autopha-

gosomes is regulated by a group of autophagy-related (ATG)

proteins, and ATG8 (also known as LC3 or LC3b) is widely

used as a marker of autophagy.2 ATG3 and ATG7 act as E1

and E2 ubiquitin ligases of LC3b, respectively, and are

involved in the conversion of LC3-I to LC3-II, which is the

form of this protein that attaches to the autophagosome sur-

face. Previous studies have demonstrated that the autophagy

flux is disrupted under high glucose conditions, and chronic

or irreversible disruption of autophagy can lead to the overex-

pression of the NACHT, LRR, and PYD domain-containing

protein 3 (NLRP3) inflammasome. Thus, it is suggested that

autophagy plays an essential role in the inflammatory state

of GECs under high glucose conditions. TaggedAPTARAEnd

TaggedAPTARAPMacrophages play crucial roles in innate immune

responses of periodontal tissues. When infection occurs,

peripheral monocytes migrate to periodontal tissues, differ-

entiate into macrophages and participate in the elimination

of pathogens.3 Studies have indicated that macrophages can

alter the response of nonprofessional phagocytes (such as

GECs) to inflammation by releasing vesicles.4 Exosomes

(Exos), which are extracellular vesicles that contain a large

number of biochemical messengers (nucleic acids, proteins,

etc.), are thought to be involved in transportation, communi-

cation and intercellular regulatory processes.5 TaggedAPTARAEnd

TaggedAPTARAPHowever, the immunomodulatory effect of macrophages

on GECs has yet to be elucidated. To investigate this, bone

marrow-derived macrophages (BMDMs) and gingival epithe-

lial cells (GECs) were derived and cultured, the Exos from

BMDMs were extracted. BMDMs or BMDM-derived Exos were

cocultured with GECs. Bioinformatics analysis, including

miRNA sequencing, the AnimalTFDB database and TargetS-

can/miRWalk/miRanda databases, were conducted, dual

luciferase analysis was performed. It was found that miR-

381-3p from BMDMs is the key molecule that regulates NR5A2

expression in GECs, which blocks the autophagic flux and

exacerbates periodontal inflammasome activation in individ-

uals with diabetes. TaggedAPTARAEnd
Table 2 – TaggedAPTARACaptionDesignated primary antibodies. TaggedAPTARAEnd

Marker (species) TaggedAPTARAEnd Dilution TaggedAPTARAEnd Distributor/source
(catalog number) TaggedAPTARAEndTaggedAPTARAEndTaggedAPTARAEndTaggedAPTARATbody

Primary antibody: TaggedAPTARAEnd TaggedAPTARAEnd

ATG3 rabbit pAb TaggedAPTARAEnd 1:5000TaggedAPTARAEnd ZENBIO (383552)TaggedAPTARAEndTaggedAPTARAEnd

ATG7 rabbit pAb TaggedAPTARAEnd 1:5000TaggedAPTARAEnd ZENBIO (383498)TaggedAPTARAEndTaggedAPTARAEnd

IL-1b rabbit pAb TaggedAPTARAEnd 1:1000TaggedAPTARAEnd ZENBIO (511369)TaggedAPTARAEndTaggedAPTARAEnd

P62 rabbit pAb TaggedAPTARAEnd 1:5000TaggedAPTARAEnd ZENBIO (380612)TaggedAPTARAEndTaggedAPTARAEnd

NLRP3 rabbit pAbTaggedAPTARAEnd 1:1000TaggedAPTARAEnd ZENBIO (383319)TaggedAPTARAEndTaggedAPTARAEnd

LC3A/B rabbit pAb TaggedAPTARAEnd 1:10000TaggedAPTARAEnd ZENBIO (306019)TaggedAPTARAEndTaggedAPTARAEnd

b- Tubulin mouse mAb TaggedAPTARAEnd 1:5000TaggedAPTARAEnd ZENBIO (250007)TaggedAPTARAEndTaggedAPTARAEnd

NR5A2 rabbit pAb TaggedAPTARAEnd 1:1000TaggedAPTARAEnd ZENBIO (381879)TaggedAPTARAEndTaggedAPTARAEnd

GAPDH mouse mAb TaggedAPTARAEnd 1:10000TaggedAPTARAEnd ZENBIO (200306-7E4) TaggedAPTARAEndTaggedAPTARAEnd

Secondary antibody: TaggedAPTARAEnd TaggedAPTARAEnd

Anti-mouse IgG HRP-linked Ab TaggedAPTARAEnd 1:5000TaggedAPTARAEnd CST (7076) TaggedAPTARAEndTaggedAPTARAEnd

Anti-rabbit IgG HRP-linked Ab TaggedAPTARAEnd 1:5000TaggedAPTARAEnd CST (7074) TaggedAPTARAEndTaggedAPTARAEndTaggedAPTARAEnd
TaggedAPTARAH1Materials andmethods TaggedAPTARAEnd

TaggedAPTARAH2Ethics statement TaggedAPTARAEnd

TaggedAPTARAPThe animals that were used in this study were obtained from

the National Resource Center of Model Mice (Nanjing, China).

All the experimental protocols complied with the ARRIVE

guidelines and were approved by the Animal Care and Use

Committee of Sun Yat-sen University (SYSU-IACUC-2019-

000981).TaggedAPTARAEnd

TaggedAPTARAH2RT‒PCR analysisTaggedAPTARAEnd

TaggedAPTARAPTotal RNA was extracted from cells using Nucleozol Reagent

(Gene Company Limited, Hong Kong, China). The RNA was

then reverse transcribed to generate first-strand cDNA using
the PrimeScript RT Master Mix (Toyobo Co, Ltd, Osaka, Japan).

The cDNA was used as a template for PCRs using the Bio-Rad

CFX96 Detection System (Roche, Sweden) and SYBR PCR Mas-

ter Mix (Roche, Indianapolis, IN, USA). The primers that were

used are listed below (Table 1). A relative quantitative analy-

sis was carried out to quantify the relative gene expression

compared to the expression of the housekeeping gene GAPDH

using a standard curve.TaggedAPTARAEnd

TaggedAPTARAH2Western blotting TaggedAPTARAEnd

TaggedAPTARAPRadioimmunoprecipitation assay (RIPA) buffer (Millipore, MA,

USA) was used to extract proteins on ice for 30 minutes, fol-

lowed by centrifugation for 15 minutes. The total protein con-

centrations of the lysates were then determined using the

BCA protein assay kit (CWBioTech, Beijing, China). Subse-

quently, the proteins were separated by SDS‒PAGE and trans-

ferred to polyvinylidene fluoride (PVDF) membranes

(Millipore, MA, USA). The PVDF membranes were then

blocked with a buffer containing 5% bovine serum albumin

for 1 hour at room temperature prior to being probed with the

designated primary antibodies as listed (Table 2). Then, a sec-

ondary antibody (1:1000; Abcam) was added and incubated,
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and a chemiluminescence kit (Millipore) was used to visualise

the results. TaggedAPTARAEnd

TaggedAPTARAH2BMDM and GEC derivation, culture, and identification TaggedAPTARAEnd

TaggedAPTARAPBone marrow cells were harvested from db/db mice by flush-

ing their femurs, and the cells were differentiated in

Dulbecco’s modified Eagle’s medium (DMEM/F-12; Gibco;

Thermo Fisher Scientific, MA, USA) supplemented with 20%

L929 supernatant containing macrophage-colony stimulating

factor (M-CSF), 20% foetal bovine serum (FBS; Gibco; Thermo

Fisher Scientific, USA) and 100 IU/mL penicillin/streptomycin

(Sigma‒Aldrich, MO, USA). After 7 days, single-cell suspen-

sions of BMDMs were resuspended at a density of 106 cells/

100 mL in Zombie viability dye (BioLegend, San Diego, CA,

USA) and incubated for 15 minutes at room temperature to

exclude dead cells from the analysis. Subsequently, the sus-

pensions were stained with antibody against F4/80 (123115,

BioLegend, San Diego, CA, USA) in the dark at 4°C for 30

minutes. Data were acquired with CytoFlex (Beckman Cyto-

Flex, USA) and analysed using FlowJo V10.0 (Treestar, Ash-

land, OR, USA). The mice were euthanised with an

intraperitoneal overdose of anaesthesia to ensure that they

experienced no discomfort. TaggedAPTARAEnd

TaggedAPTARAPThe isolation, processing and analysis of GECs that were

harvested from C57BL mice were performed as previously

described with slight modifications.6 Briefly, the mice were

euthanised, and gingival tissues were peeled from the ante-

rior border of the maxilla bone. The gingival tissues were cut

into small pieces that were 0.3 cm in diameter using a scalpel

and then digested in a solution of 2 mg/mL dispase II (Sigma‒
Aldrich, St. Louis, MO, USA) for 8 h at 4°C. After centrifuga-

tion, the pale yellow gingival epithelium was carefully sepa-

rated from the connective tissue using microscopic tweezers.

The specimens were digested with 0.05% trypsin-EDTA (Invi-

trogen) for 15 minutes at 37°C, centrifuged, resuspended, and
incubated in DMEM/F-12 (Gibco; Thermo Fisher Scientific,

MA, USA) supplemented with 10% foetal bovine serum at 37°
C in 5% CO2. After 14 days of culture, cell passage was per-

formed using 0.05% trypsin-EDTA (Invitrogen). Cells in the

first or second passage were cultured for 24 hours to confirm

cell attachment, and the cells were cultured for another

24 hours for the indicated experiments.TaggedAPTARAEnd

TaggedAPTARAH2Exo extraction and identification TaggedAPTARAEnd

TaggedAPTARAPTo harvest Exos from BMDMs, the cells were grown to 80%

confluence in complete medium supplemented with 10%

Exo-depleted FBS for 2 days. Exo-depleted FBS was prepared

by the ultracentrifugation of FBS at 4°C and 120,000 £ g for

18 hours, followed by filtration using a 0.22-mm syringe filter.

Subsequently, conditioned media from BMDM cultures were

centrifuged at increasing speeds to eliminate large dead cells

and cell debris. The final supernatants were then ultracentri-

fuged at 120,000 £ g for 2.5 hours at 4°C to pellet small

vesicles, which corresponded to Exos. The Exo pellets were

reconstituted in PBS and stored at -80°C. Flow cytometry was

used to verify the presence of Exo surface markers, such as

CD63 (BD Biosciences, San Jose, CA, USA, 556019, 1:1000) and

CD81 (BD Biosciences, San Jose, CA, USA, 555676, 1:1000). TaggedAPTARAEnd
TaggedAPTARAH2Transwell culture TaggedAPTARAEnd

TaggedAPTARAPCocultures of BMDMs and GECs were established in a Trans-

well system with a 0.4 mm pore size (4 £ 106 pores/cm2). For

the experiment, 2.5 £ 105 GECs were seeded in the lower com-

partment of a 6-well Transwell system, while 2.5 £ 105

BMDMs were seeded in the insert. The culture medium that

was used for this experiment was DMEM supplemented with

10% Exo-depleted FBS, 100 IU/mL penicillin and 100 mg/mL

streptomycin. Duplicate samples were established in each

experiment, and the experiment was repeated three times.

The purpose of this experiment was to test the hypothesis

that BMDMs exert an effect on GECs through Exos.TaggedAPTARAEnd
TaggedAPTARAH2Verification of Exo uptake TaggedAPTARAEnd

TaggedAPTARAPThe uptake of Exos by GECs was assessed using a Dil staining

kit (YEASEN, Shanghai, China) according to the man-

ufacturer’s instructions. One hundred microliters of purified

BMDM-Exos was incubated with 5 mL of Dil for 15 minutes at

37°C, followed by ultracentrifugation at 120,000 £ g for 90

minutes to remove the unbound dye. The labelled Exos were

then washed twice with PBS with centrifugation at

120,000 £ g, and the Exos were resuspended in PBS prior to

use. Subsequently, the labelled Exos were incubated with

GECs for 24 hours, and the cells were observed under a confo-

cal microscope (Zeiss, Germany).TaggedAPTARAEnd
TaggedAPTARAH2Exo small RNA sequencing TaggedAPTARAEnd

TaggedAPTARAPBMDM-derived Exos from db/db mice and C57bl mice was

extracted. Total RNA was isolated by using Trizol (Invitrogen,

USA). The quantity and integrity of RNA yield was assessed

by using the Qubit�2.0 (Life Technologies, USA) and Agilent

2200 TapeStation (Agilent Technologies, USA) separately. 1mg

total RNA of each samples were used to prepare small RNA

libraries by NEBNext� Multiplex Small RNA Library Prep Set

for Illumina (NEB,USA) according to manufacturer’s instruc-

tions. The libraries were sequenced by HiSeq 2500 (Illumina,

USA) with single-end 50bp at Ribobio Co. Ltd (Ribobio, China). TaggedAPTARAEnd

TaggedAPTARAPThe raw reads were processed by filtering out containing

adapter, poly ’N’, low quality, smaller than 17nt reads by

FASTQC to get clean reads. Mapping reads were obtained by

mapping clean reads to reference genome of by BWA. miR-

Deep2 was used to identify known mature miRNA based on

miRBase21 (www.miRBase.org) and predict novel miRNA.

Databases of Rfam12.1 (www.rfam.xfam.org) and pirnabank

(www.pirnabank.ibab.ac.in) were used to identify rRNA,

tRNA, snRNA, snoRNA and piRNA by BLAST. The miRNA

expression were calculated by RPM (Reads Per Million) values

(PRM=(number of reads mapping to miRNA/ number of reads

in Clean data) £ 106).TaggedAPTARAEnd

TaggedAPTARAPThe expression levels were normalised by RPM, RPM is

equal to (number of reads mapping to miRNA/number of

reads in Clean data) £ 106. Differential expression between

two sets of samples was calculated by edgeR algorithm

according to the criteria of |log2 (Fold Change) |≥1 and P-value

<.05.TaggedAPTARAEnd

http://www.miRBase.org
http://www.rfam.xfam.org
http://www.pirnabank.ibab.ac.in
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TaggedAPTARAH2Bioinformatics analysis TaggedAPTARAEnd

TaggedAPTARAPAccording to the AnimalTFDB database (v. 3.0), NR5A2 is the

most relevant transcription factor that regulates Atg7 expres-

sion. To identify miRNAs that target NR5A2 mRNA, we used

TargetScan database version 6.0 (http://www.targetscan.org/),

miRWalk version 3.0 (http://mirwalk.umm.uni-heidelberg.de/)

and miRanda (http://www.microrna.org/microrna/home.do).

Moreover, we combined the analysis of differentially expressed

miRNAs with the prediction of miRNA targets and conducted

an in-depth analysis of the intersecting gene set.TaggedAPTARAEnd
TaggedAPTARAH2Dual luciferase analysis TaggedAPTARAEnd

TaggedAPTARAPTwo dual luciferase experiments were used in this study. One

is conducted to verify the relationship between miR-381-3p

and NR5A2. To this end, Nr5a2 recombinant plasmids (Nr5a2-

WT and Nr5a2-Mut) and mimic NC or miR-381-3p mimic

were transfected into 293T cells. The luciferase activity was

then measured using a dual luciferase assay kit (Promega

Corporation, Wisconsin, USA) according to the man-

ufacturer’s instructions. Another dual luciferase activity

assay was conducted to verify the relationship between ATG7

and NR5A2. The sequence of the ATG7 promoter region was

inserted upstream of F-Luciferase in the pGL3-basic vector,

and the coding sequence of the transcription factor NR5A2

was inserted into the eukaryotic expression vector pcDNA3.1.

The R-Luciferase vector (pRL-TK) was used as an internal ref-

erence, and 293T cells were cotransfected for this assay. The

F-Luciferase activity was then measured using luciferase

readings. TaggedAPTARAEnd
TaggedAPTARAH2Statistical analyses TaggedAPTARAEnd

TaggedAPTARAPData from at least three independent experiments are pre-

sented as the mean § s.d. After testing for normality, all the

data were analysed using 2-tailed unpaired Student’s t tests

or one-way ANOVA with Tukey’s post hoc test. All the statis-

tical analyses were conducted using GraphPad Prism soft-

ware.TaggedAPTARAEnd
TaggedAPTARAH1Results TaggedAPTARAEnd

TaggedAPTARAH2Coculturing GECs with BMDMs from diabetic mice impairs the
autophagic flux and exacerbates inflammation via the
transmission of ExosTaggedAPTARAEnd

TaggedAPTARAPInfiltration and dysfunction of macrophages in the gingival

epithelium of diabetic mice has been reported.7 To further

investigate this phenomenon and discern whether BMDMs

may regulate GECs, bone marrow cells were isolated from

mice and differentiated into macrophages, and these macro-

phages were identified by flow cytometry (Figure 1A). Subse-

quently, extracellular vesicles were purified from BMDM

culture supernatants and characterised by determining Exo

marker expression by flow cytometry (Figure 1B). Next, Dil-

labelled Exos were cocultured with GECs, resulting in an

observable amount of red fluorescence in GECs, which
indicated that macrophage-secreted Exos were successfully

taken up by GECs (Figure 1C).TaggedAPTARAEnd

TaggedAPTARAPNext, BMDMs/Exos+GECs coculture systems were estab-

lished (Figure 1D), and the autophagy flux and inflammation

levels were evaluated by qRT‒PCR and Western blotting.

Compared to the coculture system that included BMDMs

from C57BL mice+GECs (GECs+BMDMscon group), the mRNA

expression levels of Nlrp3, Il1b, and P62 were significantly

increased and the expression levels of Atg7 were significantly

decreased in the coculture system that included BMDMs from

db/db mice+GECs (GECs+BMDMsDM group) (Figure 1E). Similar

results were observed in the coculture system that included

BMDM Exos from db/db mice+GECs (GECs+ExosDM group)

(Figure 1E). In comparison to the GECs+BMDMscon group, the

protein expression levels of NLRP3 and IL1b were significantly

increased, while the LC3Ⅱ/Ⅰ ratio and ATG7 expression levels

were decreased in the GECs+BMDMsDM group (Figure 1F,G).

Similar results were observed in the GECs+ExosDM group

(Figure 1F/G). No significant difference in the ATG3 mRNA or

protein expression levels was observed between the GECs

+BMDMscon and GECs+BMDMsDM groups (Figure 1E-G). These

results suggest that BMDMs from diabetic mice can disrupt

the autophagic flux and exacerbate inflammation in GECs in

an Exo transmission-dependent manner, and ATG7 may play

a key role. TaggedAPTARAEnd
TaggedAPTARAH2NR5A2 is a major transcription factor that regulates the
transcription of the autophagy-related protein ATG7 in GECsTaggedAPTARAEnd

TaggedAPTARAPAnalysis of the Animal TFDB database (v. 3.0) revealed that

NR5A2 is the most relevant transcription factor that regulates

Atg7 expression, as indicated by the presence of four-fork-

head motifs in the 1000 bp upstream sequence of the Atg7

transcription start site (Supplementary Data S1). To further

investigate the binding relationship, a dual-luciferase

reporter assay was conducted with mutated versions of the

four-forkhead motifs (MUT1, MUT2, MUT3, and MUT4)

(Figure 2A). The results showed that the luciferase activity

was significantly increased in the Atg7-MUT3/Atg7-MUT4

group compared to the Atg7-WT group, suggesting that bind-

ing sites 3 and 4 were the binding targets of NR5A2 (Figure 2B).TaggedAPTARAEnd

TaggedAPTARAPThe expression of NR5A2 in GECs from diabetic and nondi-

abetic mice was then measured using RT‒PCR and Western

blotting. Western blotting analysis revealed that the protein

expression levels of NR5A2 in GECs were significantly lower

in diabetic mice (Figure 2C,E). However, the mRNA expression

of Nr5a2 in GECs was not significantly different (Figure 2F).

Furthermore, compared to the GECs+BMDMscon group, the

protein expression level of NR5A2 was downregulated in the

GECs+BMDMsDM and GECs+ExosDM groups (Figure 2D,G),

while the mRNA expression level of Nr5a2 was not signifi-

cantly altered (Figure 2H).TaggedAPTARAEnd

TaggedAPTARAPCollectively, these findings suggest that NR5A2 functions

as a transcription factor and upregulates ATG7 expression in

GECs, and its protein expression is downregulated at the

posttranscription level in the GECs of individuals with diabe-

tes. It is likely that in individuals with diabetes, BMDMs play

a key role in regulating the protein expression of NR5A2 in

GECs via Exo transmission. TaggedAPTARAEnd

http://www.targetscan.org/
http://mirwalk.umm.uni-heidelberg.de/
http://www.microrna.org/microrna/home.do


TaggedAPTARAFigure

Fig. 1 –Macrophages disrupt the autophagic flux and enhance inflammation in the gingival epithelium in an Exo transmission-

dependentmanner. A, The purity of BMDMswas determined by stainingwith an anti-F4/80 antibody and flow cytometry. B, Rep-

resentative fluorescencemicroscopic images of the Exo uptake assay. Scale bar: 20mm.Merged images of Exos and cells showed

that DIL-labelled BMDMs/Exos (red) were incorporated into Hoechst-labelled GECs (green). C, Expression of extracellular vesicle

markers (CD63 and CD81)wasmeasured by flow cytometry. D, Schematic diagramof the Transwell assaywith BMDMs andGECs

(By Figdraw). E, qRT‒PCRwas used to analyse the effect of BMDMs and BMDMs/Exos on the autophagic flux (autophagy genes:

Atg3, Atg7, Lc3b, and p62) and inflammation levels (inflammatory genes:Nlrp3 and Il-1b) in GECs. F andG,Western blottingwas

used to analyse the autophagic flux and inflammation levels in GECS after theywere incubatedwith BMDMs and BMDMs/Exos (F),

and statistical analysiswas performed. G, All theWestern blotting and quantitative RT‒PCR experimentswere repeated three inde-

pendent times (n=3), *P< .05 **P< .01 ***P< .001. The data are shown as themean§s.d.DM: harvested fromdb/dbmice; Con: har-

vested fromC57BLmice; Exo: Exosome secreted by bonemarrow-derivedmacrophages.TaggedAPTARAEnd

taggedaptaraendd i a b e t i c mac ro phag e e xo s oma l 827



TaggedAPTARAFigure

Fig. 2 –NR5A2 is the transcription factor that regulates ATG7 expression in GECs and is inhibited by BMDMs/Exos under dia-

bete conditions. A and B, A dual-luciferase reporter assay was conducted to compare the activities of theWT Atg7 promoter

or the promoter with mutations in binding site 1-4 (MUT1-4) of the NR5A2 binding element. A, Luciferase activity was mea-

sured and analysed. B, C, and E, Western blotting was used to analyse NR5A2 expression in nondiabetic mice and diabetic

mice ), and statistical analysis was performed (E,F) RT‒PCR analysis of Nr5a2mRNA expression in GECs from nondiabetic

mice and diabetic mice. D and G, Western blotting was used to analyse NR5A2 expression in GECs after incubation with

BMDMs and BMDMs/Exos (D), and statistical analysis was performed (G). H, RT‒PCR analysis of Nr5a2 mRNA expression in

GECs after incubation with BMDMs and BMDMs/Exos. All theWestern blotting and quantitative RT‒PCR experiments were

repeated three independent times (n=3), *P< .05 **P< .01 ***P < .001. The data are shown as the mean§ s.d. DM: harvest from

db/db mice; Con: harvested from C57BLmice; Exo: exosomes secreted by bonemarrow-derived macrophages. TaggedAPTARAEnd

TaggedAPTARAEnd828 huang e t a l .
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TaggedAPTARAH2Decreasing NR5A2 activity impairs the autophagic flux and
exacerbates inflammation in GECsTaggedAPTARAEnd

TaggedAPTARAPTo explore the relationship between NR5A2 and autophagic

flux, NR5A2-targeting siRNA was utilised to establish a GEC

model. Quantitative RT‒PCR and Western blotting were per-

formed to measure the expression of Atg7, P62, and Lc3b (LC3-

I and LC3-II). The results indicated that the mRNA expres-

sions of Nlrp3, Il1b, Lc3b, and P62 were significantly upregu-

lated, while Atg7 was significantly downregulated in GECs

transfected with NR5A2-targeting siRNA (Figure 3B). Corre-

spondingly, the protein expressions of NLRP3, IL1b and P62

were significantly increased, while ATG7 and LC3II/I were sig-

nificantly decreased in GECs transfected with NR5A2-target-

ing siRNA (Figure 3A,C). These results suggested that

downregulation of NR5A2 could inhibit ATG7-dependent

autophagy and exacerbate inflammation in GECs. TaggedAPTARAEnd

TaggedAPTARAPTo further investigate the effects of NR5A2 overexpression

on the role of exosomes secreted by BMDMs from db/db mice

(ExosDM) in disrupting autophagy and exacerbating inflam-

mation in GECs, a NR5A2-overexpressing GEC model

(GECsHBLV-NR5A2) was established via lentivirus transfection.

After coincubation with ExosDM, trends of decreased inflam-

matory indicator expression (NLRP3 and IL1b) and autophagic

substrate accumulation (P62) were observed compared to

control vector-introduced GECs (GECsHBLV-PURO). Furthermore,

trends of recovery in the levels of autophagic substrate deliv-

ery indicators (ATG7 and LC3-II/I) were also observed

(Figure 3D-3F). These results indicated that NR5A2 overex-

pression could partially rescue ExoDM-induced autophagy dis-

ruption and prevent ExoDM-mediated inflammation in GECs. TaggedAPTARAEnd

TaggedAPTARAH2MiR-381-3p levels are significantly elevated in GECs after
coculture with BMDMs from diabetic miceTaggedAPTARAEnd

TaggedAPTARAPMacrophages are phagocytic cells that play crucial roles in

periodontitis by initiating innate immune responses and reg-

ulating various stages of inflammation. Three miRNA target

databases (TargetScan/miRDB/miRWalk) were applied to

identify miRNAs that regulate NR5A2. Subsequently, small

RNA sequencing (miR-seq) was used to identify and validate

the differentially expressed miRNAs in Exos from the control

group (ExosCon) and db/db mouse group (ExosDM). As a result,

116 miRNAs were identified (absolute expression fold

change>2 and P < .05) (Supplementary Data S2). A Venn dia-

gram was used to visualise the intersection of database-pre-

dicted miRNAs and differentially expressed miRNAs that

were identified by small RNA sequencing; the Venn diagram

identified 8 miRNAs (Figure 4A). The fold-change values

(ExosDM versus ExosCon) of these 8 miRNAs according to the

small RNA sequencing results are shown in descending order

(Figure 4B). After comprehensive bioinformatics analysis and

small RNA sequencing data analysis, miR-381-3p was found

to be the most significantly upregulated miRNA and was

selected for further analysis. To validate the sequencing

results, the expression levels of miR-381-3p in GECs that were

coincubated with ExosCon/ExosDM/ExosCon+LPS/ExosDM+LPS

were examined using qRT‒PCR, which confirmed that the

miR-381-3p expression levels were significantly upregulated

in the diabetes groups (Figure 4C).TaggedAPTARAEnd
TaggedAPTARAPA double luciferase reporter assay was utilised to assess

whether Nr5a2 mRNA is a target of miR-381-3p. The results

showed that miR-381-3p significantly decreased the lucifer-

ase activity of WT-Nr5a2 but had no significant effect on the

luciferase activity of MUT-Nr5a2 (Figure 4D). This suggests

that Nr5a2 mRNA is a predicted target of miR-381-3p and that

these molecules interact at a potential binding site within the

30-UTR of Nr5a2 mRNA (Figure 4D,E). These findings indicate

that miR-381-3p may be a potential biomarker of exacerbated

inflammation in the periodontium of individuals with

diabetes. TaggedAPTARAEnd

TaggedAPTARAH2MiR-381-3p enrichment disrupts the autophagic flux and
exacerbates inflammation in GECs by targeting NR5A2 TaggedAPTARAEnd

TaggedAPTARAPGECs were transfected with a miR-381-3p mimic/inhibitor or

negative control (NC) to investigate the function of Exo-

derived miR-381-3p. qRT‒PCR and Western blotting analyses

revealed that miR-381-3p suppresses NR5A2 protein expres-

sion in GECs, as the protein expression level of NR5A2 was

significantly decreased after miR-381-3p mimic transfection

compared with NC transfection (Figure 5A,C). Additionally,

the expression of autophagy-related genes (Atg7, P62 and

Lc3b) and inflammation-related genes (Nlrp3 and Il1b) were

analysed. The results showed that the mRNA and protein

expression levels of NLRP3, IL1b and P62 were significantly

increased and the ATG7 and LC3II/I levels were significantly

decreased in miR-381-3p mimic-transfected GECs compared

with the NC group (Figure 5A-C). This suggests that miR-381-

3p mimic transfection disrupts the autophagic flux and exac-

erbates inflammation in GECs. TaggedAPTARAEnd

TaggedAPTARAPMoreover, the mRNA and protein expression levels of

NLRP3, IL1b and P62 were significantly decreased and the

ATG7 and LC3II/I levels were significantly increased in the

miR-381-3p inhibitor+ExoDM group compared with the ExoDM

group (Figure 5D-F). This implies that the miR-381-3p inhibi-

tor reverses the ExoDM-mediated disruption of the autophagy

flux and alleviates inflammation in GECs. TaggedAPTARAEnd

TaggedAPTARAPOverall, a high-glucose microenvironment exacerbates

inflammation in GECs through NR5A2-dependent autophagic

flux disruption, and BMDM-derived exosomal miR-381-3p

serves as a posttranscriptional negative regulator of NR5A2. TaggedAPTARAEnd
TaggedAPTARAH1Discussion TaggedAPTARAEnd

TaggedAPTARAPThe gingival epithelium performs its barrier function in two

ways. One is the physical barrier function which is mediated

by interconnecting keratinocytes that form bridges between

adjacent epithelial cells via cell adhesion molecules (CAMs).8

The second is the immune homeostasis. To address bacterial

challenges, gingiva epithelial cells (GECs) express different

kinds of pattern recognition receptors (PRRs) that contribute

to the recognition of pathogen-associated molecular patterns

(PAMPs).9−11 In early stages of infection, GECs respond

strongly to LPS through its recognition by TLRs, producing

cytokines such as IL-6, INF-g, or TNF-a and causing persistent

periodontal inflammation.12,13 GECs are also considered non-

professional phagocytes that actively internalise pathogens

in an opsonization-independent manner.14 Periodontal



TaggedAPTARAFigure

Fig. 3 –The effect of NR5A2 expression on the autophagy flux and inflammation level in GECs. A and C, Western blotting analy-

sis of the autophagic flux and inflammation levels in GECs after si-NR5A2 transfection (A), and statistical analysis was per-

formed (C). B, The autophagy flux (autophagy genes: Atg7, Lc3b, and p62), inflammation levels (inflammatory genes: Nlrp3 and Il-

1b), and Nr5a2 mRNA expression in GECs was analysed after si-NR5A2 transfection. D and F, Western blotting was used to ana-

lyse the autophagic flux and inflammation levels in GECs to verify the rescue effect of NR5A2 overexpression through lentiviral

transduction (D), and statistical analysis was performed (F). E, qRT‒PCR analysis of the autophagy flux (autophagy genes: Atg7,

Lc3b, and p62), inflammation levels (inflammatory genes: Nlrp3and Il-1b) and Nr5a2 mRNA expression in GECs after NR5A2 over-

expression through lentiviral transduction. All the Western blotting and quantitative RT‒PCR experiments were repeated three

independent times (n=3), *P<005 **P< .01 ***P < .001. The data are shown as the mean§s.d. DM: harvested from db/db mice;

Con: harvested from C57BL mice; Exo: exosomes secreted by bone marrow-derived macrophages.TaggedAPTARAEnd
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Fig. 4 –MiR-381-3p is the most prominent miRNA that targets Nr5a2 in GECs. A, Venn diagram showing the intersection of

miRNAs that were predicted with three databases (TargetScan/miRDB/miRWalk) and differentially expressed miRNAs that

were identified bymiRNA sequencing (comparing gingival tissue from db/db mice and C57BLmice). B, Ranked bar graph

shows the log2-fold change in the expression of 8 overlapping miRNAs according to miRNA sequencing datasets, with

downregulation shown as negative values and upregulation as positive values. Mmu-miR-381-3p had themost significant

and highest fold change. C, qRT‒PCR validation of miR-381-3p expression in BMDMs/Exos (nondiabetic mice and diabetic

mice) in the presence or absence of Pg-LPS. D, Luciferase assay was used to analyse the interaction betweenmiR-381-3p and

the 3’-UTR of Nr5a2 mRNA. E) Predicted miR-381-3p target sequences in the 3’-UTR of Nr5a2mRNA (m-Nr5a2-3UTR-wt) and

sequence after mutations were made in the 3’-UTR of Nr5a2mRNA (m-Nr5a2-3UTR-mu). All theWestern blotting and quan-

titative RT‒PCR experiments were repeated three independent times (n=3), *P< .05 **P< .01 ***P < .001. The data are shown as

the mean§ s.d. DM: harvested from db/db mice; Con: harvested from C57BL mice; Exo: exosomes secreted by bonemarrow-

derived macrophages; Pg: Porphyromonas gingivalis. TaggedAPTARAEnd

taggedaptaraendd i a b e t i c mac ro phag e e xo s oma l 831



TaggedAPTARAFigure

Fig. 5 –The effect of miR-381-3p expression on the autophagic flux and inflammation level in GECs. A and C,Western blotting

analysis of the autophagic flux and inflammation levels in GEC after miR-381-3pmimic transfection (A), and statistical anal-

ysis was performed (C). B, qRT‒PCR analysis of the autophagy flux (autophagy genes: Atg7, Lc3b, and p62), inflammation lev-

els (inflammatory genes: Nlrp3 and Il-1b) and Nr5a2mRNA expression in GECs after miR-381-3pmimic transfection. D and F,

Western blotting was used to analyse the autophagy flux and inflammation levels in GECs to verify the rescue effect in GECs

after incubation with BMDMs/Exos from diabetic mice after miR-381-3p inhibitor transfection (D), and statistical analysis was

performed (F). E) qRT‒PCR analysis of the autophagy flux (autophagy genes: Atg7, Lc3b, and p62), inflammation levels

(inflammatory genes: Nlrp3and Il-1b) and Nr5a2mRNA expression in GECs after miR-381-3p inhibitor transfection. All the

Western blotting and quantitative RT‒PCR experiments were repeated three independent times (n=3), *P< .05 **P< .01

***P < .001. The data are shown as the mean§ s.d. DM: harvested from db/db mice; Con: harvested from C57BL mice; Exo:

exosomes secreted by bonemarrow-derived macrophages; miR inh: miR-381-3p inhibitor TaggedAPTARAEnd

TaggedAPTARAEnd832 huang e t a l .
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pathogens may cross epithelial barriers, get access to internal

tissues and survive under the impaired barrier function, lead-

ing to severe periodontitis. However, the detail mechanism is

still unclear. TaggedAPTARAEnd

TaggedAPTARAPAutophagy, orchestrated by the interplay of autophagy-

related (ATG) proteins, including ATG3 and ATG7, is responsi-

ble for the degradation of cytoplasmic contents such as pro-

teins and organelles.15 Furthermore, a connection between

autophagy and phagocytosis exists through LC3-associated

phagocytosis (LAP), observed in both professional and non-

professional phagocytes, including gingival epithelial cells

(GECs).16 As a critical component of epithelial cell defense

mechanisms, autophagy contributes significantly to the

innate immune response against antigens. However, the

impact of autophagy on intracellular bacteria varies based on

their stage and state, particularly under inflammatory and

non-inflammatory conditions. TaggedAPTARAEnd

TaggedAPTARAPUnder normal circumstances, autophagy acts protectively

against bacteria by directing them to autophagosomes, which

subsequently fuse with lysosomes.17 Nevertheless, certain

intracellular bacteria, such as Porphyromonas gingivalis (P. gin-

givalis), have evolved strategies to manipulate autophagy, dis-

rupting host defense mechanisms and persisting within

GECs. Under such conditions, autophagosomes serve as an

additional mechanism by which bacteria target and escape

immune surveillance.18 P. gingivalis, recognised as the key-

stone pathogen of periodontitis, specifically binds to Beta-1

integrins in gingival epithelial cells, facilitating invasion.19

Upon internalization, P. gingivalis localises to endoplasmic

reticulum (ER)-rich regions, promoting LC3 lipidation and

phagophore formation. Facilitating autophagy supports P. gin-

givalis entry into GECs, enables colonization within autopha-

gosomes, and aids in evading the binding of antimicrobial

proteins NDP52 and p62, ultimately escaping lysosomal deg-

radation.20 In later stages of autophagy, P. gingivalis promotes

its long-term survival within GECs by facilitating lysosomal

efflux and inhibiting autophagosome-lysosome fusion. Addi-

tionally, autophagy plays a role in both cytokine production

and elimination, contributing to the preservation of balanced

immune responses amidst inflammation. TaggedAPTARAEnd

TaggedAPTARAPThe progression of diabetes often coincides with a chronic

systemic inflammatory state.21 Enhanced autophagy, as indi-

cated by the upregulation of numerous ATG proteins during

periodontal inflammation, suggests a protective role against

inflammation to some extent.22 However, impaired autoph-

agy has been observed in keratinocytes, BMDMs, and endo-

thelial cells under high glucose conditions, affecting cell

viability and function.23,24 Our study reveals impaired barrier

function in GECs of individuals with diabetes, manifested by

the inhibition of intracellular autophagy and an exacerbation

of the inflammatory response.TaggedAPTARAEnd

TaggedAPTARAPAmong autophagy-related (ATG) genes, ATG3 and ATG7

are two of the most important regulators that mediate LC3

maturation and switching.25 However, significant differences

were observed in the mRNA and protein expressions of ATG7

but not ATG3 in our study, indicating that ATG7 may play a

key role in this autophagy flux disruption. To investigate the

upstream regulatory molecules of ATG7, the Animal TFDB

database (v. 3.0) was introduced to identify the most relevant

transcription factor that regulates ATG7 expression.
Eventually, NR5A2 was identified and was successfully con-

firmed in subsequent dual-luciferase reporter assays. TaggedAPTARAEnd

TaggedAPTARAPMacrophages play pivotal roles in orchestrating the

immune response during periodontal inflammation.26 It was

reported that macrophages can regulate epithelial function

through extracellular vehicles (EVs);4,27−29 EVs carry miRNA

molecules, which were proven to participate in the pro-

gression of atherosclerosis and attenuation of pulmonary

fibrosis through macrophage-epithelial cell/endothelial cell

interactions.30,31 Differential expression of miRNAs in macro-

phage Exos was reported to occur through the NF-kB/JAK-

STAT signalling pathway under high glucose conditions. To

determine whether BMDMs disrupt the autophagic flux of

GECs, BMDM/Exo+GEC coculture systems were established to

investigate the changes in the autophagy flux in GECs; the

results proved that BMDMs from diabetic mice could disrupt

the autophagy flux and exacerbate inflammation in GECs in

an Exo transmission-dependent manner. An increasing number

of noncoding RNAs have been also reported to regulate ATG

expression.32 Finally, three miRNA target databases (TargetS-

can/miRDB/miRWalk) were used to predict relevant miRNAs,

and these results were combined with the BMDM exos RNA-

seq results of db/db and control mice. MiR-381-3p was proven

to be the key molecule that bridges the interaction between

macrophages and GECs under diabetes conditions.TaggedAPTARAEnd

TaggedAPTARAPNR5A2, which is also known as liver receptor homolog-1

(LRH-1), was identified early as a regulator of intracellular

cholesterol homeostasis.33 It was previously demonstrated

that NR5A2 is expressed in pancreatic islets, which play an

important role in the maintenance of glucose homeostasis.34

Among the various regulatory modalities, transcriptional and

posttranslational regulation is thought to be the most likely

mechanism of regulation.35 In our study, miR-381-3p was

proven to downregulate NR5A2 expression, which is consis-

tent with our previous suggestion. Recently, NR5A2 was

widely studied as a potential target for treating diabetes mel-

litus. Research has demonstrated that NR5A2 agonism effec-

tively prevents pancreatic b-cell apoptosis and alleviates

immune-dependent inflammation of the pancreas.33 We dis-

covered that NR5A2 plays an important role in the pathogene-

sis of diabetic periodontitis. Therefore, NR5A2 may be a

promising therapeutic target for enhancing epithelial barrier

function in diabetic periodontitis. TaggedAPTARAEnd

TaggedAPTARAPIn this study, we revealed impaired communication

between the gingival epithelial cells and macrophages

through exosomal miRNAs in diabetic individuals, and these

results provided new ideas and targets for the clinical appli-

cation of therapeutic vesicles or specific miRNAs to reverse

diabetic periodontitis. However, no specific subtypes of mac-

rophage were examined in our study, resulting in some limi-

tations in this study. Whether the selective loading of

miRNAs into vesicles achieved related to the polarization or

senescence of macrophages under diabetic conditions needs

to be further explored. TaggedAPTARAEnd
TaggedAPTARAH1Conclusion TaggedAPTARAEnd

TaggedAPTARAPOur research represents an innovative study of the epithe-

lium barrier, confirming the effect of macrophage-epithelial
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cell interactions in exacerbating inflammation. Additionally,

the mechanism of NR5A2 regulation was discovered, provid-

ing a theoretical basis for further study of periodontal innate

immunity. This study may contribute to the screening of

related therapeutic targets in diabetic periodontitis and

developing relevant drugs.TaggedAPTARAEnd
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