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Breast cancer is a major public health concern and is 
the leading cause of cancer in women worldwide. 

Presently, the estimated lifetime risk of developing 
breast cancer is 12.8%, affecting approximately one 
in eight women (1,2). In health care, the implementa-
tion of artificial intelligence (AI) is gaining momentum, 
promising optimized workflow efficiency, increased 
productivity, and improved patient outcomes. There is 
particular interest in using AI within the field of breast 
imaging, which is facing increased pressure due to the 
high prevalence of breast cancer and exponential growth 
in requested breast imaging services, alongside a concur-
rent workforce shortage (3).

Several institutions have attempted to implement 
conventional radiomics or machine learning–based com-
puter-aided detection (CAD) systems; however, these sys-
tems were not satisfactory, as they yielded a high number 
of false-positive findings (4–6). More recently (7), deep 

learning (DL)–based CAD systems in place of conven-
tional CAD systems have demonstrated improved diag-
nostic accuracy for breast cancer. Additionally, diagnostic 
performance improved among radiologists who used DL-
based AI CAD systems (8,9), supporting their widespread 
adoption. For both breast screening and diagnostic breast 
imaging, digital breast tomosynthesis (DBT) (often re-
ferred to as three-dimensional mammography) is now 
widely implemented. The implementation of DL-based 
AI for DBT, which has larger data volumes compared 
with traditional full-field digital mammography (often 
referred to as two-dimensional [2D] mammography), has 
been shown to improve both diagnostic accuracy and the 
clinical workflow (10–13).

Despite the demonstrated potential of AI-enhanced 
mammography, including AI-enhanced DBT, there is 
a lack of studies directly comparing different commer-
cially available AI algorithms for DBT. Such studies are 
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Purpose:  To compare two deep learning–based commercially available artificial intelligence (AI) systems for mammography with digital 
breast tomosynthesis (DBT) and benchmark them against the performance of radiologists.

Materials and Methods:  This retrospective study included consecutive asymptomatic patients who underwent mammography with DBT 
(2019–2020). Two AI systems (Transpara 1.7.0 and ProFound AI 3.0) were used to evaluate the DBT examinations. The systems were 
compared using receiver operating characteristic (ROC) analysis to calculate the area under the ROC curve (AUC) for detecting malignancy 
overall and within subgroups based on mammographic breast density. Breast Imaging Reporting and Data System results obtained from 
standard-of-care human double-reading were compared against AI results with use of the DeLong test.

Results:  Of 419 female patients (median age, 60 years [IQR, 52–70 years]) included, 58 had histologically proven breast cancer. The 
AUC was 0.86 (95% CI: 0.85, 0.91), 0.93 (95% CI: 0.90, 0.95), and 0.98 (95% CI: 0.96, 0.99) for Transpara, ProFound AI, and human 
double-reading, respectively. For Transpara, a rule-out criterion of score 7 or lower yielded 100% (95% CI: 94.2, 100.0) sensitivity and 
60.9% (95% CI: 55.7, 66.0) specificity. The rule-in criterion of higher than score 9 yielded 96.6% sensitivity (95% CI: 88.1, 99.6) and 
78.1% specificity (95% CI: 73.8, 82.5). For ProFound AI, a rule-out criterion of lower than score 51 yielded 100% sensitivity (95% CI: 
93.8, 100) and 67.0% specificity (95% CI: 62.2, 72.1). The rule-in criterion of higher than score 69 yielded 93.1% (95% CI: 83.3, 98.1) 
sensitivity and 82.0% (95% CI: 77.9, 86.1) specificity.

Conclusion:  Both AI systems showed high performance in breast cancer detection but lower performance compared with human double- 
reading.
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Regarding the inclusion and exclusion of patients from 
the study, of the 5421 patients, 139 patients had imaging 
findings classified according to the American College of Ra-
diology (ACR) Breast Imaging Reporting and Data System 
(BI-RADS) as BI-RADS 4 or 5 findings. However, for 25 of 
139 patients, BI-RADS 4 or 5 classification was made based 
on US findings rather than DBT findings; thus, these pa-
tients were excluded from the study. Of note, the Austrian 
Breast Cancer Screening Program mandates US in women 
with ACR mammographic breast density categories C and 
D. The study sample was randomly matched at a ratio of 
1:3 (patients with higher BI-RADS categories of 4 or 5 
matched to those with lower BI-RADS categories of 1 or 
2). The variables used for matching were age decade, breast 
density, and time period of the imaging examination. This 
resulted 456 matched patients, with 114 patients with BI-
RADS 4 or 5 findings and 342 patients with BI-RADS 1 or 
2 findings. Patients with BI-RADS 3 findings were excluded 
from our study for the following reasons specific to the Aus-
trian Breast Cancer Screening Program. In Austria, assign-
ing a BI-RADS 3 category during screening is discouraged, 
as imaging interpretation is performed while the patient 
is present, and any detected imaging abnormalities dur-
ing screening would be immediately discussed with a sec-
ond reader and addressed on the spot with mammography 
and/or US to minimize patient anxiety. Further, in cases of 
asymmetries without US correlation, MRI is often used to 
assign a final category other than BI-RADS 3. Moreover, the 
inclusion of patients with BI-RADS 3 findings would have 
required a 2-year follow-up period to confirm benignity and 
reclassification as BI-RADS 2, followed by another 2-year 
follow-up (the screening interval in Austria), delaying the 
analysis and publication of study results without substantial 
contribution to them. As expected, the number of patients 
with true BI-RADS 3 findings from screening mammogra-
phy during the study period was very low (<3%), leading to 
their exclusion from the study.

Several further exclusions were subsequently performed. 
First, three patients for whom either AI system could not 
compute a score for their DBT examination (for reasons un-
known to us) were excluded. Second, of the patients with 
BI-RADS 4 or 5 findings, two patients were excluded for the 
sake of comparability, as one was diagnosed with Merkel cell 
carcinoma and the other was diagnosed with lymph node 
metastasis from lung cancer. Third, of the patients with BI-
RADS 1 or 2 findings, 28 who did not have reference stan-
dard 2-year follow-up imaging results were excluded. To eval-
uate the AI systems in patients with both higher and lower 
BI-RADS categories, four symptomatic patients were also 
excluded from the patient sample. The final study sample 
comprised 419 patients. Figure 1 depicts the flow of patient 
inclusion in the study.

The reference standard for the AI systems were histo-
logic results from subsequent biopsy in the case of patients 
with BI-RADS 4 and 5 findings and 2-year follow-up im-
aging in patients with BI-RADS 1 and 2 findings; in other 
words, the reference standard was established by radiologist 

urgently needed to shed light on the advantages and disadvan-
tages of implementation of these algorithms in clinical prac-
tice. Thus, the present exploratory study aimed to compare 
the intraindividual diagnostic performance of two DL-based 
commercially available AI CAD systems for mammography 
with DBT and benchmark them against the performance of 
radiologists. We also sought to determine the differences be-
tween the two different DL systems and their benefits based 
on our results and in conjunction with the literature.

Materials and Methods

Study Sample
This study was approved by the institutional review board 
and performed in accordance with the Declaration of Hel-
sinki. The need for informed consent was waived by the insti-
tutional review board.

The database of the Radiologicum Margareten (Depart- 
ment of Radiology) at St Francis Hospital, Vienna, Austria, 
was searched for consecutive asymptomatic patients who un-
derwent breast imaging in 2019 and 2020 for either screen-
ing or diagnostic purposes, resulting in 5421 patients. Of 
note, patients who underwent breast imaging for diagnostic 
purposes were asymptomatic patients with a personal history 
of breast cancer or prior biopsy yielding benign high-risk re-
sults; in Austria, these patients often do not undergo formal 
screening but instead undergo diagnostic mammograms for 
surveillance despite being asymptomatic. Whether for screen-
ing or diagnostic purposes, the standard screening imaging 
protocol with DBT was used. No patients presenting with 
clinical concerns were included in this study.

Abbreviations
ACR = American College of Radiology, AI = artificial intelligence, 
AUC = area under the ROC curve, BI-RADS = Breast Imaging 
Reporting and Data System, CAD = computer-aided detection, 
DBT = digital breast tomosynthesis, DL = deep learning, ROC = 
receiver operating characteristic, 2D = two-dimensional

Summary
Two artificial intelligence systems for mammography with digital 
breast tomosynthesis demonstrated high performance in detecting 
malignancies, although performance was lower when compared 
against human double-reading.

Key Points
	■ In asymptomatic patients undergoing mammography with digi- 

tal breast tomosynthesis, two artificial intelligence (AI) systems, 
Transpara and ProFound AI, had overall areas under the receiver 
operating characteristic curve (AUCs) of 0.86 (95% CI: 0.85, 
0.91) and 0.93 (95% CI: 0.90, 0.95), respectively, for detecting 
malignancies, while human double-reading had an overall AUC of 
0.98 (95% CI: 0.96, 0.99).

	■ ProFound AI performed significantly better than Transpara for 
breast cancer detection, particularly in patients with nondense 
breasts (AUC, 0.93; P < .001).

Keywords
Mammography, Breast, Oncology, Artificial Intelligence, Deep 
Learning, Digital Breast Tomosynthesis
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images from prior imaging examinations. If one or both read-
ers assigned a BI-RADS category higher than 2, a consensus 
conference was held whereby a group of readers guided by 
a leading physician reconciled differences in interpretation.

Imaging Evaluation by DL Systems
Two commercially available AI systems were used to evalu-
ate mammography with DBT. These systems were chosen be-
cause they were the only AI systems for DBT that had already 
been approved for clinical use in Europe (ie, both had already 
received a European Commission mark) and the United 
States (ie, both had already received approval from the U.S. 
Food and Drug Administration) at the time of the study.

The first system, Transpara 1.7.0 (ScreenPoint Medical), 
is a Food and Drug Administration–approved commercial 
system for the automated interpretation of both full-field 
digital mammography and DBT. Its architecture is based on 
deep convolutional neural networks. A previous version of 
Transpara, Transpara 1.4.0, was trained and validated on over 
9000 images with cancers as well as 180 000 images with-
out abnormalities (14). Mammograms with DBT used for 
training and validating Transpara 1.4.0 were obtained from 
several institutions across the United States, Asia, and Europe 

double-reading (the standard of care in Europe for breast can-
cer screening). After the exclusion of two patients (ie, one 
with Merkel cell carcinoma and one with lymph node metas-
tasis from lung cancer) for the sake of comparability from the 
matched patient group with BI-RADS 4 and 5 findings, 58 
patients with histologically proven breast cancer remained, 
including nine patients with in situ carcinoma and 49 with 
invasive components. Another 39 patients had benign his-
tologic findings, and another 11 patients refused biopsy and 
underwent 2-year MRI follow-up with no evidence of ma-
lignancy; findings in these patients were classified as benign.

Imaging Protocol and Clinical Imaging Evaluation
All DBT examinations were performed with a Hologic 
3Dimensions mammography system. All examinations com-
prised four standard views (ie, bilateral craniocaudal and 
mediolateral oblique views). Clinical imaging evaluation 
entailed a double-reading system, whereby initial reads were 
performed by two board-certified physicians specialized in 
breast imaging with at least 10 years of experience (A.R. and 
another physician) who were blinded to each other’s deci-
sions. Both readers had access to patient records while per-
forming their assessment, including breast cancer history and 

Figure 1:  Flow diagram depicts patient inclusion. AI = artificial intelligence, BI-RADS = Breast 
Imaging Reporting and Data System, DBT = digital breast tomosynthesis.
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limited. Like Transpara, ProFound AI does not access existing 
information about a patient.

Statistical Analysis
The following variables were extracted for every patient: age, 
BI-RADS category, Transpara examination score, ProFound 
AI case score, ACR breast density category, and biopsy result 
if available. Statistical analysis was conducted using Micro-
soft Excel (version 16.82) and MedCalc (version 20.218). 
AI system performance, whether for Transpara or ProFound 
AI, was assessed using receiver operating characteristic 
(ROC) analysis; the area under the ROC curve (AUC) was 
obtained for the overall patient sample as well as for differ-
ent patient subgroups based on mammographic breast den-
sity. The DeLong test was used to calculate the AUC as well 
as compare AUCs between Transpara, ProFound AI, and 
human double-reading. Before ROC analysis, the outputs 
of each AI system were dichotomized to enable compari-
son with the recorded binary decisions of human double-
reading. Cases were divided into two categories: 0 denoting 
benign cases and 1 indicating malignant cases. Category 0 
encompassed all BI-RADS 1, BI-RADS 2, as well as his-
topathologically based B1, B2, and B3 cases. Category 1 
consisted of histopathologically based B5 results. These clas-
sifications were then compared with the risk assessments of 
the AI systems. Operating points at high sensitivity (rule-
out criterion at a negative likelihood ratio ≤0.1) and high 
specificity (rule-in criterion at a positive likelihood ratio 
≥4) were also determined. AI system performance was also 
benchmarked against human double-reading BI-RADS re-
sults according to the AUC. A prior sample size estimate 
indicated that a balanced sample of 212 studies was required 
to detect a 10% AUC difference (0.9 vs 0.8). P < .05 was 
considered indicative of a statistically significant difference.

Results

Sample Characteristics

The final study sample comprised 419 patients (median age, 
60 years [IQR, 52–70 years]; all female). Table 1 summarizes 
the patient and lesion characteristics of the study sample. 
There were 27 patients with BI-RADS 1 findings, 284 with 
BI-RADS 2 findings, 68 with BI-RADS 4 findings, and 40 
with BI-RADS 5 findings. A total of 58 of 419 patients (14%) 
(median age, 60 years [IQR, 52–70 years]) had biopsy-proven 
cancer. Biopsy-proven cancers were most frequent across ACR 
B and C categories. Slightly over 5% of all cancers were found 
in extremely dense breasts (ACR D), even though 12% of all 
investigated breasts were classified as ACR D.

AI System Results
Table 2 illustrates the distribution of malignant findings 
compared with the total number of findings within each ex-
amination score category for the two AI systems. Transpara 
assigned an examination score of 10 (ie, the category rep-
resenting elevated risk) to 56 of 58 cancers (97%) and an 

and were acquired using platforms from four vendors (Sie-
mens, Hologic, General Electric, and Philips) (14). To date, 
Transpara has been trained on over a million mammograms 
(15). When reading a mammogram, Transpara assigns an ex-
amination score from 1 to 10, reflecting the level of suspicion 
that a cancer is present. There are three score categories that 
correspond to the level of cancer risk: scores 1–7, 8–9, and 
10 correspond to low, intermediate, and elevated risk, respec-
tively. According to ScreenPoint Medical, examinations in the 
lowest category have a 99.97% negative predictive value (16). 
Examinations graded as 8–9 have a similar risk to the aver-
age patient in the screening population. Examinations with a 
score of 10 include over 85% of screening-detected cancers 
and over 30% of interval cancers. Examinations in this high-
est category are associated with an 8.5 times higher risk of 
screening-detected cancer compared with lower categories. 
For this study, we used a vendor-recommended rule-out cri-
terion of score 7 or lower because it showed a sensitivity of 
100% and a rule-in criterion of higher than score 9 because 
according to ScreenPoint Medical, this category includes the 
highest probability of detecting cancer. Transpara assigns 
regional scores for each detection and overall examination 
scores that comprise all regional scores. In this study, only 
examination scores were used. Furthermore, Transpara offers 
different marks for calcifications and masses. The number of 
detection marks is limited to two per image for each category. 
Transpara does not access existing information about a pa-
tient, such as prior mammograms (14,17). 

The second system, ProFound AI 3.0 (iCAD), is also based 
on deep convolutional neural networks. The system was trained 
on 30 000 cases, including 8000 biopsy-proven cancers, and 
subsequently validated on 3500 cases, including 1200 biopsy-
proven cancers, altogether involving approximately 6 million 
images (18). The ProFound AI algorithm analyzes each indi-
vidual image or section and identifies potentially malignant le-
sions. Each examination is given a lesion-specific score as well 
as an overall case score. In this study, the case scores provided 
by ProFound AI were collected and compared with Transpara 
examination scores. Lesion-specific scores range from 0 to 100 
and impact the algorithm’s confidence in the malignancy of 
a case, with higher scores indicating higher confidence. Case 
scores combine information from all detections within a case 
(19) and represent how confident the algorithm is that a case is 
malignant. These scores are divided into three categories repre-
senting different levels of cancer prevalence: 0–29, 30–69, and 
70–100. According to iCAD, scores from 0–29, 30–69, and 
70–100 correspond to 0.37, 1.54, and 4.1 cancers per 1000 
patients, respectively (unpublished presentation by iCAD). 
ProFound AI also allows users to adjust the threshold for le-
sion detection based on the desired sensitivity and specificity 
level. Depending on the sensitivity level, the system displays 
more marks, but the overall case score remains the same across 
all sensitivity levels. For this study, the sensitivity level was set 
to medium, as recommended by iCAD and which is most 
commonly used in the clinical setting; this sensitivity level cor-
responds to 92% sensitivity and 59% specificity according to 
iCAD. Unlike Transpara, the number of marks per image is not 
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mammographic density, and Table 4 shows pairwise compari- 
sons of the ROC curves between ProFound AI and Transpara 
and between each AI system and human double-reading.

Overall, Transpara had an AUC of 0.86 (95% CI: 0.85, 
0.91), ProFound AI had an AUC of 0.93 (95% CI: 0.90, 
0.95), and human double-reading had an AUC of 0.98 (95% 
CI: 0.96, 0.99). ProFound AI yielded better performance 
compared with Transpara (difference between AUCs, 0.04; 
P = .004).

Within the subgroup of 238 patients with nondense 
breasts (ACR A or B), ProFound AI performed significantly 
better than Transpara (P < .001), and human double-reading 
performed better than either AI system, with an AUC of 0.99 
(95% CI: 0.97, >0.99) versus 0.93 (95% CI: 0.88, 0.96; P = 
.003) and 0.86 (95% CI: 0.80, 0.90; P < .001), respectively. 
In the subgroup of 181 patients with dense breasts (ACR C 
or D), there was no evidence of a difference in performance 
between the two systems (P = .97), nor with the human read-
ers. Both Transpara and ProFound AI had an AUC of 0.92 
(95% CI: 0.88, 0.96) versus 0.96 (95% CI: 0.92, 0.98) for 
human double-reading. Table 5 shows results based on vari-
ous operating points chosen for either high sensitivity or high 
specificity. For Transpara, a rule out-criterion of score 7 or 
lower yielded 100% (95% CI: 93.8, 100.0) sensitivity and 
60.9% (95% CI: 55.7, 66.0) specificity at a negative likeli-
hood ratio of 0. The rule-in criterion of higher than score 9 
yielded 96.6% sensitivity (95% CI: 88.1, 99.6) and 78.1% 
specificity (95% CI: 73.8, 82.5) at a positive likelihood ratio 
of 4.47 (95% CI: 3.65, 5.47). For ProFound AI, a rule-out 
criterion of below score 51 yielded 100% (95% CI: 93.8, 
100) sensitivity and 67.0% (95% CI: 62.2, 72.1) specificity 
at a negative likelihood ratio of 0.00. The rule-in criterion of 
higher than score 69 for ProFound AI yielded 93.1% sensi-
tivity (95% CI: 83.3, 98.1) and 82.0% specificity (95% CI: 
77.9, 86.1) at a positive likelihood ratio of 5.25 (95% CI: 
4.16, 6.63).

Discussion
The aim of the present exploratory study was to compare the 
performance of two commercially available and clinically 
approved (in Europe and the United States) AI systems for 
mammography with DBT with one another and with human 
performance in the real-life clinical setting of asymptomatic 
patients undergoing mammography with DBT as part of the 
Austrian Breast Cancer Screening Program. In this clinical 
setting, based on standard-of-care human double-reading, 
biopsy or imaging follow-up was subsequently performed, 
the results of which were used as the reference standard to 
evaluate the performance of the AI systems. Results for the 
human double-reading were well within national screening 
benchmarks (20) and still outperformed both AI systems. 
Based on this reference standard, ProFound AI outperformed 
Transpara (overall AUC, 0.93 and 0.86, respectively; P = 
.004), particularly in patients with nondense breasts (AUC, 
0.93 and 0.86, respectively). Importantly, neither AI sys-
tem missed any cancer when assigning a low-risk category. 

examination score of 8–9 (ie, the category representing in-
termediate risk) to two of 58 cancers (3%). No cancer was 
assigned a score below 8. ProFound AI assigned the highest 
score category (70–100), indicating the highest confidence of 
malignancy, to 54 of 58 cancers (93%) and the middle score 
category (30–69) to four of 58 cancers (3%). No cancer was 
assigned a score of 29 or below. Scores from ProFound AI and 
Transpara are also shown in a scatterplot (Fig 2).

For the four cancers that were scored below 70 by ProFound 
AI, histologic reports were searched to gather more informa- 
tion. Two were ductal carcinomas in situ with a size less than 1 
cm, and two invasive breast cancers were circumscribed round 
masses measuring 5 and 6 mm. With respect to false-positive 
findings, Transpara assigned a score of 10 to 78 of 361 benign 
cases (22%), and ProFound AI assigned a score of 70–100 to 64 
of 361 benign cases (18%) that all had either some BI-RADS 
features suspicious for malignancy, such as architectural distor- 
tions in postsurgical patients and microcalcification, or were be- 
nign masses such as fibroadenomas.

ROC Analysis Comparing Transpara, ProFound AI, and 
Human Double-Reading
Figure 3 illustrates the respective ROC curves of the two AI 
systems and human double-reading. Table 3 shows the AUCs 
of the two AI systems as well as human double-reading for 
cancer detection, both overall and within subgroups based on 

Table 1: Patient and Lesion Characteristics

Characteristic Value

Patient characteristics (n = 419)
  Age (y)* 60 (52−70)
  Biopsy-proven cancer lesion
    Yes 58 (14)
    No 361 (86)
  BI-RADS category
    BI-RADS 1 27 (6)
    BI-RADS 2 284 (68)
    BI-RADS 4 68 (16)
    BI-RADS 5 40 (10)
  ACR breast density category
    ACR A 84 (20)
    ACR B 154 (37)
    ACR C 130 (31)
    ACR D 51 (12)
Lesion characteristics (n = 58)
  ACR A 12 (21)
  ACR B 24 (41)
  ACR C 19 (33)
  ACR D 3 (5)

Note.—Unless otherwise noted, data are numbers of patients 
or lesions, with percentages in parentheses. ACR = American 
College of Radiology, BI-RADS = Breast Imaging and Reporting 
Data System.
* Age is reported as the median, with IQR in parentheses.
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Transpara assigned a score of 10 to 78 of 361 benign cases 
(22%), and ProFound AI assigned a score of 70–100 to 64 of 
361 benign cases (18%).

The false-positive findings observed in this study may be due 
to our mixed study sample, which included many patients who 
had previously undergone surgery, including lumpectomy, ex- 
cisional biopsy, or mastopexy or reduction mammoplasty. Of 
note, neither AI system had the ability to access prior imaging, 
which would have been beneficial to reduce the number of both 
false-negative and false-positive findings. According to Olivotto 
et al (21), the misinterpretation of cancers with somewhat be-
nign features could lead to progression of tumor size and delayed 
diagnosis, whereas it is not clear if “suspicion bias” has an influ-
ence on prognosis.

Our findings are in agreement with the prior literature. 
Of the studies investigating the performance of Transpara for 
DBT in particular, Romero-Martín et al (10) conducted a ret-
rospective study involving 15 999 mammograms (both DBT 
and 2D digital mammograms) to investigate the standalone 

Table 2: Distribution of Malignant Findings Compared With the Total Number of Findings 
Within Each Score Category of the Two AI Systems for Mammography with Digital Breast 
Tomosynthesis

System and Score Category Malignant Findings (n = 58) Total Findings

Transpara examination score categories
  0–7 0 (0) 173
  8–9 2 (3) 112
  10 56 (97) 134
ProFound AI case score categories
  0–29 0 (0) 153
  30–69 4 (7) 148
  70–100 54 (93) 118

Note.—Data are numbers of findings, with percentages in parentheses. AI = artificial intelligence.

Figure 2:  Scatterplot denotes malignancy scores from ProFound AI (PFAI) and 
Transpara systems. For the Transpara system, three score categories correspond to 
the level of cancer risk: scores 1–7, 8–9, and 10 correspond to low, intermediate, 
and elevated risk, respectively (x-axis). ProFound AI scores are divided into three 
categories representing different levels of cancer prevalence, from lowest to high-
est: 0–29, 30–69, and 70–100 (y-axis).

performance of Transpara 1.7.0, the same version of Transpara 
that was used in our study. For DBT, Transpara achieved non-
inferior sensitivity compared with radiologists but at the cost 
of an increased recall rate of up to 12%. Its performance was 
better for 2D digital mammograms, where it reduced the re-
call rate while maintaining noninferior sensitivity compared 
with radiologists. A study by Raya-Povedano et al (12) evalu-
ated the ability of Transpara to reduce the radiologist work-
load while maintaining sensitivity in 15 987 DBT examina-
tions and 2D digital mammograms. Transpara was used as 
a preselection tool to determine whether examinations were 
likely normal (all examinations graded with a score ≤7) and 
therefore did not require reading by radiologists. The results 
showed that screening strategies based on AI systems can re-
duce the radiologist workload by up to 70% without reduc-
ing sensitivity by more than 5%. Elsewhere, van Winkel et al 
(22) investigated the performance of radiologists reading an 
enriched cancer data set of 240 bilateral DBT examinations, 
with and without the support of Transpara. Transpara in-
creased the radiologists’ AUC while also reducing their read-
ing time. It was also shown that DBT as a stand-alone tool 
was noninferior compared with radiologists. Last, Lång et al 
(23) conducted a study to evaluate the ability of Transpara 
to identify normal mammograms, showing that Transpara 
correctly identified normal mammograms and reduced false-
positive findings. While we were unable to assess reductions 
in workload due to our study design, where BI-RADS 4 and 
5 cases were matched to BI-RADS 1 and 2 cases, our study 
confirmed that the diagnostic performance of Transpara in a 
real-life clinical setting matches the assertion by the vendor, 
ScreenPoint, that 99.97% of examinations are negative in the 
lowest category of 1–7 and that category 10 includes over 
85% of screening-detected cancers (16). Based on its diagnos-
tic performance alone, Transpara is indeed a valuable applica-
tion and relevant for population-based screening.

Regarding ProFound AI, our results confirm the assertion 
by its vendor, iCAD, that the highest prevalence of cancers 
occurs in the score category 70–100 (unpublished presenta-
tion by iCAD). Published original studies investigating the 
performance of ProFound AI for DBT in particular, however, 
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are lacking. One retrospective study by Graewingholt and 
Duffy (24) in 35 000 women showed that single-reading of 
2D digital mammography with ProFound AI was noninferior 
compared with the current clinical screening system of dou-
ble-reading of 2D digital mammography. Another study by 
Conant et al (19) showed that reading times were significantly 
reduced, while sensitivity, specificity, recall rate, and AUC 
improved in their nonclinical reader study when ProFound 
AI was used alongside reader interpretation of DBT.

Using a different AI system from either Transpara or 
ProFound AI, Benedikt et al (25) demonstrated in a reader 
study that concurrent reading with CAD enhancement by 
PowerLook Tomo Detection (iCAD) resulted in 23.5% faster 
reading time and noninferior performance compared with ra-
diologist interpretation. Similar results were achieved by Bal-
leyguier et al (26). Regarding breast density, the distribution 
of ACR breast density categories among patients in our study 
sample was similar to that in the wider screening population. 
In the subgroup analysis in our study, ProFound AI signifi-
cantly outperformed Transpara in nondense breasts (AUC, 
0.93 vs 0.86, respectively; P < .001), whereas we found no 
evidence of a difference in performance between the two 
systems in dense breasts (AUC, 0.92 vs 0.92, respectively; 
P = .97). Interestingly, only a little over 5% of cancers in our 

study were detected in extremely dense breasts (ACR D); this 
is an underrepresentation considering that 12% of the entire 
patient sample had extremely dense breasts, which is consid-
ered an independent risk factor for developing breast can-
cer (27). This may be because malignant lesions in extremely 
dense breasts are more challenging to detect at mammogra-
phy, regardless of whether it is 2D digital mammography or 
DBT, due to overlying fibroglandular tissue (28). Transpara 
assigned a score of 10 to only four cancers in the ACR D cat-
egory (of 134 total cases, whether benign or malignant, that 
received a score of 10). Meanwhile, ProFound AI assigned 
a score of 70–100 to only eight patients in the ACR D cat-
egory (of a total of 118 cases, whether benign or malignant, 
that received a score of 70–100). These low numbers confirm 
the poor visibility of cancers in dense tissue. Additionally, as 
mentioned, symptomatic patients are examined with manda-
tory US in Austria. Indeed, our study excluded 25 patients 
whose BI-RADS 4 or 5 classification was based on US find-
ings only; in these patients, another five cancers were found, 
but those were excluded from further analysis.

Despite the previous publications and promising results 
in this field, there are still unanswered questions that limit 
use of AI in the daily clinical practice of breast radiologists. 
For algorithms to meet high performance expectations, a 
large amount of breast imaging data, ideally diverse, is re-
quired. To ensure the generalizability of the algorithm, it is 
important that socioeconomically disadvantaged groups are 
represented in both the training and validation sets, as these 
patients are often underdiagnosed. However, obtaining high-
quality reference standard data is laborious and costly (29). 
To date, most studies investigating AI in breast imaging are 
either retrospective trials or small reader studies. Yet, it is es-
sential that large multi-institutional prospective trials assess 
whether AI tools will perform as expected in everyday clinical 
practice (30). Practitioners and academic publishers have also 
demanded greater transparency and a better understanding 
of the working principle of AI tools. The so-called black box 
problem lies in the fact that crucial decisions are made while 
the decision-making process remains completely opaque 
(29). This lack of traceability also means that human errors or 
biases incorporated into the programming of the system have 
an unnoticed negative impact on the final result (31). The 
question of legal responsibility for the decisions made, such 
as when an AI system misses a cancer, remains controversial 
(29). In any case, it is crucial that regulatory frameworks for 
AI quality control are established (31).

Figure 3:  Comparison of the receiver operating characteristic curves for 
ProFound AI (PFAI), Transpara, and human double-reading. The solid red line 
represents the reference line.

Table 3: AUCs for Both AI Systems and Human Double-Reading

Study Sample (n = 419) Transpara ProFound AI Human Double-Reading

Overall 0.86 (0.85, 0.91) 0.93 (0.90, 0.95) 0.98 (0.96, 0.99)
By mammographic density
  Nondense breasts (ACR A or B) 0.86 (0.80, 0.90) 0.93 (0.88, 0.96) 0.99 (0.97, 0.99)
  Dense breasts (ACR C or D) 0.92 (0.88, 0.96) 0.92 (0.88, 0.96) 0.96 (0.92, 0.98)

Note.—Data are areas under the receiver operating characteristic curve (AUCs), with 95% CIs in paren-
theses. ACR = American College of Radiology, AI = artificial intelligence.
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Although this was not investigated in the current study, 
we hypothesize that the two particular AI systems used in 
this study may differ in clinical applicability. Transpara is 
designed to function independently as a reader in a double-
reading screening scenario (mandated in Europe), whereby 
in low-risk cases, it can fully replace one human reader, and 
in high-risk cases, it can be used in addition to the standard 
double-reading approach as an assistant. Unlike Transpara, 
ProFound AI primarily functions as an assistant to the human 
reader rather than functioning independently as a reader; in 
this way, in a single-reading screening scenario, ProFound 
AI supports the human reader to achieve comparable perfor-
mance to that of human double-reading (24). 

There were limitations to our study. First, the study was a 
retrospective study. Second, all mammograms were acquired 
from a single site, and DBT was performed using a platform 
by a single vendor, posing a risk for selection bias. Third, 
the matching performed in this study was suboptimal and 
could introduce selection bias. It should also be noted that 

BI-RADS 3 cases were not included in the analysis, which 
also poses a selection bias. The performance of the AI sys-
tems may differ in studies with BI-RADS 3 cases in the study 
sample. Fourth, the study sample was small and possibly un-
derpowered (power was based on an AUC difference of 0.1), 
limiting the conclusions that can be drawn; thus, larger-scale 
studies will be necessary to corroborate our findings.

In conclusion, the results of the present study evaluat-
ing the performance of two AI systems for mammography 
with DBT, both of which are approved for clinical use in the 
United States and Europe, show that both systems can detect 
malignancies without missing any cancer when assigning a 
low-risk category. Our results showed that standard-of-care 
human double-reading still outperformed both AI systems. 
Nevertheless, both AI systems exhibit promising outcomes in 
terms of cancer detection and effective classification of nega-
tive examinations. Notably, none of the examinations identi-
fied as low risk by the AI systems revealed the presence of 
breast cancer. In conjunction with the existing literature, the 
two systems may differ in clinical applicability. Given these 
promising results, further prospective studies with larger 
sample sizes are needed to define the future role and mode of 
implementation of AI in breast cancer screening.
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