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Abstract

The in vitro culture of ovarian follicles has provided critical insight into the biology of the 

follicle and its enclosed oocyte and the physical interaction and communication between the theca 

and granulosa cells and the oocyte that is necessary to produce meiotically competent oocytes. 

Various two-dimensional (2D) and three-dimensional (3D) culture systems have been developed 

to evaluate the effect of growth factors, hormones, extracellular matrix components and culture 

conditions on follicle development and oocyte growth and maturation. Among these culture 

systems, 3D systems make it possible to maintain follicle structure and support communication 

between the various cell compartments within the follicle. In this review article, we will discuss 

the three main approaches to ovarian follicle culture: 2D attachment systems, 3D floating systems 

and 3D encapsulated systems. We will specifically emphasise the development of and advances in 

alginate-based encapsulated systems for in vitro follicle culture.
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Introduction

In vitro follicle culture is an important tool used to investigate events that occur during 

folliculogenesis to produce meiotically competent oocytes (Picton et al. 2008) by creating a 

microenvironment similar to that found in the ovaries (Hartshorne 1997; West et al. 2007a). 

This technique may also have clinical applications for women who want to preserve their 

fertility by cryopreserving ovarian tissue before undergoing cancer therapy; at a later time, 

thawed follicles could be cultured to produce mature oocytes for in vitro fertilisation (IVF) 

or intracytoplasmic sperm injection (ICSI). This approach would provide an alternative to 

ovarian tissue transplantation (Hovatta 2004).
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Follicles may be cultured in either two-dimensional (2D, or non-spherical) systems or 

three-dimensional (3D, or spherical) systems. In 2D ‘attachment’ systems, only part of the 

follicle surface makes contact with the culture substrate on a flat tissue-culture plate. As 

granulosa cells attach, the follicle flattens and expands outward. To maintain the spherical 

structure of the follicle, 3D culture systems were developed in which the follicle ‘floats’ in 

rotating tubes or inverted microdrops, or is encapsulated in a culture matrix, such as alginate. 

Although major advances in our understanding of follicle biology have been achieved with 

2D attachment culture systems (Eppig and O’Brien 1996; O’Brien et al. 2003; Lenie et 

al. 2004), recent studies have shown that 3D culture systems more closely mimic the 

physiological environment of the ovary, preserving follicular architecture and the interaction 

between somatic and germ cells (Benton et al. 2009).

Three-dimensional follicle culture is performed using various methods, including suspension 

in inverted drops, within rotating vessels or in round-bottomed ultra-low-attachment plates 

(Boland et al. 1993; O’Brien et al. 2003; Rowghani et al. 2004; Wycherley et al. 2004; Heo 

et al. 2010; Sánchez et al. 2012). Encapsulation methods using hydrogels such as alginate 

have been applied to the in vitro culture of various tissues (Butcher and Nerem 2004; Azab 

et al. 2006; Eyrich et al.2007), including ovarian follicles (Pangas et al. 2003; Kreeger et 

al. 2005; Xu et al. 2006b). Alginate is a natural biopolymer extracted from brown algae 

and its absence of bioactivity, intrinsic biocompatibility and capacity for forming a gel with 

well-defined features have made it particularly useful for in vitro follicle culture (Heise et al. 

2005).

In this paper, we will first discuss the importance of preserving follicle structure and cellular 

communication between follicle cells in culture. We will then review the different in vitro 
ovarian follicle culture methods, with emphasis on the use of alginate-based matrices.

Follicle structure

Cell morphology

The follicle is composed of an oocyte surrounded by somatic granulosa and theca cells 

and represents the morpho-functional unit of the ovary. Folliculogenesis is an extremely 

complex process, in which various endocrine, autocrine and paracrine factors act in a 

coordinated manner to direct the proliferation, growth and differentiation of granulosa and 

theca cells, as well as oocyte growth and maturation. Follicles can be classified according to 

their developmental stage. Preantral follicles (primordial, primary and secondary) represent 

90% of the ovarian follicular population and form the pool of female gametes available 

throughout a woman’s lifetime, also called the ovarian reserve (Liu et al. 2001). Antral 

follicles (tertiary and preovulatory) are large follicles that contain a fluid-filled antrum and, 

in humans, only one of these large follicles is selected to undergo ovulation per month (Silva 

2005). With each cycle, a cohort of preantral follicles is activated and begins to develop, 

with oocyte growth, granulosa cell proliferation and a shift in the morphology of granulosa 

cells from squamous to cubic. As follicles develop, the somatic cells surrounding the oocyte 

proliferate and differentiate and the oocyte grows in preparation for maturation, ovulation 

and fertilisation (van den Hurk and Zhao 2005).
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Follicular development is highly dependent on the morphology and arrangement of the cells 

that compose the follicle, which are essential to preserve its function and support oocyte 

growth and maturation (Hay 1984). Researchers have demonstrated that several cellular 

processes are affected by cell morphology, such as histone acetylation (Le Beyec et al. 

2007) and gene expression (Birgersdotter et al. 2005), in addition to apoptosis, cellular 

proliferation and differentiation and steroidogenesis (Chen et al. 1997; Birgersdotter et al. 

2005).

The structural integrity of the cells is determined by the cytoskeleton, a network of 

filaments that acts as a mechanical support system, maintaining the shape of cells and 

influencing the arrangement of intracellular components. The cytoskeleton is composed 

of simple protein subunits that polymerise to form filaments. The three main types of 

filaments are: (1) microtubules, which are composed of tubulin subunits and determine 

the position of organelles, proteins and vesicles, (2) intermediate filaments that provide 

cellular sustenance and mechanical resistance to tension and traction and (3) actin filaments, 

which are responsible for the control of cellular morphology, membrane protein distribution 

and intracellular traffic (Eitzen 2003; Fig. 1). These filaments are dynamic and adaptable 

structures that reorganise themselves according to cellular requirements (Ferreira et al. 

2009).

Activities performed by the cytoskeleton are dependent on proteins that associate with the 

filaments and interconnect the filaments to form networks, as well as interacting with the 

plasma and organelle membranes. According to Ben-Ze’ev and Amsterdam (1986), changes 

in the expression of genes encoding cytoskeleton proteins negatively affects granulosa 

cell differentiation and, consequently, steroidogenesis, as well as the formation of cellular 

junctions and actin cytoskeleton remodelling (Sechi and Wehland 2000).

The cytoskeleton also plays an important role in the organisation of the extracellular matrix, 

which is composed of several proteins (collagen, elastin, fibronectin and laminin) and 

polysaccharides (glycosaminoglycan and proteoglycan) that are either secreted locally or 

remain associated with the cell membrane. The extracellular matrix acts as a structural 

support within follicles by associating with receptors, the integrins, which are present on the 

surface of follicle cells.

Researchers have verified that the cytoskeletal arrangement and extracellular matrix 

orientation influence one another and this interaction is crucial to the preservation 

of cellular architecture. Indeed, intracellular actin filaments interact with extracellular 

fibronectin molecules through cell-surface integrins, creating a tension that exposes 

additional fibronectin binding sites that connect with other proteins and integrins (Alberts 

et al. 2002). In turn, the extracellular matrix influences cytoskeletal organisation that can 

stimulate changes in cellular behaviour, such as proliferation (Lochter and Bissel 1995). For 

example, fibronectin deficiency had been linked to the abnormal morphology of cancer cells 

(Alberts et al. 2002). Proteins associated with actin filaments also interact with integrins on 

the internal surface of the plasma membrane (Luna 1991; Adams and Watt 1993) allowing a 

bidirectional transfer of information between the extracellular matrix and cellular cytoplasm 
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(Cukierman et al. 2002). Signals transmitted from outside the cell via integrins can reach the 

nucleus to regulate gene expression (Adams and Watt 1993; Wang et al. 1993).

The extracellular matrix also regulates critical events in follicle development and 

functionality, including cell migration, growth, proliferation and survival, as well as cellular 

shape and organisation within the follicle (Cukierman et al. 2002; Woodruff and Shea 2007).

Cell–cell connections and communication

Maintenance of cellular morphology is not only essential to preserve the interaction of cells 

with the extracellular matrix, but also to maintain physical contact between neighbouring 

cells, which occurs through various cell–cell junctions. Among these, gap junctions transfer 

ions and molecules of low molecular weight between cells (Eppig 1991). These junctions are 

specialised cell-surface channels composed of a hexagonal arrangement of proteins called 

connexins (Cxs), which form connexons by interacting with the Cx proteins of neighbouring 

cells (Granot and Dekel 2002; Fig. 2).

In various mammalian species, several types of connexin have been identified in ovarian 

tissue, including Cx26, Cx30.3, Cx32, Cx37, Cx40, Cx43 and Cx45 (Grazul-Bilska et al. 

1997). Cx43 is the primary type expressed in ovarian follicles (Risek et al. 1990). Simon 

et al. (1997) reported that Cx43 expression is restricted to granulosa cells, whereas oocytes 

produce only Cx37. Other studies have found Cx43 mRNA and protein in the oocytes of the 

rat (Granot and Dekel 2002) and cow (Sutovsky 1993). Folliculogenesis is disrupted in mice 

null for Cx37 (Simon et al. 1997) or Cx43 (Ackert et al. 2001), with no follicles containing 

multiple layers of granulosa cells observed in the ovary, supporting a crucial role of these 

proteins in follicle development.

Indeed, gap junctions are essential to maintain bidirectional communication between 

different follicular compartments (oocyte, granulosa cells and theca cells), ensuring the 

delivery of nutrients, growth factors and hormones required for follicle growth and oocyte 

development. Evidence suggests that the oocyte does not contain certain amino acids and is 

unable to perform glycolysis and cholesterol biosynthesis without the help of growth factors 

provided by neighbouring granulosa cells (Eppig 1991).

Conversely, proliferation and some metabolic processes of the granulosa cell are controlled 

by factors derived from oocytes (Eppig et al. 2005; Su et al. 2009). During follicle 

development, the granulosa cell compartment is not vascularised and requires contact with 

neighbouring cells through gap junctions to exchange gases and metabolic nutrients and 

waste products. Moreover, ovarian follicles fail to develop beyond the primary stage in mice 

that do not express growth differentiation factor-9 (GDF-9), a member of the transforming 

growth factor-β (TGF-β) family expressed only in oocytes (McGrath et al. 1995). Oocytes 

secrete paracrine signals that enable cumulus cells to produce hyaluronic acid and undergo 

cumulus expansion in response to FSH stimulation (Buccione et al. 1990; Salustri et al. 

1990) and suppress progesterone production by granulosa cells (Vanderhyden and Tonary 

1995).
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Contact between oocytes and granulosa cells is also required to regulate the expression 

of genes involved in follicular development. This is evidenced by studies that show that 

oocytes influence different patterns of gene expression in granulosa cells, such as luteinizing 

hormone receptor (LHR), Kit Ligand (KL) and anti-Müllerian hormone (AMH) mRNA 

(Eppig et al. 1997; Joyce et al. 1999; Salmon et al. 2004). Luciano et al. (2011) suggest that 

gap junction-mediated communication between germinal and somatic compartments plays 

a fundamental role in the regulation of chromatin remodelling and transcription, which, in 

turn, are related to meiotic competence acquisition. This study showed that gap-junction 

coupling during oocyte culture before in vitro maturation enhanced the ability of early antral 

oocytes to undergo meiosis and early embryonic development. On the other hand, when the 

gap junction was opened, cyclic guanosine monophosphate (cGMP) entered the oocyte from 

the granulosa cells and, as cGMP inhibits phosphodiesterase 3A in the oocyte, cAMP levels 

were kept high and meiotic arrest maintained (Norris et al. 2009; Vaccari et al. 2009).

In vitro follicle culture

Media components and conditions

Over the last few decades several culture systems have been developed to support 

ovarian follicle development in vitro. As with the culture of other tissues, follicle growth 

in culture is dependent on various components within the culture medium, including 

nutrients, electrolytes, antioxidants, amino acids, energy substrates and vitamins (Eppig 

and Schroeder 1989; Boland et al. 1994; Fortune 2003; Picton et al. 2008). Ascorbic acid, 

an important antioxidant, supports folliculogenesis by inhibiting apoptosis in rat preantral 

follicles (Murray et al. 2001) and enhancing the viability of goat follicles (Rossetto et 

al. 2009; Silva et al. 2011) after long-term culture. Moreover, the addition of pyruvate, 

glutamine, hypoxanthine, transferrin and selenium to the culture medium can promote 

follicle growth and increase the percentage of morphologically normal follicles (Silva et al. 

2004; Demeestere et al. 2005). Another component routinely added to the culture medium 

of cells and tissues is insulin, a hormone that acts as an important mediator of follicular 

development, steroidogenesis, oocyte maturation and subsequent development of the embryo 

(Yaseen et al. 2001). However, at high concentrations, insulin appears to have a toxic effect 

on follicle cells. This hypothesis was corroborated by recent studies showing that basic 

culture medium containing 10 μg mL−1 insulin was not able to maintain the viability of 

caprine preantral follicles (Chaves et al. 2010; Faustino et al. 2011). Furthermore, when high 

insulin exposure occurs during the period of oocyte growth, impaired chromatin remodelling 

and condensation during meiosis have been reported (Acevedo et al. 2007). On the other 

hand, the exposure of follicles to low (physiological) insulin concentrations will positively 

influence oocyte gene expression, allowing in vitro-produced oocytes to express similar 

levels to those produced in vivo (Sánchez et al. 2011).

In addition, in vivo and in vitro studies have established the importance of gonadotrophins 

and growth factors in folliculogenesis, and the supplementation of the culture medium 

with these factors is necessary for efficient and complete follicle development and oocyte 

maturation in vitro. Luteinising hormone (LH) and follicle-stimulating hormone (FSH) 

act in a coordinated manner to direct gonadal development and, in the adult mammal, 
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control follicle cell growth and differentiation, steroidogenesis and oocyte development and 

maturation (Kumar and Matzuk 2000). LH stimulates p450 aromatase activity in theca cells 

required for steroidogenesis, promotes ovulation and stimulates luteinisation of granulosa 

cells and theca cells of post-ovulatory follicles (Richards et al. 2002). FSH is the essential 

driver of antral follicle growth in vivo, stimulating the proliferation and differentiation of 

granulosa cells and inducing antrum formation. In preantral follicles, it may play an indirect 

effect via factors released by larger follicles or ovarian stromal cells (Matos et al. 2007).

Studies have investigated the possible role of FSH in earlier follicle development using 

different culture systems. In alginate-based 3D systems, FSH is essential for the in vitro 
survival of primate encapsulated preantral follicles (Xu et al. 2010) and promotes the growth 

of rodent (Kreeger et al. 2005; Xu et al. 2006a), non-human primate (Xu et al. 2010, 2011) 

and human (Xu et al. 2009a) follicles. The delivery of FSH for preantral follicles cultured 

in alginate-based 3D systems was also investigated. Heise et al. (2005) verified that the 

encapsulation may limit access to hormones in the medium resulting in altered development 

compared with unencapsulated follicles, while the inclusion of FSH in the alginate bead 

restores follicle growth in response to FSH. Sánchez et al. (2012) used round-bottomed 

ultra-low-attachment plates to prohibit attachment and flattening out of the early preantral 

follicles and verified that this new non-attachment condition in combination with decreased 

FSH concentrations during the antral growth stages positively affected cumulus cells, Lhcgr 
expression and led to an improvement in oocyte developmental potential.

In addition to gonadotrophins, several growth factors produced by the cells of the follicle 

act locally to direct various stages of follicle development. Kit ligand (KL), leukaemia 

inhibitory factor (LIF) and bone morphogenetic protein-4 and −7 (BMP-4 and BMP-7) 

stimulate the transition from primordial to primary follicles (Nilsson et al. 2002; Nilsson 

and Skinner 2003, 2004). Growth and differentiation factor-9 (GDF-9) and BMP-15, both 

secreted by the oocyte, promote proliferation of granulosa cells and the recruitment of theca 

cells, events that are required for the transition of follicles from the primary to the secondary 

stage (Knight and Glister 2006). In many species of rodents and domestic animals, factors 

produced by secondary follicles, including vascular endothelial growth factor (VEGF), 

transforming growth factor (TGF), insulin-like growth factor (IGF), fibroblast growth 

factor-2 and −7 (FGF-2 and FGF-7), BMPs and activin are necessary for survival and further 

development, and removal of these factors (null animals (in vivo) or culture medium (in 
vitro)) promotes apoptosis.

At the antral stage, locally synthesised peptides play a key role in the regulation of follicular 

development, through endocrine and paracrine mechanisms (Webb et al. 2003; Fortune et al. 

2004). Among these peptides, those of the IGF system, including IGF-1, IGF-2 and the IGF 

binding proteins (IGFBPs) and some members of the FGF family, such as FGF-2, FGF-7 (or 

KGF), FGF-8 and FGF-10 (Buratini et al. 2005; Fortune et al. 2004; Buratini 2007), appear 

to be critical for late-stage follicle development.

Beyond the composition of the culture medium, other factors, such as pH, temperature and 

oxygen tension affect follicle development in vitro and must mimic the conditions of the 

ovarian environment (Ye et al. 2007). Changes in pH may compromise cellular function and 
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viability (Kapus et al. 1994), as well as impair the development of preimplantation embryos 

(rats, Lane et al. 1998; hamsters, Zhao et al. 1995). With regard to temperature, in the 

transport of ovaries, generally lower temperatures (4 to 20°C) are used to reduce cellular 

metabolism and, consequently, minimise energy spending and decrease tissue autolysis 

levels (Salehi et al. 2004; Chaves et al. 2008).

The ideal oxygen concentration for in vitro follicle culture remains somewhat controversial. 

Some studies suggest that a 5% oxygen concentration is ideal to stimulate follicular growth. 

In ovine preantral follicle culture, the low O2 concentration (5%) stimulated follicle growth 

with a high proportion of follicles developing an antral cavity and a healthy cumulus–

oocyte complex (Cecconi et al. 1999). Xu et al. (2011) observed that there was an increase 

in follicular diameter and more healthy oocytes were obtained when the follicles were 

cultured at 5% O2 compared with those in 20% O2. Similarly, Eppig and Wigglesworth 

(1995) concluded that concentrations of O2 above 5% have a deleterious effect on oocyte 

development. On the other hand, different teams demonstrated that the concentration of 

20% O2 was more efficient in promoting follicular growth, survival, cellular differentiation, 

oocyte meiosis resumption and blastocyst formation from preantral follicles grown in vitro 
(mouse, Hu et al. 2001; pig, Park et al. 2005; cow, Gigli et al. 2006; goat, Silva et al. 2010).

Culture substrate

In vitro follicle culture is carried out in various supporting substrates and systems. In 2D 

systems, follicles are cultured on top of a substrate, such that only a portion of the follicle is 

in direct contact with the culture surface and thus follicle structure is only partly supported. 

The culture surface may be plastic or a deposited matrix, such as collagen or agar. In 3D 

culture systems, follicles are either suspended or encapsulated in the culture substrate, which 

permits contact with the entire follicle and supports the follicle structure in vitro (Fig. 3a). 

In these systems, follicles not only maintain their architecture but also phenocopy in vivo 
growth patterns.

During in vitro culture of ovarian follicles in a 2D system, the follicle cells attach to the 

substrate and flatten out (Zhang et al. 2005). According to Lenie et al. (2004), while the 

follicle structure is remodelled after attachment to a 2D surface, the interactions among the 

three different cell types (theca cells, granulosa cells and oocyte) are preserved. Thus, it 

has been suggested that this remodelling allows better oxygenation and access to nutrition 

and hormonal support by the innermost cells of the follicle. On the other hand, culture of 

follicles on the flat and rigid 2D culture surface disrupts gap junctions between follicle cells 

(Desai et al. 2010) and affects communication between the cells and the extracellular matrix 

via integrins (Cukierman et al. 2002). The 2D system may also cause basal membrane 

rupture and spreading of somatic cells away from the oocyte, resulting in a diffuse follicular 

morphology (Cortvrindt et al. 1996; Fig. 3b).

By contrast, in vitro culture of ovarian follicles in 3D systems maintains the follicle structure 

and the normal cell–cell and cell–extracellular matrix interactions between the theca and 

granulosa cells and the oocyte (Xu et al. 2009c). In this system, oocyte growth and granulosa 

cell proliferation occur radially, starting from the centre of the follicle, similar to what 

occurs in the ovary (West et al. 2007a). Factors secreted by the granulosa cells and by the 
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oocyte remain within the follicle and act locally to support follicle development and the 

formation of gap junctions (Sutton et al. 2003).

Studies with different cellular types have shown that 3D culture systems modulate the 

survival and communication between cells (fibroblasts, Lee et al. 2008), as well as cellular 

proliferation (smooth muscle cell, Mann and West 2002) and differentiation (mesenchymal 

stem cells, Salinas and Anseth 2008). Hwa et al. (2007) also verified that the gene 

expression profile of endothelial cells cultured in a 3D system is more similar to that 

observed in vivo, when compared with cells cultured on a 2D substrate. For the in vitro 
culture of ovarian follicles, the use of 3D substrates promotes a higher rate of survival 

(Oktem and Oktay 2007) and greater follicular growth than in 2D culture systems (Abir 

et al. 2001; Loret de Mola et al. 2004) and stimulates antrum formation, steroid secretion 

and DNA synthesis (Roy and Greenwald 1989, 1996). In addition, the culture of mouse 

preantral follicles under non-attachment conditions, which maintains the three-dimensional 

relationships between the different cell types, positively influences cumulus cell gene 

expression (Sánchez et al. 2012).

The in vitro culture of ovarian follicles in 2D and 3D systems has significantly increased our 

understanding of follicle biology and folliculogenesis and has resulted in the production of 

fertilisation competent, mature oocytes and the birth of live offspring (Eppig and O’Brien 

1996; O’Brien et al. 2003; Xu et al. 2006a). Thereby, the choice of culture system is 

still controversial. Although numerous studies have optimised the use of 2D systems for a 

range of different animal models, the good results of 3D systems have shown that they are 

effective vehicles to support three-dimensional follicular growth (Xu et al. 2006a, 2009a).

3D in vitro follicle culture

To address the limitations of 2D culture systems and better recapitulate the in vivo 
environment by maintaining the spatial relationships between cells within the follicle, 

several 3D culture methods have been developed and tested in various mammalian 

species. These 3D culture systems fall into two general categories: floating systems and 

encapsulation systems.

Floating system: rotating vessels

Rotating follicle culture techniques, in which follicle suspensions are inserted into test tubes 

and subjected to gentle orbital movement (Fig. 4a), have been used by various researchers 

to prevent follicle adhesion to the substrate surface (Rowghani et al. 2004; Heise et al. 

2005, 2009). Rowghani et al. (2004) described the culture of follicles in a suspension within 

rotating wall vessels, cylindrical chambers that rotate the medium axially (Fig. 4b). Both 

test tube and rotating wall vessel techniques are able to maintain follicular three-dimensional 

architecture; however, Rowghani et al. (2004) found that the rate of rotation needed to 

prevent follicle attachment to the cylinder surface also caused follicle degeneration.

Floating system: microdrops

Different methods for follicular in vitro culture in a 3D system using microdrops have been 

developed. Sánchez et al. (2012) used hydrogel-coated round-bottomed plates to inhibit cell 
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attachment. These non-attachment conditions influence follicle steroid secretory capacity 

and a high two-cell rate and total blastocyst yield were obtained.

Boland et al. (1993) used a modified conventional microdrop method, in which follicles 

were transferred, every 24 h, to new wells containing a microdrop of medium under mineral 

oil, to prevent the adhesion of the cells to the plate and, consequently, the loss of follicular 

morphology. This system supported mouse preantral follicle growth, providing oocytes able 

to develop to blastocyst stage after fertilisation (Bishonga et al. 2001).

Inverted microdrops were developed to achieve a more homogeneous exposure of follicles 

to nutrients and oxygen, and to maintain 3D follicular structure (Nation and Selwood 2009). 

In this system, drops of medium containing a single follicle are placed on a tissue culture 

plate, which is then inverted (Fig. 5). Tension in the liquid surface of the medium maintains 

its attachment to the plate surface while the follicle sinks downward within the drop. 

The inverted microdrop system promoted significantly faster follicle growth and increased 

oestradiol production compared with a conventional microdrop system, in which the culture 

plate is not inverted and a mineral oil overlay may or may not be used (Wycherley et al. 

2004).

Floating system: membranes

Three-dimensional cellular culture can be performed using membranes that contain 

micropores inserted into well plates. This system exposes the entire follicular surface to 

the medium and, consequently, a metabolic process similar to what occurs in vivo. By using 

this system, O’Brien et al. (2003) performed in vitro culture of the whole ovary of mice 

followed by culture of oocyte–granulosa cell complexes, achieving the birth of 59 viable 

offspring.

Encapsulation systems: hydrogels

Hydrogels are natural or synthetic polymers that are capable of absorbing large amounts 

of water. Structurally, they are composed of one or more polymeric networks of 

macromolecular chains interconnected by covalent binding, physical interactions such as 

ionic or hydrophobic interactions, or hydrogen bridges (Oviedo et al. 2008). Because of 

their reticulated structure, hydrogels are able to transport oxygen, nutrients and metabolic 

wastes (Nguyen and West 2002). Synthetic hydrogels can be designed to mimic the 

physical properties of native extracellular matrix and provide controlled reproducible 

cellular environments for encapsulation and 3D culture of cells and tissues (Lutolf and 

Hubbell 2005). Polyethylene glycol (PEG; Sawhney et al. 1993), polyglycolic acid (PGA; 

Harris et al. 1998; Thomson et al. 1999) and polyvinyl alcohol (PVA; Martens and Anseth 

2000) are the most commonly used synthetic polymers for in vitro culture. Although these 

synthetic polymers have excellent mechanical and hydrophilic properties (Kiritoshi and 

Ishihara 2004), the hydrogels they form do not have bioactive properties, and specific 

ligands or molecules must be added to make them functional. Furthermore, some synthetic 

hydrogels are not biodegradable and are unable to support dynamic remodelling by growing 

cells. This limitation may elicit negative cellular responses and so their application is 

restricted depending on the polymer type and cells used (Lee and Mooney 2001).
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By contrast, hydrogels of natural polymers contain proteins and extracellular matrix 

components, such as collagen (Butcher and Nerem 2004), fibrin (Eyrich et al. 2007), 

hyaluronic acid (Masters et al. 2004) or matrigel, as well as polysaccharides obtained from 

other biological sources, such as agarose, alginate and chitosan (Azab et al. 2006). Because 

these hydrogels are derived from natural sources, they exhibit an inherent biocompatibility 

and, depending on the origin of the gel, they have bioactive properties (Dawson et al. 

2008) that can influence cellular processes such as viability and proliferation. While this 

inherent bioactivity may make it difficult to determine exactly what cellular activities are 

affected by the hydrogel (Cushing and Anseth 2007), natural alginate hydrogels have been 

used extensively for 3D cell culture. Alginate hydrogels are physicochemically well defined 

and provide a stable and reproducible culture system that does not interfere with cellular 

functions (Heise et al. 2005).

Natural hydrogels, such as alginate, have been used successfully to encapsulate and serve 

as a 3D support structure for the culture of ovarian follicles (Shikanov et al. 2011a) and 

immature mouse ovarian follicles cultured in alginate have yielded live, fertile offspring 

(Xu et al. 2006a). However, it was found that the alginate does not degrade at the same 

rate that follicles grow (Boontheekul et al. 2005), which restricts follicle expansion (Xu 

et al. 2006b). In an attempt to avoid this problem, Shikanov et al. (2009) developed 

a new hydrogel composed of an interpenetrating network of fibrin–alginate (FA-IPN), 

which is a more ‘soft’ hydrogel. This hydrogel provides a permissive growth environment 

relative to more rigid hydrogels, improving the rate of meiotically competent oocytes 

when compared with alginate alone (Shikanov et al. 2009). This same team has recently 

developed a new biomaterial based on the synthetic hydrogel polyethylene glycol (PEG), 

which strengthens the network and improves cross-linking conditions to better maintain 

cell viability during encapsulation. Like FA-IPN, the PEG hydrogel also accommodates 

the significant increase in follicle volume while preserving the follicle’s 3D architecture 

(Shikanov et al. 2011a). Recently, a novel tyramine-based hyaluronan (HA) hydrogel 

was tested for its biocompatibility with ovarian follicles. In this study, the HA hydrogel 

supported follicle growth, oestradiol secretion and resumption of meiosis (Desai et al. 2012). 

The glycosaminoglycan HA is primarily found in the connective tissue matrix and plays 

an important role in a variety of biological processes, such as maintenance of the matrix 

structure, homeostasis of the extracellular space and interactions with other components of 

the matrix, thus forming a network of macromolecules that interacts with the surrounding 

cells (Laurent and Fraser 1992). The HA hydrogel has been tested over the years for 

numerous applications (Gojgini et al. 2011; Xu et al. 2012) and its characteristics of 

plasticity and viscosity, together with its biocompatibility, make HA a good candidate as 

a biomaterial for the in vitro culture of many cell types and tissues (Belli et al. 2012).

Alginate characteristics

Alginate is an anionic polymer that is produced from alginic acid that is present in 

the cellular wall and intercellular spaces of brown algae, particularly those of the genus 

Laminaria. This acid is found in a gel form and there is some evidence that its main function 

is the construction of a sustaining skeleton that confers resistance and flexibility to the algae 

tissue (Thu et al. 1996).
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Alginic acid is composed of two types of uronic acids: β-D-mannuronic acid and α-L-

guluronic acid. Because the solubilisation of alginic acid in water occurs only at high 

temperatures, it is increasingly common to use uronic acid salts to produce alginate polymer. 

Through a neutralisation process, uronic acids are converted to mannuronate and guluronate 

salts, which then form alginate.

Strength

Mannuronate (M) and guluronate (G) salts combine to form two types of homopolymeric 

blocks (MMMMMM or GGGGGG) or a heteropolymeric block (GMGMGMGM). The 

proportion, distribution and length of these blocks determine the physical and chemical 

properties of the alginate gel, mainly gel strength and gelation capacity. A greater proportion 

of G salts in the polymer contributes to greater gel strength, stability and porosity, as G 

salts have greater interaction with bivalent cations, resulting in the formation of a stronger 

structure and more rigid gel (Remminghorst and Rehm 2006). On the other hand, a greater 

proportion of M salts produces a more elastic gel; however, these gels are also more 

susceptible to wrinkling and have fewer pores (Zimmermann 1999; Yang and Wright 1999). 

Thus, the rigidity of alginate gel increases in the following order: MG < MM < GG (Thu et 

al. 1996).

It is believed that only alginate G-blocks form intermolecular connections with bivalent 

cations to form a structure known as an ‘egg box’ (George and Abraham 2006; Fig. 6). One 

study suggests that MG-blocks are also involved in gel formation (Donati et al. 2005). In 

general, each cation interacts with two adjacent G salts and with two G salts of the opposite 

chain, thereby inducing the formation of junction zones. The affinity of G residues to cations 

also correlates with gel strength, which increases in the following order: Mg2+ < Mn2+ < 

Ca2+ < Sr2+ < Ba2+ < Cu2+ < Pb2+ (Haug and Smidsrod 1970). Studies have shown that the 

minimum length of G-blocks required to form ion connections decreases as the affinity of 

the G salts for the cation increases; in the case of Ca2+, 8–20 adjacent G salts are required to 

form stable junctions (Kohn and Luknar 1977; Donati et al. 2006).

Moreover, alginate has a high affinity for water and readily forms gels in the presence 

of calcium ions at room temperature (Martinsen et al. 1989; Martinsen 1992; Smidsrød 

and Skjåk-Bræk 1990; Amsden and Turner 1999; Dulieu et al. 1999). The stability of the 

alginate gels when exposed to heat is also important for three-dimensional cell culture 

applications.

Porosity

Porosity is a feature of extreme relevance to producing gels for use in tissue and cell 

culture because it directly affects the cellular morphology of the encapsulated tissue and 

the diffusion of molecules through the gel. A smaller pore size may limit the transport of 

large molecules (such as nutrients) or cause the retention of substances eliminated by cells, 

resulting in a decrease in cell growth and viability (Gautier et al. 2011). Several factors can 

influence gel porosity, including gel composition; as the G-salt content increases, porosity 

increases (Smidsrød 1974). This may be due to the fact that gels with higher proportions of 
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G salts are more rigid and therefore exhibit less shrinkage. Increasing the final concentration 

of alginate can reduce the porosity of the gel.

The capacity for medium diffusion through the gel is also affected by the methods used for 

gel formation. When the gel is formed in the presence of inorganic salts, such as NaCl, it 

tends to be more homogeneous, i.e. there is an isotropic distribution of the molecules that 

form alginate, promoting faster diffusion of the solute (Yang and Wright 1999).

Studies have demonstrated that alginate has an elevated porosity, allowing substrates with 

molecular weights lower than 2 × 104, such as glucose, L-tryptophan and α-lactalbumin, to 

be diffused at the same speed as water. While proteins with high molecular weights, like 

albumin (MW = 6.9 × 104), can be diffused easily through gels with a higher proportion of 

G salts, the diffusion rate is lower than that of water (Tanaka et al. 1984). This same study 

concluded that the diffusion of substrates with high molecular weights was predominantly 

limited by the higher alginate concentration and not by the higher concentration of CaCl2 

used in gel preparation. In contrast, Martinsen et al. (1989) showed that two factors impact 

the reduction of the alginate drop volume (and therefore the reduction in pore size) after the 

gelation process: (1) CaCl2 concentration (elevated concentration reduces drop volume) and 

(2) gelation time (increased incubation time corresponds with a decrease in drop volume).

Biocompatibility

The primary goal in the development of new biomaterials is to mimic the function of 

the extracellular matrix of different animal tissues. Thus, biomaterials of natural origin 

have been prominent in cell-culture applications because of their inherent biocompatibility. 

Alginate is one of the natural biopolymers often used in in vitro culture because of its 

similarity to the extracellular matrix of the cultured tissues. This feature allows the alginate 

to modulate and support several biological processes, including the transport of bioactive 

agents, such as growth factors and hormones (Lee and Mooney 2012).

Another fundamental feature of biocompatibility is gel purity. After extraction from 

algae, alginate contains various contaminants, such as proteins, carbohydrates, fatty acids, 

phospholipids, lipopolysaccharides, toxins and polyphenols (Skjåk-Bræk et al. 1989), which 

can interact with encapsulated cells and lead to unwanted cell responses. Therefore, an 

effective purification process that does not compromise the properties of the gel is crucial for 

its use in cell culture.

Furthermore, the chemical composition of alginate, which we know affects key gel 

properties, ranges across algae species and even within different parts of the same plant. 

Soon-Shiong et al. (1991, 1992) and Otterlei et al. (1991) described that M salts present in 

alginate stimulate the production of tumour necrosis factor (TNF) and interleukin 1 (IL-1) 

by animal tissues. Gels with a lower M content minimally stimulate these cytokines and, 

therefore, have higher biocompatibility.

An alternative approach to obtaining high-purity gels and a better-defined polymeric 

structure is the biosynthesis of alginate by bacteria, such as Azotobacter or Pseudomonas 
(Lee and Mooney 2012). Chemically, this gel differs from alginic acid present in algae only 
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in its higher level of acetylation. In addition, extraction of the alginate from bacteria allows 

the careful selection of strains that are free from seasonal and geographic variations in order 

to consistently derive gels with specific properties (Clementi et al. 1999). However, this 

approach to hydrogel production is currently limited by low yields.

Degradation

Alginate can be degraded by a specific enzyme, alginate lyase, which cleaves the polymeric 

chains of the gel. Other methods of alginate gel degradation include binding to ethylene 

glycol tetraacetic acid (EGTA), a Ca2+ chelator (West et al. 2007a). In addition, alginate gels 

can be ionically dissolved through the release of bivalent ions (Ca2+) from the gel to the 

medium in an exchange reaction with monovalent cations, such as Na+ (Lee and Mooney 

2012). Alginate is also susceptible to oxidation by free radicals, as well as to hydrolysis 

or degradation in acid or alkaline medium, especially at high temperatures for prolonged 

periods of time (Thu et al. 1996). Skjåk-Bræk et al. (1989) verified that significant 

degradation occurs when pH is near neutral. Alginate degradation occurs naturally in 

brown algae due to the action of varying amounts of phenolic compounds that promote 

depolymerisation; these compounds are extracted with alginate, but can be removed in the 

alginate purification process (Skjåk-Bræk et al. 1989).

The molecular weight of alginate in solution can be significantly and rapidly reduced in 

conditions that favour degradation, a fact that will directly affect the physical properties of 

the gel that depend on its molecular weight (Thu et al. 1996). For the application of alginate 

gels to cell culture, it is therefore important to consider the factors that determine and limit 

alginate gel stability and the chemical reactions that are responsible for its degradation.

Application of alginate hydrogels to in vitro follicle culture

The physical and chemical properties of alginate produced by brown algae were found to be 

suitable for the encapsulation and culture of ovarian follicles (Pangas et al. 2003; Kreeger 

et al. 2005; Xu et al. 2006a, 2006b, 2009a, 2009b, 2009c; West et al. 2007b; Amorim 

et al. 2009). Pangas et al. (2003) used alginate for the first time for the in vitro culture 

of oocyte–granulosa cell complexes isolated from mouse preantral follicles. In this study, 

the authors verified that encapsulation in alginate maintained the communication between 

cellular compartments, promoted granulosa cell proliferation and spread and increased 

oocyte volume.

Although studies have shown limitations in the diffusion of large molecules through alginate 

pores, which have diameters between 5 and 200 nm (Gombotz and Wee 1998), encapsulated 

secondary follicles were able to respond to FSH, a molecule with high molecular weight 

(MW = 3 × 104), when added to the culture medium (Kreeger et al. 2005). FSH treatment 

led to dose-dependent increases in survival, follicular growth and steroid secretion and 

oocyte development. Heise et al. (2005) reported an increase in follicular diameter when 

FSH was added to the alginate gel before encapsulation and to the culture medium. FSH 

treatment stimulated follicle expression of Cx43 to levels comparable to those seen in vivo.
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Several works have shown that the physical environment regulates follicle function (West 

et al. 2007b; West-Farrell et al. 2009; Xu et al. 2006b). This evidence is supported by 

histological analyses, which found that the majority of immature ovarian follicles are present 

within the ovarian cortex, a collagen-rich zone of the ovary (Edson et al. 2009; Tingen et al. 

2009). During follicle growth, follicles move to the perimedullar zone of the ovary, which 

has an extracellular matrix (ECM) density lower than that of the cortex, and then complete 

their development before ovulation at the ovarian surface (Woodruff and Shea 2011). Indeed, 

Hornick et al. (2012) found that isolated primordial follicles require a higher alginate 

concentration (2%) to survive and grow in culture. These findings are also consistent with 

another study that reported that isolated human primordial follicles remain viable during 

short-term culture in 1% alginate (Amorim et al. 2009). Using the theory that early follicles 

need a more rigid environment, primordial follicles included in human ovarian cortical slices 

were cultured in alginate scaffold, which supported the survival and development of these 

follicles (Kedem et al. 2011).

On the other hand, some authors have reported that in vitro culture of secondary follicles 

in low alginate concentrations (0.25% to 0.5%) promotes greater follicle survival, antrum 

formation, follicular growth, steroid secretion and resumption of meiosis (mice, Xu et al. 

2006b; West et al. 2007b; West-Farrell et al. 2009; macaques, Xu et al. 2009c; Songsasen 

et al. 2011; Tagler et al. 2012). Moreover, secondary follicles cultured in 0.25% alginate 

were able to produce mature oocytes that could be fertilised in vitro to create embryos 

that developed to blastocyst stage (Xu et al. 2006b). However, unlike the above studies, 

secondary follicle culture in a high concentration of alginate (1.5%), produced oocytes that 

were able to resume meiosis and be fertilised, resulting in the birth of viable and fertile 

offspring (Xu et al. 2006a).

The physical environment also is responsible for inducing changes in the gene-expression 

profile of cells (Birgersdotter et al. 2005). Parrish et al. (2011) investigated the dynamic 

expression of key developmental genes during folliculogenesis in vivo and during in vitro 
culture in a 3D alginate-hydrogel system. The results showed that the 3D alginate culture 

system allows follicular gene expression similar, in part, to that of follicles grown in vivo. 

Moreover, Mainigi et al. (2011) showed that the transcriptome of oocytes that develop in 
vitro using the alginate system is very similar (~99.5%) to the transcriptome of oocytes that 

develop in vivo. Nevertheless, in this study the developmental competence of the oocytes 

was compromised by the high incidence of abnormal spindle formation and chromosome 

alignment. Variations in rigidity of the hydrogel also can affect the gene-expression pattern, 

as shown by Jiao and Woodruff (2013). Oocyte-specific gene-transcript levels in cultured 

oocytes and polar bodies were decreased in oocytes cultured in 1.5% alginate compared with 

0.25% (Jiao and Woodruff 2013).

Although studies have analysed alterations that occur in gene expression during in vitro 
culture in a 3D system relative to folliculogenesis in vivo, a detailed analysis of the critical 

molecular events involved in folliculogenesis is necessary in order that these similarities 

between in vitro and in vivo validate the use of the 3D culture system as a convergent tool 

for investigating ovarian follicular development and modelling follicle biology.
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Gels derived from alginate

Although alginate has been widely used as a substrate for 3D cell culture, the absence 

of alginate receptors on mammalian cells prevents their adhesion to the gel, which is 

important to promote and regulate cellular interactions and processes in vitro. However, this 

feature of alginate, which is associated with low protein adsorption, allows the incorporation 

of synthetic polymers into the hydrogel that specifically interact with adhesion receptors 

on the cell membrane. Gel synthesis can be modified to incorporate natural polymers 

or mixtures of synthetic and natural polymers. This strategy has allowed greater control 

over the phenotypic characteristics ofthe cultured cells based on their interaction with the 

modified hydrogel culture substrate.

Peptides containing the sequence aspartic acid–glycine–glutamic acid–alanine (DGEA; 

Alsberg et al. 2001) and tyrosine–isoleucine–glycine–serine–arginine (YIGSR; Dhoot et 

al. 2004) have been incorporated into alginate hydrogels to increase their capacity for 

adhesion with various cell types. For follicle culture, peptides including the sequence 

arginine–glycine–aspartic acid (RGD) have been used extensively as adhesion ligands within 

hydrogels, due to the presence of receptors for these peptides in a large variety of cells 

(Lehenkari and Horton 1999; Koo et al. 2002). Alginate containing the RGD sequence 

interacted with murine granulosa cells cultured in vitro, affecting their morphology and 

progesterone and oestradiol secretion (Kreeger et al. 2003). In mice, in vitro culture of 

secondary follicles in alginate modified with RGD peptides promoted follicle growth and 

produced meiotically competent oocytes (Kreeger et al. 2006).

Alginate can also be modified with the addition of extracellular matrix components. This 

approach was used by Kreeger et al. (2006) for follicle culture, in which collagen I and IV, 

fibronectin and laminin were incorporated into the alginate gel. Gels modified with various 

types of extracellular matrix proteins supported somatic-cell growth and differentiation, as 

well as the meiotic competence of the oocytes, with responses varying based on the proteins 

used. Recently, Vanacker et al. (2012) developed a biodegradable artificial ovary using 

alginate-matrigel matrix to graft isolated follicles and ovarian cells. After transplantation, 

this matrix was able to degrade, allowed vascularisation and elicited a low inflammatory 

response demonstrating that an alginate-based matrix is a promising candidate for grafting 

of isolated ovarian cells.

Other studies have described the combination of alginate and fibrin, a protein involved 

in blood coagulation, to produce an innovative biomaterial (Shikanov et al. 2009, 2011b, 

2011c). When associated with alginate, fibrin interacts with alginate G salts to form a 

dynamic interpenetrating network (FA-IPN) in which the fibrin is degraded as the follicle 

grows outward. Follicles cultured in FA-IPN maintained follicle morphological features and 

had positive effects on follicle growth, antrum formation and oocyte maturation in mice 

(Shikanov et al. 2009). Similar results were obtained by Xu et al. (2010), who cultured 

preantral follicles from macaques using a matrix constituted by the association of alginate, 

fibrin and matrigel. In other work, secondary follicles of mice recovered from cultured 

ovaries were cultured in FA-IPN beads and produced a very high rate of oocyte progression 

to metaphase II and formation of two-cell embryos (Jin et al. 2010).
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Final considerations

Currently, technologies using cells, biological materials and molecular signals to repair, 

maintain or improve the functionality of different cell types and tissues are improving our 

understanding of the effects of artificial environments on cell functions. In this context, a 

wide variety of natural and synthetic polymers has been produced or modified, forming gels 

with different physical characteristics that are able to positively affect the development and 

function of encapsulated cells and tissues. With regard to the in vitro culture of ovarian 

follicles, the development of 3D microenvironments using hydrogels that support follicular 

growth and oocyte maturation remains an area of active research. Most of the studies 

conducted on in vitro follicle culture have investigated the use of alginate-based gels and 

modifications of these gels in which synthetic peptides or extracellular matrix components 

have been incorporated to improve gel function and bioactivity.

While research related to the chemistry of polymers is advancing and producing increasingly 

sophisticated gels, the complex interactions between natural or synthetic materials and 

follicles during 3D culture have not been completely characterised. The factors that are 

essential for proper growth and maturation of follicles in vitro, such as the availability 

of oxygen, nutrients, growth factors and hormones, and their diffusion and distribution 

properties, must be defined. The culture conditions in these hydrogels will depend on their 

effects on various cellular processes and the physical properties of the gel that impact its 

function, such as the formation of gradients or the presence of structural defects.

The establishment of a system for 3D in vitro culture of ovarian follicles that provides a 

physical environment capable of supporting the development of follicles and successfully 

producing fertilisable oocytes is extremely important. Such a system will not only provide 

crucial information regarding follicle biology and the events of folliculogenesis, but also 

open up the possibility for clinical applications in assisted reproductive technologies.
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Fig. 1. 
The cytoskeleton is composed of three types of filaments: microtubules, intermediate 

filaments and actin filaments.
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Fig. 2. 
A gap-junction channel is composed of two connexons present in the membranes of adjacent 

cells. Each connexon is formed of a hexagonal arrangement of proteins called connexins.
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Fig. 3. 
Follicles cultured in vitro in different systems. (a) Follicle encapsulated in the culture 

substrate with its architecture intact. (b) Follicle cultured in 2D system with basal membrane 

rupture and oocyte extrusion.
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Fig. 4. 
Rotating follicle culture techniques. (a) Follicle suspensions are cultured in test tubes 

subjected to gentle orbital movement. (b) Follicles in a suspension are cultured within 

rotating wall vessels.

Brito et al. Page 30

Reprod Fertil Dev. Author manuscript; available in PMC 2024 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
In the inverted microdrop system, the culture plate is inverted and the follicle moves down to 

the extremity of the medium.
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Fig. 6. 
The ‘egg box’ structure formed by alginate G-blocks and bivalent cations (e.g. Ca2+).
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